
Cookies Along Trust-Boundaries (CAT):
Accurate and Deployable Flood Protection

Martin Casado Aditya Akella Pei Cao Niels Provos Scott Shenker
{casado,cao}@cs.stanford.edu,aditya@cs.cmu.edu
niels@google.com, shenker@icsi.berkeley.edu

Abstract
Packet floods targeting a victim’s incoming bandwidth are no-
toriously difficult to defend against. While a number of solu-
tions have been proposed, such as network capabilities, third-
party traffic scrubbing, and overlay-based protection, most suf-
fer from drawbacks that limit their applicability in practice.
We propose CAT, a new network-based flood protection

scheme. In CAT, all flows must perform a three-way handshake
with an in-network element to obtain permission to send data.
The three-way handshake dissuades source spoofing and estab-
lishes a unique handle for the flow, which can then be used for
revocation by the receiver. CAT offers the protection qualities
of network capabilities, and yet does not require major archi-
tectural changes.

1 Background and Motivation

Denial-of-service (DOS) via packet flooding remains a
serious problem on the Internet today. Receiver cen-
tric solutions are generally ineffective against flooding
because the resource being exhausted is not under the
victim’s control. Other forms of resource consumption
DOS, such as outgoing bandwidth exhaustion or com-
putational complexity attacks, can be treated as a local
resource management issue and are often dealt with at
the victim with resource scheduling [21] or admission
control [15] schemes.
Industry and the Internet research community have
proposed or deployed a number of solutions which
have made great strides towards offering protection from
flooding. We describe some of them here:
Traffic filtering near the victim: ISPs use a variety
of statistical and machine learning techniques to “infer”
attack traffic with little input from victims, e.g. Push-
Back [16], and Arbor Networks [1]. The location where
the filtering is performed is either at the tier-1 ISP [1],
pushed to ISPs close to the sources [16], or pushed to
points upstream of the local bottleneck link of the vic-
tim [13]. In general, these schemes provide a trade-off

between the rate of false positives and the degree of sen-
sitivity to low-bandwidth attacks.
Traffic filtering near the source: Other schemes sug-
gest filtering packet floods as close to the source as pos-
sible, e.g. AITF [7] and Firebreak [11]. However, we
believe such schemes are unlikely to be adopted be-
cause they involve asking an ISP to take damaging action
against one of their customers on behalf of a victim that
they have no economic or trust relationship with1.
Overlays: Overlay solutions, such as CDNs, Mayday [6]
and SOS [14], filter packet floods at a large set of nodes
distributed across the edges of the network. The aggre-
gate bandwidth offered by the overlay nodes can be very
high. However, even in the presence of a high-bandwidth
overlay to vet traffic, the back-end server’s public IP ad-
dress remains vulnerable.
Network Capabilities: In a departure from filtering-
based approaches, network capability schemes, such as
SIFF [22] and TVA [23], require recipients to mark
wanted/legitimate traffic with unforgeable capabilities.
These schemes guarantee that legitimate traffic always
receives priority over illegitimate traffic. However, exist-
ing proposals require changes to both clients and servers,
as well as upgrades to routers to honor capabilities and
protect legitimate traffic. As a result, they do not provide
tangible near-term benefits.
Third party traffic scrubbing: In this approach, a com-
pany peers with a number of large ISPs, and sinks all
traffic to the protected servers. The company can then
offer DoS prevention services to the web-servers such
as protection from connection floods (by performing the
TCP handshake in the network), flood detection (using
statistical techniques mentioned above) and per-flow rate
limiting (e.g. Prolexic [3]). However, with this approach
it is difficult for web sites to control decisions regarding
the legitimacy of traffic. Generally, the company offering
protection handles both the detection of malicious traffic

1 [13] provides a good argument in support of this position

SRUTI ’06: 2nd Workshop on Steps to Reducing Unwanted Traffic on the InternetUSENIX Association 15

and the enforcement.
In this paper, we propose CAT, a new approach for
protecting public web servers against bandwidth floods.
Our goal for CAT is to offer the same protection guar-
antees as capabilities while having a practical adoption
story. This implies no major architectural changes, back-
wards compatibility with existing clients and an incre-
mental deployment path. CAT achieves this goal through
combinations of the following techniques:

• flow cookies: This is a stateless, backward-
compatible capability mechanism that offloads
connection-setup and filtering to in-network ele-
ments without requiring per-flow state.

• filtering on trust boundaries: Existing commercial
relationships among ISPs can be leveraged to iden-
tify viable locations for filtering. We term the fur-
thest set of ISPs with which a web server has an
economic relationship its trust boundary and argue
that the trust boundary is a natural location for fil-
tering.

All flows to a CAT protected server must first per-
form a handshake with a middlebox on the server’s trust
boundary. Successful completion of the handshake will
provide the sender with a valid flow cookie which will
allow the sender to communicate with the receiver for
the lifetime of the cookie or until the receiver revokes it.
Cookie revocations are performed by the middlebox on
the trust boundary.
In the following sections we present an overview of
CAT (§2), then discuss flow cookies in more detail (§3)
and a mechanism for dynamically detecting the trust
boundary (§4). In §5 we present an analysis of BGP data
to determine the properties of existing trust boundaries.
Finally, we present related work in §6 and conclude in
§7.

2 Overview of CAT

CAT was designed around two guiding principles:

1. For filtering mechanisms to be accurate and effec-
tive, decisions about whether or not to permit flows
must be made by devices or services that can reli-
ably determine both the origin of traffic as well as
whether the destination wishes to receive the traffic.

2. To ensure incremental deployability of a protection
mechanism, existing commercial relationships be-
tween network entities (e.g. ISPs) can be leveraged
as forcing functions for the deployment of protec-
tion infrastructure.

The flow cookie mechanism realizes the first princi-
ple. Flow cookies liberally borrows ideas from capabil-
ities and third-party traffic scrubbing. Like third-party
scrubbing, a “cookie box” is situated on-route between
the clients and protected web-server at a network loca-
tion with high incoming bandwidth (typically inside the
protected server’s ISP). The cookie box engages all flows
from clients in a three-way handshake. Only connec-
tions that have completed the handshake are forwarded
on to the web server. Subsequent to the handshake, flow
cookies functions similar to network capabilities. The
cookie box inserts capabilities in outgoing packets from
the server, and these capabilities must be echoed in fu-
ture packets from clients. We use the TCP timestamp
field to insert the capability, thereby ensuring backwards-
compatibility. When the web-server deems a client to be
misbehaving, it can terminate the connection and/or sim-
ply request the cookie box to filter the offending flow or
IP.
This simple approach offers several salient features:

• Offloading the three-way handshake to high-
bandwidth infrastructure allows special purpose
hardware to determine if clients are source spoof-
ing.

• All packets forwarded to the server must carry a
non-forgeable cookie which is computed over the
packet header. Therefore, web-servers can make ef-
fective policy decisions on the basis of IP addresses
which are enforced in the network.

• The signaling of the “wanted-ness” of a flow is im-
plicit via response traffic from the protected server.
That is, if a server does not reply to a client with an
ACK, the client will be unable to get a fresh cookie
after its current one times out.

• With filtering enforced in-network, this approach
offers web servers the protection bandwidth of the
link(s) over which the cookie box is deployed.

• Detection of illegitimate traffic is performed at the
web server, hence the server can implement flexible
and meaningful policies for its particular service.

As described above, flow cookies operates through a
point deployment, and is therefore easy to adopt. How-
ever it suffers from two key limitations: (1) if an at-
tacker overwhelms the link on which the cookie box is
deployed, she can effectively flood the server (2) unless
the cookie box sinks all traffic, packet floods can avoid
filtering by routing around the cookie box (e.g. using
alternate ISPs or peering points).

SRUTI ’06: 2nd Workshop on Steps to Reducing Unwanted Traffic on the Internet USENIX Association16

Web server

A B
BA A is B's provider

A, B are peers

AB

C

D

E

F

G

To customer

To
peer

To
peer

To
peer

To customer

To
 peer

To customer

To
 peer

Figure 1: ISPs shaded gray are in the region of trust of the
web server. ISPs enclosed in a white square are on the trust
boundary For example, ISPs A and B are on the trust boundary
since they terminate the trust chain for traffic received from
their peers.

Naturally, these limitations can be addressed by de-
ploying more cookie boxes at a diverse collection of net-
work links spread across several ISPs. We note that de-
ployment of cookie boxes can be facilitated by the web
server taking advantage of the network links for which
it, or its ISP, or recursively its ISP’s ISPs, have an eco-
nomic relationship (Two network entities have an eco-
nomic relationship if one pays the other for delivering
traffic). The transitive closure of such economic rela-
tionships among ISPs defines a “region of trust” for each
protected server (see Figure 1). We consider ISPs in the
trust region that terminate a sequence of economic rela-
tionships to be on the trust boundary (Figure 1).
Links on a server’s the trust boundary are natural lo-

cations for deploying cookie boxes because they offer
the highest incoming bandwidth without requiring the
web-server to forge new relationships. We argue that not
only does a server have stronger clout to persuade an ISP
within its region of trust to deploy a cookie box, it also
has greater leverage to ensure that the cookie boxes will
be administered and operated correctly
To be effective, a trust boundary must have the fol-

lowing two properties. First, the aggregate bandwidth
across all boundary links must be very high. This en-
sures that cookie boxes on the trust boundary can han-
dle high-volume flooding. Second, the number of routes
traversing the boundary links should be roughly propor-
tional to the bandwidth of the links. This prevents in-
network hot-spots from underprovisioned links manag-
ing too many flows while other links on the boundary
have available filtering capacity. In §7, we present an
analysis of AS level connectivity graphs for the Internet
which demonstrates that the trust boundary for most stub
networks today satisfy both of these properties.
By definition, ISPs on the trust boundary of a given
web server must perform the TCP handshakes and sub-
sequent filtering on all traffic to the web server. To effec-
tively provide this functionality in a setting where ISPs
could lie on one of several trust boundaries (and inside

Figure 2: A multihomed web server seeking protection de-
ploys cookie boxes at some of the network links of its primary
ISP. These could be edges along which the web server expects
to receive a large fraction of its traffic.

several other regions of trust), the ISPs must coordinate
among each other to decide who must perform the TCP
handshake and subsequent filtering for a particular web
server. In §4 we present a simple modification to BGP
by which multiple ISPs can ascertain their responsibility
in a distributed manner.

3 Flow Cookies

Flow cookies is an extension of SYN cookies[8] wherein
a middlebox places a secure, limited lifetime cookie
within the TCP timestamp of every outgoing data packet
from the protected server. Flow cookies offers strong
protection against flooding, does not require modifica-
tion to clients or to the network, is resistant to source-
spoofing, and does not require per-flow state in the net-
work.
Unlike approaches common in the commercial world,

flow cookies is not meant to be deployed at a web
server’s perimeter. Instead, a “cookie box” (or a hand-
ful of boxes) which enforces flow cookies are deployed
at the edges of the protected web server’s ISP. We illus-
trate an idealized setup in Figure 2.
In this section, we present a brief overview of the flow

cookies approach. Flow cookies was designed to protect
services using TCP.We assume that other protocols, such
as UDP, are managed through other means, such as rate
limiting aggregates. The full details of the flow cookie
protocol, design issues and analysis may be found in [9].

3.1 Overview
The cookie box(es) and the protected web server cooper-
ate to perform the following four tasks:
1. The cookie box intercepts all SYN packets destined

to the web server. If the SYN packet’s source IP is in an
”IP blacklist”, it is dropped (i.e., the IP blacklist
is only looked up for SYN packets). Otherwise, the box
responds with a SYN cookie [8] in which the source ad-
dress is forged to be that of the web server. The cookie
is computed using a keyed message authentication code

SRUTI ’06: 2nd Workshop on Steps to Reducing Unwanted Traffic on the InternetUSENIX Association 17

over the connection 4-tuple. SYN cookies does not re-
quire state maintenance at the cookie box and can be run
at gigabit line speeds [2].
This first step ensures that spoofed sources, SYN
floods and unwanted connection attempts cannot traverse
the link between the cookie box and the protected web-
site.
2. For packets to the web server that carry an ACK flag

(this includes all data packets), the cookie box checks
that the ACK’ed sequence number is a valid SYN cookie.
If it is, the connection is handed off to the web site using
a TCP handoff scheme such as [4].
3. For outgoing packets from the web server to its
clients (this happens after the web server has accepted the
client connection request), the cookie box adds a secure
non-forgeable “flow cookie” (explained below).2 The
flow cookie is computed in a similar manner as the SYN
cookie and is valid for a limited amount of time (e.g. 1
minute). As we explain below, the flow cookie is echoed
back by the client, and checked by the cookie box.
The cookie box implicitly infers whether the web

server wishes to engage in communication with a par-
ticular end-point by marking outgoing ACKs. If the web
server chooses not to send ACKs to a client, the client
will be unable to get fresh cookies once the old one times
out. The flow cookie further helps the cookie box en-
sure that only packets belonging to flows accepted by the
server traverse the link between the cookie box and the
web server.
4. The web server understands the accepted usage pol-
icy of its local administration, and is already keeping per-
flow state for each outstanding connection. Therefore, it
is in the best position to determine if a client is misbe-
having.
If the web server does not want to receive packets from
a particular flow, it can do two things: (1) push filters to
the cookie box’s ”flow blacklist”; in this case, the
cookie box maintains the source IP and port in a revoca-
tion list with an associated time out and filters packets
accordingly. Or, (2) inform the cookie box to stop is-
suing fresh capabilities for the client. This can be done
statelessly by simply closing the connection, in which
case the client will no longer receive valid cookies for
the flow (after the current cookie times out). The first
approach can be employed to filter high-bandwidth ma-
licious flows immediately. The second approach can be
used in less critical situations or to shut off low priority
clients when under overload.
If a server determines that an attacker is behind a

given IP address (or address block), it can request the
cookie box to add the IP (address block) to the IP
blacklist.

2We assume that Internet routes are symmetric at the AS-level.

3.2 Ensuring Backwards-Compatibility

To be backwards-compatible we exploit the TCP times-
tamp option and place the flow cookie from step #3 in
the timestamp field of packets.
The TCP timestamp option, proposed in RFC-1323 to

measure RTTs, is supported by all the major host oper-
ating systems. According to the RFC, once the option
is enabled by both ends, the sender places a timestamp
in a packet, and subsequent packets from the receiver
echo the timestamp. Common operating systems en-
able timestamps by default, with the exceptions of Win-
dows2000 and WindowsXP. As has been shown by [20],
it is possible to trick Windows into echoing timestamps
by including a timestamp option in the SYNACK packet.
On connection set up, the cookie box negotiates the

timestamp option with the client. RFC-1323 does not
specify how the timestamp value is to be encoded in the
option field. To prevent disruption, the cookie box and
the web server must explicitly agree on a format. Also,
care needs to be taken if the web site wishes to use times-
tamps to measure RTTs. To avoid undesirable interac-
tions, protected web servers could be dissuaded from us-
ing timestamp values in RTT calculations. This requires
a relatively insignificant modification to the TCP stack at
the web server. Also, all network stacks are able to do
RTT calculations without the aid of timestamps. An al-
ternate method that does not require any modification of
the web server is described in full detail in [9].

3.3 Implementation

To demonstrate flow cookies’ ability to inter-operate
with existing clients, we implemented flow cookies
within a software router using a user-space network de-
velopment environment [10]. We tested our implementa-
tion using numerous public web servers. Our tests show
that flow cookies is compatible against various client
OSes and server software and can handle fully dynamic,
interactive sessions as well as static content.
We also found that the flow cookie implementation

and IP blacklist lookup had little effect on the through-
put of our router and was able to operate at gigabit speeds
during micro-benchmarking. While our focus was on a
software implementation, we believe that flow cookies
can be easily implemented in hardware.
We also tested against synthetic flooding attacks and

found that flow cookies is indeed able to offer full pro-
tection of established flows even under severe loads. Full
details of our implementation and testing are available
in [9].

SRUTI ’06: 2nd Workshop on Steps to Reducing Unwanted Traffic on the Internet USENIX Association18

4 Leveraging Trust Relationships

A primary limitation of flow cookies as described thus
far is that it only leverages the protection bandwidth of
a few high-speed links. So either the protected links
must sink all traffic to the web server (this may require
changes to routes and could introduce network bottle-
necks) or the server is vulnerable to attacks on unpro-
tected links. A more troublesome problem is that, when
several cookie-boxes are deployed across many ISP—
where each cookie box could be protecting a distinct set
of web servers—the cookie boxes must arrive at a con-
sensus on which of them should perform the handshake
and filtering for a particular flow.
In this section we extend flow cookies from being a
point-solution to a more generic wide-area service. We
introduce a minor modification to BGP that allows ISPs
which have deployed cookies-boxes to determine which
boxes manage the handshake and do the filtering on a
per destination basis. We also argue that the most viable
and effective deployment strategy is to leverage existing
client/provider relationships.

4.1 Trust Relationships Between ISPs
In the Internet today, neighboring ISPs rely on contrac-
tual agreements or SLAs to coordinate mutual exchange
of traffic. While some agreements involve money chang-
ing hands (such as customer-provider contracts), others
are more faith-based (e.g. peering relationships) [17].
We argue next that such agreements also define “trust
relationships” between ISPs, either implicitly or explic-
itly. By a trust relationship between network A and net-
work B, we mean that A trusts B to take the necessary
steps from preventing packet floods from entering into
A’s network via the A–B link.
In the simplest case, if ISP A pays ISP B for global In-

ternet connectivity, then it is safe to say that “A implicitly
trusts B”; a violation of this trust – detectable at A, for
example, when B lets packet floods through – will likely
result in A picking an alternate provider. Such implicit
trust relationships already exist today.
Neighboring ISPs, that don’t share a customer-

provider relationship, may also enter into explicit trust re-
lationships. For example, two peer ISPs may contractu-
ally agree to mutually cooperate and vet packets destined
for each other’s network. Several such instances of coop-
eration among peer ISPs for traffic engineering purposes
have been observed empirically. Explicit trust relation-
ships may also be forged between a customer network
and a non-neighbor ISP providing a specialized form of
protection.
By default, trust relationships are not symmetric. For
example, a customer may trust its provider to do the right

S
RA

B

C D

E

0

0

0

0

1

1

traffic flow
D--E trust

relation

Figure 3: An illustration of trust relationships on an end-to-
end AS-level path.

thing, but the provider cannot assume any guarantees
from its customer. However, most explicit trust agree-
ments between peers are likely to be symmetric.
In what follows, we assume trust exists in the

customer-provider relationships, not in peering relation-
ships.

4.2 A BGP-based Mechanism
Our insight is that we can leverage BGP and existing trust
relationships between ISPs to determine, in a completely
distributed and stateless manner, a single ISP that is re-
sponsible for inserting flow cookies and filtering packets.
We illustrate our solution through an example. Say

source S wants to send to receiver R. By the design of
routing in the Internet, S knows the “AS-level path vec-
tor” to communicate with R via BGP: A, B, C, D,
E (Figure 3). Here A is S’s ISP and E is R’s ISP.
We assume that every ISP along the path vector knows

the relationships between pairs of ISPs downstream from
S towards R. For example, A knows the trust relation-
ship for A--B, B--C, C--D, D--E, and E--R. B knows
B--C, C--D, D--E, and E--R and so on.
This information is easy to piggy back on to the BGP

path vector protocol: In BGP, when an AS wants to an-
nounce a route to a neighbor, the AS appends its AS
number to the announcement. We simply change the an-
nouncement to also indicate whether the AS trusts the
neighbor. The destination prefixes to be protected are
similarly advertised in the BGP announcement.
Lets says that the trust relationship between a pair of

neighboring ISPs, e.g., A-B, is encoded in a binary form:
1 means that B trusts that packets received from A have
been vetted by A using flow cookies, 3 and 0 means oth-
erwise.
Assume the trust relations on the path from S to R are

as follows:
S--A: 0
A--B: 0
B--C: 0
C--D: 0
D--E: 1
E--R: 1
3a 1 also implicitly assumes that A has flow cookies deployed

SRUTI ’06: 2nd Workshop on Steps to Reducing Unwanted Traffic on the InternetUSENIX Association 19

If a packet from S to R arrives at A, A checks notices
that the sequence of trust relationships along the forward
path to R contains at least one “0”. A simply forwards
the packet along. Similarly, B and C forward the packet
along.
When D receives the packet, it notices that there is a
continuous trust sequence of 1’s, starting from D, all the
way to the receiver R; and that D did not trust its up-
stream neighbor, C. D would also check that the destina-
tion prefix, R, was advertised to be protected.
For ISPs such as D to make this inference, we must
make minor modifications to the routing tables at their
cookie boxes. Assume that the ISP D deploys a distinct
cookie box on each of its peering links. The cookie box
is similar to a router, with its own routing table etc. The
only difference is that each route in the cookie box’s ta-
ble is annotated with the ”AND” of the downstream trust
sequence, and the inverse of the trust relationship with
the upstream. For example, annotation at D for packets
from received from ISP C destined for R is:
(TRE AND TED) AND (NOT(TCD))
Where TXY denotes the trust relationship between X
and Y. If the annotation is 1, then D does the flow cookie
check, insertion or filtering (see below). Otherwise, D
lets the packet through. Based on this inference, in the
above example, ISP D decides that it must do the flow
cookie insertion/check for packets from S to R.
As packets flow past the trust frontier, they are for-
warded to the destination. For example, E knows that
D can be trusted to vet packets. E simply forwards the
packet along. Similarly, R trusts E and accepts the packet
as legitimate.
Trust relationships similarly come into play when de-
ciding to filter packets. When R wants to filter packets,
it pushes filters upstream to E. E in turn pushes to D, and
this happens until the filters hit a “trust boundary” (e.g.
the edge between D and C), when the filters are finally
installed.
As filters are pushed up the trust chain, tier-1 ISPs may
have to install a large number of filters. However, as we
described in Section 3.1, filters are mainly needed for
connection attempts; attack flows are automatically fil-
tered when the timer for their cookie expires. Therefore,
filters can be stored in larger, slower memories since they
are only consulted on SYN packets. Further, the IPs can
be aggregated in the filters under memory pressure.

4.3 Exploring the Trust Boundary
As described previously, the trust relationships between
ISPs implicitly define a region of trust within which a
protected server could deploy multiple cookie boxes. We
refer to the boundary of this region as the “trust bound-
ary”. For example, ISP D above is on the trust boundary

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 10 100 1000

1 10 100

of links on trust frontier

of ASes on trust frontier

Links
ASes

Figure 4: CDF of the number of ASes (top x-axis) and links
(bottom x-axis) on the trust boundaries of 13,031 stub net-
works.

of stub network R for all packets arriving from S. A dif-
ferent ISP may be on the trust boundary for packets from
other sources.
As past studies have shown, ISPs higher up in the
Internet ISP-hierarchy have higher bandwidth links [5].
Hence, for example, links in ISP D above have higher
capacity than those in E. This implies that, independent
of the mechanism used, the trust boundary dictates the
maximum amount of aggregate filtering bandwidth avail-
able to a server under existing trust relationships. In ad-
dition, ISPs higher up in the hierarchy are known to have
a much larger number of interconnections with other
ISPs [12]. Therefore, the advantage of using ISPs in the
trust boundary over a point deployment for filtering is
not only the access to greater bandwidth but isolation be-
tween multiple links.
Put another way, the ideal trust boundary should be

composed of multiple, large ISPs (tier-1 and tier-2) with
routes distributed across boundary links in a manner pro-
portional to the link bandwidth.
In what follows, we explore the properties of trust

boundaries on the Internet today using publicly available
AS provider-subscriber and peering relationship infor-
mation inferred from BGP data [19]. Our analysis as-
sumes that trust only transfers across client/provider re-
lationships and ends at peering links. In practice, peer-
ing agreements may contain provisions for filtering as
well, therefore we consider our analysis pessimistic in
the amount of filtering bandwidth available on the trust
boundary.
The analysis covers the trust boundaries for 13,031

stub networks. We first look at the total number of dis-
tinct ASes and links on the trust boundaries for each of
the stub networks (Figure 4). Here, and in the subsequent
analysis, we use the term “link” to refer to the collection
of several physical interdomain links between neighbor-
ing ISPs.
Over 70% of stub networks have 10 or more different

ASes on the their boundaries, with over 60 total links.
90% of stubs have 20 or more links on their boundary.
We also look at the distribution of tiers on the trust

SRUTI ’06: 2nd Workshop on Steps to Reducing Unwanted Traffic on the Internet USENIX Association20

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
Percent of ASes on Frontier are Tier 1, 1 and 2, and 1,2 and 3

Tier 1
Tiers 1 2

Tiers 1,2 3

Figure 5: CDF of the percent of ASes on the boundary that are
tier 1, tiers 1 and 2 and tiers 1,2, and 3

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000
Stub Network

Tier 1
Tier 2
Tier 3
Tier 4

Figure 6: Histogram of the fraction of routes passing through
boundary ISPs belonging to tiers 1–4.

boundary. As shown by past studies [5], we assume that
links from smaller, or lower-tier ISPs (e.g. tier 3 and 4)
are lower bandwidth than those from tier 1 and 2. Fig-
ure 5 is a CDF plot of the percentage of autonomous sys-
tems that are either tier 1, tiers 1 and 2, and tiers 1,2 and
3. It is clear that the boundary is largely made up of tier
1 and 2 ISPs. The trust boundaries of over 80% of stub
networks consist of 85% or more tier 1 or 2 ISPs. This is
unsurprising given that larger tier ISPs peer heavily thus
ending the recursive passing of trust.
Regardless of the distribution of tiers on the boundary,

if many routes to a web servers traverse small ISPs on the
trust boundary, then the boundary may still only provide
nominal protection. To demonstrate that this is not the
case, we analyze routes from all destinations in our data
set to each of several stub networks. Figure 6 is a his-
togram of the percent of routes which traverse each tier
(1-4) on the trust boundary for over 8,000 stub networks.
As expected, for most trust boundaries, the vast majority
of routes pass through tier 1 links. Very few pass through
tier 4.
These results suggest that, in most cases, the trust

boundary can be used to provide effective, high-speed
filtering bandwidth in the network. However, given the
nature of peering relationships it is difficult to do a com-
plete study of the trust boundary properties. For exam-
ple, smaller tier-3 or tier-4 ISPs often engage in private
peering relationships. Such relationships cannot be in-
ferred from public BGP data. Another issue that we
neglect in our analysis is that the AS level path vector
may not necessarily reflect the true forwarding path of

a packet (due to internal ISP policies). However, we do
believe that our BGP-based scheme and analysis of the
trust boundary hold for such situations as well.

5 Related Work

We discussed several related approaches in Section 1. In
this section, we elaborate on some of them.
Filter-based approaches, such as Pushback [16] and

AITF [7] require the identification and blocking of ille-
gitimate traffic from within the network. In Pushback, a
router attempts to identify attack traffic by determining
that it is in a congested state, finding an “aggregate” that
describes the attack traffic, and pushing the “aggregate”
upstream to be blocked close to the source. In contrast,
our solution lets the web server discern unwanted traffic.
AITF is based on the observation that a pure filter-

based approach such as Pushback requires too much state
in core routers. AITF decentralizes the state by pushing
filtering rules as close to the source as possible. How-
ever, it does not consider how the filtering rules are de-
termined and whether the attack recognition mechanism
is resistant against spoofing.
Flow cookies can be viewed as a simplified variant of

network capabilities [22, 23]. In contrast with capabil-
ities, our scheme offloads connection negotiation to the
network and requires no modification to routers, nor to IP
or TCP. Also, flow cookies aims for “partial path protec-
tion”, and trusts one end of the communication: the pub-
lic web sites; Capability schemes strive to offer “com-
plete path protection”.
Firebreak [11] proposes to use IP anycast to redirect

traffic to filtering portals close to the source. Flow cook-
ies could be used in conjunction with firebreak to enforce
precise, per-flow filtering in a stateless and backwards
compatible manner. However, we feel that a more viable
deployment strategy is to “push” filtering up from the
target rather than expect deployment at the edge, close to
the source.
In [18], the authors suggest using virtual nets within

the network to filter DDoS. Like our proposal, they sug-
gest deployment close to the victim. Authors in [13]
extend this to work over multiple ISPs. However, be-
cause the filtering points do not participate in flow nego-
tiation, these schemes are vulnerable to source spoofing
and first-packet flooding. Also, we offer a method for dy-
namically determining where to enforce filtering given a
placement of the filtering hardware.
DDoS solutions relying on the deployment of security

appliances, such as [2, 3], perform a number of DDoS
prevention functions such as offloading the three-way
handshake with SYN cookies, enforcing per-flow rate
limiting of millions of flows etc. We argue that the end-
server must be responsible for distinguishing good vs bad

SRUTI ’06: 2nd Workshop on Steps to Reducing Unwanted Traffic on the InternetUSENIX Association 21

traffic and pushing the filtering decisions to the network.
In addition, we do not require per-flow state lowering the
complexity and cost of implementation.

6 Summary

DDoS flooding attacks that target the victim’s incoming
bandwidth are particularly difficult to contain since the
victim cannot directly control the utilization of its in-
coming link. Several solutions have been proposed both
in the industry and research community to tackle this
problem. However, these solutions are either inaccurate,
ineffective against low-bandwidth floods, impossible to
incrementally deploy or require expensive state mainte-
nance.
In this paper, we proposed a simple approach for flood
protection that directly addresses the drawbacks of ex-
isting mechanism. Our approach builds on current sig-
naling mechanisms (TCP’s three-way handshake), past
work on network capabilities, and Internet trust relation-
ships (ISP customer-provider relationships).
We outlined flow cookies, a simple, backwards-
compatible, point-deployable, network-level protection
mechanism that can offer high protection bandwidth to
public web servers. Flow cookies helps public web
servers implement flexible traffic policies at high band-
width network locations with minimal additional support
from the network.
We argued that the protection offered by flow cookies
can be enhanced by deploying flow cookie boxes among
ISPs that have a direct or indirect economic relationship
with the web server. Such ISPs are said to lie in the web-
server’s region of trust. We presented a simple BGP-
based mechanism to coordinate handshake and filtering
activities among multiple such boxes. We study several
interesting properties of trust regions in the Internet to-
day.

References

[1] Arbor home page. http://www.arbornetworks.com/.
[2] Netscaler syn flood protection.
http://www.netscaler.com/docs/library/ NetScaler-
SYNDefense.pdf.

[3] Prolexic home page. http://prolexic,com.
[4] Tcpha home page. http://dragon.linux-vs.org/ dragonfly/.
[5] A. Akella, S. Seshan, and A. Shaikh. An Empirical Evalu-
ation ofWide-Area Internet Bottlenecks. In Internet Mea-
surement Conference, Miami, FL, Nov. 2003.

[6] D. Andersen. Mayday: Distributed filtering for internet
services. In USITS, Seattle, WA, 2003., 2003.

[7] K. Argyraki and D. R. Cheriton. Active internet traffic
filtering: Real-time response to denial-of-service attacks.
In USENIX Annual Technical Conference, 2005.

[8] D. Bernstein. Syn cookies.
http://cr.yp.to/syncookies.html, 1996.

[9] M. Casado, P. Cao, A. Akella, and N. Provos. Flow-
Cookies: Using Bandwidth Amplification to Defend
Against DDoS Flooding Attacks. Stanford HPNG Tech-
nical Report, 2006.

[10] M. Casado and N. McKeown. The Virtual Network Sys-
tem. In Proceedings of the 36th SIGCSE technical sym-
posium on Computer science education, 2005.

[11] P. Franics. Firebreak: An
ip perimeter defense architecture.
http://www.cs.cornell.edu/People/francis/firebreak/hotnets-
firebreak-v7.pdf.

[12] L. Gao. On inferring autonomous system relationships in
the Internet. 9(6), Dec. 2001.

[13] A. Greenhalgh, M. Handley, and F. Huici. Using rout-
ing and tunneling to combat dos attacks. In Proc. Usenix
workshop on Steps to Reducing Unwanted Traffic on the
Internet, July 2005.

[14] A. Keromytis, V. Misra, and D. Rubenstein. Sos: Secure
overlay services. In Proceedings ofACM SIGCOMM’02,
2002.

[15] S. Lee, J. Lui, and D. Yau. Admission control and
dynamic adaptation for a proportional-delay diffserv-
enabled web server. In SIGMETRICS ’02, pages 172–
182, New York, NY, USA, 2002. ACM Press.

[16] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis,
V. Paxson, and S. Shenker. Controlling high bandwidth
aggregates in the network. SIGCOMMComput. Commun.
Rev., 32(3):62–73, 2002.

[17] W. B. Norton. Internet service providers and peering. In
Proceedings of NANOG 19, Albuquerque, New Mexico,
June 2000.

[18] R. Stone. Centertrack: An ip overlay network for track-
ing dos floods. In In Proceedings of the Ninth USENIX
Security Symposium, August 2000.

[19] L. Subramanian, S. Agarwal, J. Rexford, and R. H. Katz.
Characterizing the Internet Hierarchy fromMultiple Van-
tage Points. June 2002.

[20] A. B. Tadayoshi Kohno and K. Claffy. Remote physical
device fingerprinting. In IEEE Symposium on Security
and Privacy, 2005.

[21] M. Welsh and D. Culler. Adaptive overload control for
busy internet servers. In USITS, 2003.

[22] A. Yaar, A. Perrig, and D. Song. Siff: A stateless internet
flow filter to mitigate ddos flooding attacks. In In Pro-
ceedings of the IEEE Security and Privacy Symposium,
2004.

[23] X. Yang, D. Wetherall, and T. Anderson. A dos-limiting
network architecture. In Proc. ACM SIGCOMM, 2005.

SRUTI ’06: 2nd Workshop on Steps to Reducing Unwanted Traffic on the Internet USENIX Association22

