
Detecting Network Load Violations for Distributed
Control Planes

Kausik Subramanian
University of Wisconsin-Madison

Madison, WI, USA
sskausik08@cs.wisc.edu

Anubhavnidhi Abhashkumar
University of Wisconsin-Madison

Madison, WI, USA
abhashkumar@wisc.edu

Loris D’Antoni
University of Wisconsin-Madison

Madison, WI, USA
loris@cs.wisc.edu

Aditya Akella
University of Wisconsin-Madison

Madison, WI, USA
akella@cs.wisc.edu

Abstract
One of the major challenges faced by network operators
pertains to whether their network can meet input traffic de-
mand, avoid overload, and satisfy service-level agreements.
Automatically verifying if no network links are overloaded
is complicated—requires modeling frequent network failures,
complex routing and load-balancing technologies, and evolv-
ing traffic requirements. We presentQARC, a distributed con-
trol plane abstraction that can automatically verify whether
a control plane may cause link-load violations under failures.
QARC is fully automatic and can help operators program
networks that are more resilient to failures and upgrade the
network to avoid violations. We apply QARC to real data-
center and ISP networks and find interesting cases of load
violations. QARC can detect violations in under an hour.

CCSConcepts: •Networks→Network reliability; • Soft-
ware and its engineering → Formal software verification.

Keywords: Quantitative Verification; Routing Protocols; Fault
Tolerance; Abstract Representation

ACM Reference Format:
Kausik Subramanian, Anubhavnidhi Abhashkumar, Loris D’Antoni,
and Aditya Akella. 2020. Detecting Network Load Violations for
Distributed Control Planes. In Proceedings of the 41st ACM SIGPLAN
International Conference on Programming Language Design and Im-
plementation (PLDI ’20), June 15–20, 2020, London, UK. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3385412.3385976

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLDI ’20, June 15–20, 2020, London, UK
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7613-6/20/06. . . $15.00
https://doi.org/10.1145/3385412.3385976

1 Introduction
Managing modern data center and ISP networks is an incred-
ibly difficult task. Many of these networks serve a diverse
set of customers who demand stringent guarantees from
the network, such as high path availability and a variety
of path-based properties (e.g., service chaining, and path
isolation), and these requirements evolve over time. Thus,
operators must face the challenge of programming a network
that meets various requirements.
Various frameworks have been developed to ease the op-

erators’ task of programming the network to ensure require-
ments are met. Intent-based programming [31], where op-
erators specify what they want the network to do instead
of worrying about how the network must be configured,
has made synthesizing network control and planes sim-
ple [7, 8, 13, 44, 45]. Using these tools, operators need to
specify the network requirements at a high-level, and com-
pliant low-level network implementations are synthesized
automatically. Other frameworks validate if the current net-
work satisfies important properties [4, 6, 15, 16, 20, 23], and
automatically take corrective action otherwise [14, 19].

While these tools are invaluable, they focus on qualitative
properties—informally, path properties that are all variants
of reachability. In contrast, quantitative properties, which
are also central to network management, have received little
systematic treatment. One such property, which our paper
focuses on, pertains to meeting demand, i.e., can a given net-
work (topology and control plane) accommodate input traffic
demand without any link becoming overloaded?
The focus on qualitative properties is well justified, be-

cause violation of such properties can lead to serious policy
violations, e.g., broken isolation, circumventing firewalls, or
network partitions. But violation of quantitative properties
can have equally serious implications. For instance, when
network links become overloaded, customers’ applications
may suffer from increased losses and latencies, violating
customer guarantees and impacting operator revenues.

https://doi.org/10.1145/3385412.3385976
https://doi.org/10.1145/3385412.3385976

PLDI ’20, June 15–20, 2020, London, UK Kausik Subramanian, Anubhavnidhi Abhashkumar, Loris D’Antoni, and Aditya Akella

In this paper, we present an intent-based framework that
helps programmers verify whether a network meets a com-
plex quantitative property—absence of link overload when
network links become unavailable due to failures. We be-
lieve that our verification framework forms the first step in
the much harder challenge of developing an intent-based
framework for generating compliant network control planes
for qualitative and quantitative properties.
Verification. Verifying link overload is non-trivial. First,
link failures are common in networks [24] due to various
factors, e.g., human error and device overheating. Thus, even
if link loads are low now, significant overload may occur
when one or more links fail. In datacenter networks, packet
losses due to high load (i.e., congestion) are common [51].
Ideally, we must proactively verify for potential overload: does
there exist a failure where some link is overloaded? This is
difficult because of the exponentially many failure scenarios.

Second, checking for overload needs an estimated model
of traffic volumes, but actual traffic volumes may vary sub-
stantially around such estimated values [41]. The network’s
control plane may not be programmed to accommodate such
variations, leading to overload when traffic spikes unexpect-
edly along certain paths. Thus, verification must account for
variations in measured traffic volumes. Unlike the set of fail-
ures which can be enumerated, the set of traffic demands to
consider could be infinite (as traffic quantities are rational).

Third, the control planes in most networks are distributed
in nature and use a mix of different routing protocols [10, 22],
such as Open Shortest Path First (OSPF) and Border Gate-
way Protocol (BGP), configured in low-level languages. The
complexity of the control plane designs [9, 10, 22] and the
interactions among the constituent routing protocols make
it difficult to reason about the paths induced in a network
under failures, and hence, about potential link overload.
Our first contribution is a verification framework that,

given a network, its distributed router configurations, and
an input trafficmatrixwith variable traffic volumes, identifies
failure scenarios that can cause overload on some network
link. Our framework also allows operators to focus the veri-
fication on failure events that occur with a certain minimum
likelihood or involve k or fewer links.
To conduct verification, we need a model of how the

distributed control plane reacts to failures and recomputes
paths, and how traffic load is spread across recomputed paths.
Furthermore, analyzing the model to determine potential
load violations should be fast to enable quick corrective ac-
tion. To this end, we develop QARC, a control plane model
for quantitative analysis, with a focus on analyzing link
overload. QARC builds on a weighted digraph-based con-
trol plane abstraction, and couples it with flow quantities
and a novel mixed integer linear program encoding. QARC
computes if links can become overloaded under some failure
without enumerating failures or traffic matrices that adhere

to a given bounded variation; without materializing paths un-
der each failure; and without having to analyze all links and
considering the load contributed by all source-destination
pairs. These optimizations to verification are our second con-
tribution, which help achieve substantial speedup of 5−800×
over SMT-based state-of-art verifiers [6].
Upgrade. Once verification has identified a potential load
violation, it is crucial to understand how to avoid overload
to mitigate impact on production traffic as much as possible.
There are many aspects of a network’s design and operation
which can cause load violations, e.g., network topology, con-
figuration, input traffic matrices, etc. It is cumbersome for
operators to manually identify the root cause of a violation
and reconfigure the network to ensure load violations do
not happen in practice. Instead, we propose an intent-based
approach where operators specify the input traffic character-
istics and set of failure scenarios, andQARCwill upgrade the
link capacities such that no load violations will occur under
these scenarios. Moreover, QARC will compute the minimal
capacity upgrade to prevent unnecessary overprovisioning.
Analysis of real networks. Today, very little is known
about how robust real-world network designs and control
plane configurations are in avoiding overload under observed
and expected traffic patterns. We conduct a detailed study
of potential link overload in production networks.
We apply QARC to 112 data center networks of a large

service provider, and 86 ISP networks from the Topology
zoo. We use a mix of real and synthetic control plane con-
figurations. We apply a variety of realistic traffic matrices
and traffic volume variations. We find that 70% of the net-
works experience link overload under 1 or 2 link failures
with different traffic characteristics and variation. We also
find that the ISP networks in our study are susceptible to link
overload under failures if overall traffic increases by 2-12%,
while datacenter networks require 5-35% to experience link
overload. We also show QARC is practical: QARC can verify
real-world networks we study in under an hour (§9).

2 Motivation
Weprovide an overview of distributed network control planes,
control plane abstractions and their shortcomings for rea-
soning about network load violations.

2.1 Network Control Planes
A distributed network has two components: the control and
the data plane. The control plane exchanges information to
routers and decides the best path for every packet, these best
paths are installed in the data plane. In a distributed control
plane, each router runs one or more routing processes, each
process implementing a path selection algorithm, defined by
a standard routing protocol—e.g., OSPF [36], BGP [39], and
RIP [33]. A routing process will receive a set of routing ad-
vertisements from different routing processes: could be from

Detecting Network Load Violations for Distributed Control Planes PLDI ’20, June 15–20, 2020, London, UK

B

C

A
OSPF OSPF

OSPF

R

ST 2

24

D

1

BGP

S

BGP

(a)

BO

AOBI

AI

S

T T

2

0 0

0

1

2 DO

C.2O

AO

DI

C.2I

AI

R

T

1

1

0 0 0

0

0

2C.1O

C.1I

1 BI

BO
0

2

2

2

4

40

0

(b)

Figure 1. (a) Example control plane with OSPF and BGP. The
boxes denote the routing processes, the numbers on links are
OSPF weights, and the redistribution cost of OSPF to BGP is
1. There is an ACL installed at router B for traffic class S −T .
(b) ARC ETGs for (a).

the same router or neighbouring routers, and could be of the
same or different routing protocol. Each routing process’s
path computations are based on different protocol-specific
configuration parameters and advertisements. Each routing
process decides the best path(s) and could advertise the best
path(s) to other routing processes. The steady-state outcome
of the control plane’s computation is a set of forwarding
rules computed at each router, which encode the next-hop
for different traffic classes, i.e., source-destination subnets.
Operators typically decide which protocols and configura-
tion to use based on network design and operational policies
they wish to enforce [34] like reachability, waypointing etc.

Figure 1(a) shows a toy distributed control plane spanning
four routers. Two routers run OSPF, one runs BGP, and one
runs both and is configured to redistribute routes from OSPF
to BGP. The OSPF edge weights are configured to support
load balancing for R −T traffic, while an Access Control List
(ACL) is configured at router B to block S − T traffic for a
security policy. Distributed control planes are programmed
at a low-level by configuring routers using vendor-specific
languages (e.g., Cisco IOS [3]), either manually or using
automated tools [7, 13, 44, 46].

Another mechanism commonly used in distributed control
planes is load-balancing traffic between endpoints. ECMP
(Equal Cost Multi-Path routing) [27], or its weighted variant
(WCMP [50]), are used to distribute traffic across multiple
paths between endpoints in the network. In an ECMP router,
traffic is split equally among the “best paths” based on rout-
ing metrics.

2.2 Control Plane Abstractions
Analyzing whether a network satisfies certain properties
over paths, qualitative or quantitative, requires knowing the
network forwarding state. Understandably, inferring this
based on low-level router configurations is difficult as the
forwarding state is the result of complex distributed compu-
tations. Thus, many frameworks [4, 6, 15, 16, 20, 49] have
been developed to model the distributed network control
logic, so that different inferences can be made about network

0 20 40
#Classes

0

10

20

T
im
e
(s
)

ARC Minesweeper

(a) N1

0 50
#Classes

0

1000

2000

3000

T
im
e
(s
)

ARC Minesweeper

(b) N2

Figure 2. Network load verification times for ARC and
Minesweeper for networks N1 and N2 and varying number
of traffic classes.

forwarding—under failures—without actually deploying the
network configurations. These models are used widely in
verifying qualitative properties, e.g., middlebox traversals.

However, verification of network overload, a quantitative
property, is challenging in aspects that the state-of-art mod-
els cannot handle. Firstly, verifying this property requires
a model that can reason about how much traffic a traffic
class sends on a path (or multiple paths for ECMP/WCMP).
Moreover, the model needs to reason about the collective
load imposed by all traffic classes in the network. Contrar-
ily, verifying qualitative properties only requires reasoning
about small subsets of traffic classes.
Secondly, operators want to understand if the network

can handle load under different failure scenarios. While in
the worst-case scenario where all devices fail together the
network will be overloaded, the probability of such scenario
occurring is very small. Thus, the operator may constrain the
set of requisite failure scenarios—e.g., only 1 and 2-link fail-
ures. The number of failure scenarios grows exponentially
with number of failed links. Thus, the approach adopted by
some control plane models, e.g., Batfish [16], of enumerating
all failure scenarios can be prohibitively expensive. There-
fore, we require our network model to symbolically encode
network routing state even under failures.

2.3 ARC vs. Minesweeper
Two networks models are amenable for verifying network
overload under failures: ARC [20] and Minesweeper [6]. Our
work builds on ARC and in this section we motivate this
choice.
The ARC network model uses the fact that most routing

protocols use a cost-based path selection algorithm. E.g., OSPF
uses Dijkstra’s algorithm to compute minimum cost paths
from a source to all destinations, where each link has a cost;
and BGP selects paths based on numeric metrics, most im-
portantly, the AS path length. ARC abstracts the different
routing protocols, static routes, and ACLs based on the above
principle, and models the network’s collective forwarding

PLDI ’20, June 15–20, 2020, London, UK Kausik Subramanian, Anubhavnidhi Abhashkumar, Loris D’Antoni, and Aditya Akella

behavior under failures using a set of weighted directed
graphs (called ETGs) satisfying the path-equivalence prop-
erty: under any arbitrary failure scenario, the path taken by
the traffic will correspond to the shortest weighted path in
the graph. Figure 1(b) illustrates the ETGs for the two traffic
classes (R-T and S-T) for the network shown in Figure 1. ARC
cannot model every set of router configurations as certain
routing constructs like BGP local preferences do not adhere
to the cost-based path selection principle.
Minesweeper [6] encodes the converged routing state of

the control plan using SMT (Satisfiability Modulo Theories)
formulas [12] and supports iBGP and BGP local preferences,
which ARC cannot handle. Minesweeper is primarily used
to verify qualitative properties dealing with a single or small
subset of traffic classes under 1-link or no failure.
Let us consider ARC v/s Minesweeper for detecting link

overload under no failures. Using ARC, we can compute
the exact network paths taken by the traffic classes using
the polynomial-time Dijkstra’s algorithm and thus com-
pute individual link utilizations. On the other hand, for
Minesweeper, due to the symbolic nature of the network ab-
straction, we need to use the SMT solver to find the network
paths and compute utilizations. Handling network failures
further slows down verification. We compare verification
performance by using the Minesweeper and ARC abstrac-
tions for k = 1 link failure scenarios in Figure 2. We can
observe that ARC is significantly faster than Minesweeper,
achieving 5× speedup for N1 and 20 − 800× for the larger
N2 network.

Moreover, the ARC abstraction offers certain key benefits
for network transformations [38] which can help reduce the
search space efficiently and enables even faster quantitative
verification than Minesweeper (§6). For example, in ARC,
we know a certain path will not be traversed if a shorter
path exists in the network (by simply comparing the path
cost). This property can be used to reduce the search space—
both by limiting which links to consider as candidates for
overload, and by ignoring the contributions of some source-
destination pairs’ traffic volumes—in scenarios when a small
number of links can fail together. In Minesweeper, the paths
are symbolic (represented by SMT constraints), and thus, we
cannot a priori tell which path would be preferred.
Since ARC is a more natural fit for quantitative analysis,

ARC’s natural attributes support effective speedup of verifi-
cation, and ARC has near-universal control plane coverage,
we adopt it as the basis for our framework. In § 3, we extend
ARC to model (1) paths under failures without enumeration,
(2) distribution of load on equal cost paths (due to ECMP or
WCMP), and (3) variation of traffic volumes.

3 QARC (ARC with Quantities)
ARC. ARC abstracts the set of router configurations using
a set of weighted directed graphs called extended topology

graphs (ETGs). For each traffic class, ARC constructs one ETG
to model the behavior of the network routing protocols and
interactions among the routers for the traffic class (shown
in Figure 1(b)). In the ETG, each vertex corresponds to a
routing process; there is one incoming (I) and one outgoing
(O) vertex for each process. Directed edges represent pos-
sible paths enabled by exchange of routing advertisements
between connected processes. The weights of the edges of
the ETG satisfy the path-equivalence property: under any
failure scenario, the actual network path(s) are the shortest
weighted path(s) in the ETG. Thus, the ARC abstraction can
be used to compute the forwarding state of the network un-
der any failure scenario, abstracting away the need to model
route advertisements and path computations at each router.
Note that the path-equivalence property of ARC can model
ECMP-style load-balancing.
ARC was designed to use graph algorithms on the ex-

tended topology graphs (ETGs) to verify qualitative proper-
ties under any arbitrary failure scenario—e.g., a traffic class
is connected under any k-link failure if the min-cut for the
traffic class’s ETG is ≥k .
QARC. Ourmodel, QARC, extends ARC and it uses a mixed-
integer linear program (MIP) encoding to add symbolic traffic
quantities to the ARC ETGs to verify load properties under
different failure scenarios.
Verification. Provisioning bandwidth is expensive, espe-
cially in wide area networks where adding new links is not
an easy endeavor. Operators therefore want to keep link
utilization high and, at the same time, tolerate link failures.
QARC helps operators predict if the network will encounter
load violations under failures. Operators have frameworks
to periodically update routing configurations [7, 44, 46] and
measure input traffic characteristics [25, 26, 29]. We envision
QARC to be used for verificationwhenever traffic characteris-
tics change significantly, or the control plane is reconfigured.
Taking as input the new control plane and traffic matrix
(between endpoints) with bounds on traffic variation, our
verification detects if there exists a failure scenario leading
to utilization exceeding capacity on any link.

Consider the network control plane in Figure 1(a) and the
corresponding ARC ETGs in Figure 1(b). In this scenario,
the operator sees a change in the input traffic: the current
traffic for classes R → T and S → T are 80 Gbps and 30
Gbps, respectively. All links in the network have a capacity
of 100 Gbps. When no links have failed, the traffic from
S → T flows through the path B → A, while the traffic from
R → T is load-balanced by ECMP atC ; 40Gbps traffic is sent
through the two paths: D → C → A and D → C → B → A
(these are the shortest network paths in the ETGs). As we can
observe, all links’ utilizations are below capacity (D → C : 80,
C → B : 40, C → A : 40, B → A : 40 + 30 = 70).

Suppose, the operator wants to inspect if the network, for
the given traffic matrix, can experience some link becoming
overloaded under a single link failure. Using our tool QARC,

Detecting Network Load Violations for Distributed Control Planes PLDI ’20, June 15–20, 2020, London, UK

the operator can discover that when C → A fails, the traffic
on B → A will be 110 Gbps, exceeding the link’s capacity.

Going further, the operator can discover other single link
failures by asking our verification tool to find 1-link failures
other than C → A. Likewise, the operator can discover sets
of k-link failures that cause links to overload.
Upgrade. When verification detects a possible load viola-
tion, the operator can invoke our upgrade framework. Taking
as input the network configurations and the traffic matrix,
QARC computes a minimal set of links whose capacities need
to be upgraded to avoid overload under failures. For the net-
work in Figure 1, QARC suggests to increase the B → A
capacity by 10Gbps to ensure no load violations occur under
any 1-link failures.

3.1 Problem Definition
Let TC be a set of traffic classes, N = (Routers,Links) be the
network topology and FL ⊆ Links be the failure scenario—
i.e., the set of links that failed. For each traffic class tc ∈

TC , the routing processes compute paths from source to
destination; the paths form a directed acyclic graph (DAG),
which we call the flow graph. We represent tc’s flow graph
as FG(tc, FL) = (Vtc ,Ltc). Traffic will not flow on failed links,
thus Ltc ∩FL = ∅. ARC constructs a weighted directed graph
ETG(tc) for each traffic class tc with the following property:

Theorem 3.1 (Path-equivalence [21]). For every traffic class
tc ∈ TC , if the destination is reachable from the source router
in the actual network, then, after removing edges corresponding
to failed links from ETG(tc), the shortest path in the ETG from
the source router to destination router is equivalent to the path
computed by the actual network.

Thus, the flow graph FG(tc, FL) will be a sub-graph of
ETG(tc) and every path from source to destination in FG(tc, FL)
will be the shortest weighted path based on ETG(tc) weights.

Since there are multiple paths in the flow graph, the traffic
is split across different paths based on the load-balancing
scheme deployed in the network.We define the flow function
F (l , tc, FL) as the amount of flow of tc on a link l in FG(tc, FL).
In ECMP, each router divides the total incoming flow equally
among the outgoing links leading to shortest paths. For a
node r , we define the set of nodes which have an incoming
edge into r as prev(r) = {r ′ |(r ′, r) ∈ Ltc }, and the set of
nodes connected by an outgoing edge from r as next (r) =
{r ′ |(r , r ′) ∈ Ltc }. Thus, we can define ECMP behavior in
terms of the flow function as:

∀r .∀r ′ ∈ next (r). F ((r , r ′), tc, FL) =
∑

r ′′∈prev (r) F ((r ′′, r), tc, FL)
|next (r)|

For each link l ∈ Links and failure scenario FL, we define
the utilization l under the failure scenario FL asUtil (l , FL) =∑

tc ∈TC F (l , tc, FL). We represent the link capacity of link l
as Cap(l). A network load violation occurs when a link’s
utilization exceeds its capacity.

Table 1. QARC variables

Name Description Range

Flow(e, tc) Fraction of traffic for class tc flowing on
edge e [0,1]

∆(tc) Fraction of traffic variation for class tc [0,1]

∆(e, tc) Fraction of traffic variation for class tc flow-
ing on edge e [0,1]

Dist (n, tc) Shortest path distance of node n to desti-
nation in ETG Q

Fail (e) Link e (∀tc) failure status (1 ≡ failed) {0, 1}
Load(e) Link e load status (1 ≡ overloaded) {0, 1}

Table 2. QARC constants

Name Description
TC Set of all traffic classes
FL Set of all failure scenarios
T (tc) Traffic sent by class tc (T (tc) ∈ Q)
W (e, tc) Weight of edge e in tc ETG
Src(tc) Source node of traffic class tc
Dst (tc) Destination node of traffic class tc
In(n) Set of in-edges of node n in ETG
Out (n) Set of out-edges of node n in ETG
OEdдes(tc) Set of all outgoing edges in tc ETG
Links Set of all physical links in the network
Cap(e) Capacity of link e (Cap(e) ∈ Q)
Π Threshold of total traffic variation

Definition 3.2 (Verification). Given a set of failure scenar-
ios FL, the verification problem is to find a failure scenario
FL ∈ FL that leads to a network load violation—i.e., ∃FL ∈

FL. ∃l ∈ Links . Util (l , FL) ≥ Cap(l).

4 QARC Encoding
We now present the mixed-integer linear program (MIP) en-
coding the semantics of QARC. Our encoding makes new
technical contributions. First, it extends ARC shortest-path-
forwarding ETGs with flow quantities while accounting for
failures and permitting bounded variation of traffic charac-
teristics. This is crucial to determining link overload. Second,
it models flow being split among multiple shortest paths even
under failures, i.e., QARC models ECMP, which is a key
construct used in most networks. Third, it does not require
disjunctions and only uses integer variables to represent fail-
ures and link overload, therefore enabling fast verification.
Table 1 and Table 2 describe QARC’s variables and con-

stants, respectively. For each section, the sentences within
boxes state what property the presented constraints encode.

4.1 Flow Constraints
Traffic flows from source to destination along active links
and flow is conserved at every node in the ETG.
The Flow and ∆ variables represent respectively the frac-

tion of normal and variation of traffic flowing along the
network links. For class tc and edge e , the actual traffic on

PLDI ’20, June 15–20, 2020, London, UK Kausik Subramanian, Anubhavnidhi Abhashkumar, Loris D’Antoni, and Aditya Akella

the edge is (Flow(e, tc) + ∆(e, tc)) ×T (tc). The distinction of
Flow and ∆ variables ensures the verification constraints (13)
are linear while providing variation in traffic characteristics.
For every ETG and corresponding traffic class tc , the outgo-
ing flow at tc source and the incoming flow at tc destination
should equal 1 + ∆(tc) which are constrained separately:∑

e ∈Out (Src (tc))
Flow(e, tc) = 1

∑
e ∈In(Dst (tc))

Flow(e, tc) = 1∑
e ∈Out (Src (tc))

∆(e, tc) = ∆(tc)
∑

e ∈ In(Dst (tc))
∆(e, tc) = ∆(tc) (1)

For all other nodes n ̸∈ {Src(tc),Dst (tc)} in the ETG, flow
is conserved, i.e., incoming flow is equal to outgoing flow.∑

ein ∈In(n)
Flow(ein , tc) =

∑
eout ∈Out (n)

Flow(eout , tc)∑
ein ∈In(n)

∆(ein , tc) =
∑

eout ∈Out (n)
∆(eout , tc) (2)

Next, we need to accommodate failures. When a link fails,
no traffic must flow on it:

Flow(e, tc) + Fail (e) ≤ 1
∧

∆(e, tc) + Fail (e) ≤ 1 (3)

Thus, if Fail (e) = 1, then Flow(e, tc) = 0 and ∆(e, tc) = 0.
Operators can bound the individual variation for each

traffic class and/or bound the total extra variation of traffic
in the network by a threshold Π:∑

tc ∈TC
∆(tc) ∗T (tc) ≤ Π (4)

Given a solution to the above constraints, we construct the
flow graph of tc by picking all edges e where Flow(e, tc) > 0,
which indicate all the links traffic flows on.

4.2 Distance Constraints
A computed path in the real network matches the short-
est path in the ETG between the corresponding source and
destination (Theorem 3.1). Thus:
Traffic must only flow on shortest-distance ETG paths.
We formulate shortest path distances to the destination

node of the ETG in an inductive fashion - the shortest path
from a node must traverse through one of its neighbors, and
thus, distance of node n can be defined inductively as the
shortest among distances from the neighbors. Again, failures
introduce complications, because distances can change under
different link failures. To this end, we need to two sets of
constraints. First, we use the following constraints to ensure
that for every node n and traffic class tc , the value of the
variableDist (n, tc) is at most the distance of the shortest path
that traverses only active links. For all e = n → n′ ∈ Out (n):

Dist (n, tc) ≤W (e, tc) + Dist (n′, tc) + ∞× Fail (e) (5)

The intuition is that when edge n → n′ has failed and
Fail(n → n′) = 1, the shortest distance from n will not de-
pend on the path through n′ as the equation will be satisfied
trivially due to the large constant in front of Fail(n → n′).

R

AI

T
0

C.1O BI

BO
0

2

2
4

Flow
= 1

Flow
= 1

Flow = 0.5

Flow
= 0.5

Flow = 0

Flow
= 1 AI

T
0

C.1O BI

BO
0

2

2
4Dist (C.1O) = 4

Figure 3. ECMP behavior of node C .1O under two different
scenarios for the partialR−T ETG from Figure 1(b). Note that
Sum of Flow in the network weighted with edge weights is
the distance of the path taken by the flow for both scenarios.

The above constraints provide an upper-bound on Dist vari-
ables, but do not ensure that the variable values are exactly
equal to actual shortest distances in the ETG. E.g., setting all
Dist variables to 0 trivially satisfies Constraints (5).

Second, we use another set of constraints to ensure that the
ETG traffic flow only uses the shortest paths in the network.
(We will consider load-balancing in §4.3 and ignore it here).
We illustrate the idea of our encoding using the example ETG
in Figure 3. For the Flow quantities, the cost of the path taken
by the flow can be computed by the sum of Flow on all ETG
edges multiplied by the edge weights – i.e., ∑eW (e, tc) ×
Flow(e, tc) (regardless of whether the flow is sent on the
shortest path or not). The following constraint ensures that
the flow is sent on the shortest distance path from source to
destination of the ETG of tc:

Dist (Src(tc)) =
∑

e ∈OEdдes (tc)
Flow(e, tc) ∗W (e, tc) (6)

Since Constraint (5) guarantees upper bounds on the shortest
distance, the above constraint will ensure the traffic will not
be sent on a longer path. Also, by virtue of Constraints (5)
and (6), the Dist variables for all nodes in the ETG will be
exactly equal to the shortest distances to the destination.
Notice, that the constraint will guarantee this property even if
traffic flows across multiple shortest paths.

To ensure that the traffic variation only flows on shortest
paths, we add the following constraint:

∀e ∈ OEdдes(tc). ∆(e, tc) ≤ Flow(e, tc) (7)

By virtue of Constraint (6), Flow(e, tc) is 0 on non shortest
path links, and consequently, ∆(e, tc) will be 0.

4.3 Load Balancing Constraints

The outgoing Flow and ∆ of each node are split equally
among the shortest neighbors connected by active links.
Figure 3 demonstrates how ECMP operates under no fail-

ures, and the differences that arise when a link failure occurs.
At any router, by virtue of Constraints 1-7, traffic will

never be sent along longer paths. The constraints presented
in this section ensure traffic is split equally among the ac-
tive links at a router which are on the currently available

Detecting Network Load Violations for Distributed Control Planes PLDI ’20, June 15–20, 2020, London, UK

shortest paths to the destination. First, we show a simple dis-
junctive constraint that encodes the desired behavior and we
then show how the same behavior can be captured without
disjunction.
For node n and all outgoing edge pairs e1 = n → n1 and

e2 = n → n2 in Out (n), ECMP for Flow (similarly ∆) is:

[W (e1, tc) + Dist (n1, tc) = W (e2, tc) + Dist (n2, tc)]
∧ ¬Fail (e1) ∧ ¬Fail (e2) =⇒ Flow(e1, tc) = Flow(e2, tc)

The above constraints ensure that if the distance to the des-
tination along two active outgoing edges is equal, then the
flow on them will also be equal (if these edges do not lie on
the shortest path, then flow will be 0 on both edges). How-
ever, these constraints use implications (i.e., disjunctions)
and cannot be provided in this form to an ILP solver.
By introducing new rational variables we can write con-

straints that express the ECMP load balancing constraints
using only linear inequalities. This forms a key innovation
of QARC encoding. Specifically, we define sets of variables
minFlow(n, tc) ∈ [0, 1] and maxFlow(n, tc) ∈ [0, 1] to cap-
ture the minimum and maximum non-zero Flow , respec-
tively, out of node n for traffic class tc . The non-zero flow
restriction holds for flows along the shortest paths (flow
along non-shortest paths will be 0), and thus we can impose
constraints onminFlow andmaxFlow to model ECMP rout-
ing. We also add similar constraints for the traffic variation
∆ variables so that the total traffic adheres to ECMP.

Adding constraints formaxFlow(n, tc) to be the maximum
non-zero flow value is trivial, as the zero flow values will
not affect themaxFlow variable:

∀e = n → n′ ∈ Out (n). Flow(e, tc) ≤ maxFlow(n, tc)
∀e = n → n′ ∈ Out (n). ∆(e, tc) ≤ max∆(n, tc) (8)

Adding constraints forminFlow(n, tc) is trickier: to ensure
thatminFlow(n, tc) is the minimum non-zero flow value, we
need to know the flow values for all possible failure scenarios.
To bypass this problem, we use the distance variables Dist
to identify the next-hops that lie on the shortest paths, and
thus, have non-zero flows. Based on this insight, we impose
the following constraints for all e = n → n′ ∈ Out (n) to
ensure thatminFlow variables have the correct values:

∀e = n → n′ ∈ Out (n).minFlow(n, tc) − Flow(e, tc) ≤
∞ × (W (e, tc) + Dist (n′, tc) − Dist (n, tc) + Fail (e))

∀e = n → n′ ∈ Out (n).min∆(n, tc) − ∆(e, tc) ≤
∞ × (W (e, tc) + Dist (n′, tc) − Dist (n, tc) + Fail (e))

(9)

First, notice that the quantitiesW (e, tc) + Dist (n′, tc) −
Dist (n, tc) andW (e, tc) + Dist (n′, tc) − Dist (n, tc) + Fail(e)
are always greater or equal than 0. Hence, there are three
scenarios for each edge which are all encoded by the above
constraint: (1) the edge e has failed, in which case Fail (e) =

1, the RHS of the constraint is infinity, and the constraint
is trivially satisfied, (2) the edge e is not on the shortest
path, thusW (e, tc) + Dist (n′, tc) is greater than Dist (n, tc)
and thus, the RHS is a large positive constant, and (3) the
edge e is active and on the shortest path, so the RHS of the
constraint is 0—i.e.,minFlow(n, tc) ≤ Flow(e, tc). Therefore,
minFlow(n, tc) is smaller than all the non-zero edge flows
(which can only flow on the shortest paths).

Thus, for a node n, we have two variables for the lower
bound and upper bound of all the non-zero edge flows out
of the node. For ECMP, we require all non-zero edge flows
on the shortest paths out of a node to be equal, which can be
enforced by ensuring the lower boundminFlow(n, tc) and
upper boundmaxFlow(n, tc) are equal (similarly for ∆):

minFlow(n, tc) = maxFlow(n, tc)
min∆(n, tc) = max∆(n, tc) (10)

Constraints 1-10 ensure the total flow to neighbors on
the shortest paths are equal to one another, adhering to the
ECMP load-balancing model. The above constraints can be
modified bymultiplying constant weight factors to Flow vari-
ables to model Weighted Cost Multipathing (WCMP) [50].

4.4 Failure Constraints
Failure scenarios can be restricted by the operator, e.g., by
number of links or likelihood of failures.
Operators may want to restrict the failure scenarios of

interest (FL) to make useful observations about how the
network control plane reacts under failures. The following
constraint restricts the number of link failures to k :∑

e ∈Links
Fail (e) ≤ k (11)

Theorem 4.1. For every traffic class tc ∈ TC and failure
scenario FL ∈ FL, Constraints 1-11 ensure that the flow Graph
FG(tc, FL) is a directed acyclic graph such that each path from
Src(tc) to Dst (tc) is the shortest path in ETG(tc), and for every
router n in flow graph FG(tc, FL), the flows on outgoing edges
which lie on shortest paths from n to Dst (tc) are equal., i.e.,
∀n1,n2 ∈ next (n). F ((n,n1), tc, FL) = F ((n,n2), tc, FL).

Theorem 4.1 and Theorem 3.1 together prove that the
flow graphs constructed by the QARC constraints faithfully
represent the routing paths and flow distributions in the
actual network.

Operators can also assign failure probabilities to individual
links and restrict the search to scenarios that have probabil-
ity above a threshold. Suppose, the operator has probabilities
assigned to individual link failures (Pf ail (l)) and is only in-
terested in link failure scenarios that have joint probability
above a threshold ω. The failure probabilities can be derived
from telemetry data in real-world networks [35]. We assume
that link failures are independent, thus, the probability of
a certain link failure scenario is the product of individual
link failure probabilities. Then, we would want to enforce

PLDI ’20, June 15–20, 2020, London, UK Kausik Subramanian, Anubhavnidhi Abhashkumar, Loris D’Antoni, and Aditya Akella

the following constraint to search for failure scenarios with
probability greater than ω:∏

l ∈Links .Fail (l)=1
Pf ail (l) ≥ ω

We use the logarithm of probabilities to generate the equiva-
lent linear constraint.∑

l ∈Links
loд(Pf ail (l)) × Fail (l) ≥ loд(ω) (12)

We can have a theorem similar to Theorem 4.1 for link failure
probabilities.

5 Verification using QARC
Finally, verifying for network load violations using QARC is
done by adding load-related constraints.
Load(e) = 1 iff the utilization of link e exceeds capacity.
The following constraint correctly sets the value of the

variable Load(e) ∈ {0, 1}:∑
tc ∈TC [Flow(e, tc) + ∆(e, tc)] ×T (tc)

Cap(e)
− Load(e) ≥ 0 (13)

The numerator of the fraction captures the total traffic
flow on link e , while the denominator, Cap(e) (a constant),
captures the capacity of e . Load(e) can only be 1 when the
traffic on link e exceeds its capacity. To find if there exists a
failure scenario where at least one of the links is overloaded,
we can constrain the sum of load variables to be at least 1:∑

e ∈Links
Load(e) ≥ 1 (14)

When feeding the constraints to the ILP solver, there can
be two outcomes. First, the solver returns a satisfiable model
from which we can extract the link failure scenario under
which one or more links are overloaded. Second, the solver
returns unsatisfiable, which means there is no k-link fail-
ure scenario that can cause link overload. There are two
explanations for this outcome: (a) the network has sufficient
capacity to handle rerouted input traffic under failures, or (b)
a subset of traffic classes that do not have high path redun-
dancy are disconnected due to the failures, and the remaining
active traffic classes do not have sufficient traffic to cause
overloads. Note that, even when the solver finds a failure
scenario where link overload occurs, certain traffic classes
could be disconnected in the satisfying solution, with the re-
maining active traffic classes still able to overload the link(s).
To summarize, QARC, as presented, will try to find potential
for link overload even in the face of disconnections.

Theorem 5.1 (Correctness). A failure scenario FL satisfies
Constraints 1-14 if and only if there exists a link l ∈ Links
such thatUtil (l , FL) ≥ Cap(l).

6 Optimizations
We now describe two techniques that take advantage of the
properties of QARC abstraction and constraints to speed
up verification performance. First, we use ARC’s shortest-
distance path property to efficiently minimize the traffic class
ETGs (§6.1). Second, we show how to use minimized ETGs
to partition the set of network links and perform verification
in a parallel fashion (§6.2).

6.1 ETG Minimization
Due to Theorem 3.1, in an ETG, the traffic will not traverse
a path with a higher cost if one with a lower cost exists.
Therefore, for each traffic class, we can prune the ETG and
remove edges and nodes that will not be traversed under the
targeted number of failures. This pruning strategy reduces
the size of the generated constraints and can result in faster
verification.

To illustrate this property, consider the network in Fig-
ure 4. For any 1-link failure scenario, the traffic from S to
T will never traverse router C on links B → C and C → A
(because 2 shorter paths exist in the network). Thus, in the
ETG, we can prune all nodes and edges corresponding to
router C , forming a minimized ETG.
Identifying the redundant nodes and edges for general

k link failures can be challenging—the naive approach of
enumerating all k-link failures will be expensive. Instead,
we modify QARC’s encoding to perform this task. The core
insight of our approach is to find the maximum shortest
distance between the source and the destination under any
k-link failure scenario—all nodes and edges that are farther
than such a distance will never be traversed and can be
pruned from the ETG. The same minimization cannot be
performed efficiently when using Minesweeper’s symbolic
SMT-based abstraction: one would need to check each node
and edge to detect if the node/edge is reachable under k
failures. In ARC, since the edge weights are not symbolic,
we can eliminate a path if "shorter paths" exist.
MinimizationConstraints. Unlike verificationwhich deals
with all traffic classes, minimization only involves constraints
for a single traffic class. The minimization of multiple ETGs
can be done in parallel since one ETG’s routing does not
depend on other ETGs. For an ETG of traffic class tc , we use
Constraints (5) to specify upper bounds on distances and
Constraints (11) to bound the number of failures. The maxi-
mum shortest distance between the source and destination
of the ETG can be found using the objective:

maximize Dist (Src(tc), tc) (15)

Let us denote the objective value provided by the ILP solver
asMaxDist . Given an edge e : n1 → n2, if the shortest path
from source to destination using the edge n1 → n2 is greater
thanMaxDist , the edge will never be traversed under any k
link failures and can be pruned from the ETG. We check for

Detecting Network Load Violations for Distributed Control Planes PLDI ’20, June 15–20, 2020, London, UK

such edges using the condition:

SP (Src(tc),n1) +W (e, tc) + SP (n2,Dst (tc)) > MaxDist (16)

where SP (n,n′) denotes the length of the shortest path be-
tweenn andn′ in the graph (computed using Dijkstra’s short-
est path algorithm). After pruning the edges that are never
traversed, we prune the nodes that do not have incoming
or outgoing edges to obtain a minimized ETG ETGmin(tc).
ETG minimization is sound and complete, i.e., it will remove
edges where traffic will never flow under k failures and will
not remove edges where traffic could flow under some k
failure scenario.

6.2 Parallel Verification
A major bottleneck of QARC verification is solving a Mixed
Integer Linear Program (MIP) that has size linear in the
number of network links and traffic classes. Consider the
network-wide constraint (14) used to find load violations
where at least one link’s utilization exceeds its capacity:∑

e ∈Links
Load(e) ≥ 1

If we restrict the above constraint to only consider a subset
of links, QARC will find scenarios where one of these links’
utilization exceeds its capacity. Thus, if we partition the set of
links intoN partitions, we can runN instances of verification
on separate machines. By splitting the verification N -way,
each instance will effectively have a smaller search space of
links to find load violations, thus, speeding up verification.

There are numerous ways to partition the set of links. In-
stead of simply splitting the set of links into N equal-sized
partitions, we leverage ETGminimization to generate a parti-
tioning scheme that also minimizes the number of the traffic
classes that contribute to load on links in each partition. The
insight of our partitioning scheme is as follows: a minimized
ETG prunes all links where traffic for the particular class
does not flow under any k-link failure scenario. To detect if
link e can be overloaded, we can prune the constraints for
traffic classes that do not contain e in their minimized ETGs.
Thus, for each partition, we only need to consider a subset
of traffic classes, reducing verification time further.

We formulate our partitioning scheme as an Integer Linear
Program (ILP). Our partitioning scheme is tied inherently to
the ETG minimization, which we can perform efficiently due
to the ARC abstraction.Without ETGminimization, all traffic
classes would contain all links in their ETG (barring ACLs
and filters), thus, we would not be able to further reduce the
constraints in each partition.

7 Upgrading Link Capacities in QARC
Once a load violation is found, the operator might want to
modify the network to ensure that all link utilizations do not
exceed capacity under all considered failure scenarios. One
way to achieve this property is to modify the control plane.

B

C

A

OSPF

ST 2

24

D

100 Gbps

11
100 Gbps80 Gbps

+ 10
80 Gbps
+ 10

80 Gbps
+ 10

Figure 4. Example OSPF network where a link gets over-
loaded under 1 and 2 link failure scenarios. The capacities in
green are the minimum link capacity additions computed by
QARC to ensure no violations occur under ≤ 2 failures.

However, modifying the control plane may cause violations
of qualitative properties that the current configuration sat-
isfies (access control, waypointing for middleboxes, etc.).
Finding policy-compliant control-plane modifications is al-
ready a computationally hard problem [19], and accounting
for network load on all links for all traffic classes complicates
the problem further.
Instead, we propose to use the QARC abstraction to find

new link capacities guaranteeing all link utilizations do not
exceed capacity under all considered failure scenarios. There
are multiple mechanisms for realizing the new capacities—
physically adding more cables to increase capacity, or dy-
namically changing capacity in the case of optical links [42].
Increasing bandwidth is expensive, thus, we need to ensure
we do not increase capacities beyond what is necessary.
Upgrade Formulation. Concretely, the upgrade problem
is as follows: Given a set of network configurations and input
characteristics, find the minimal set of links and the minimal
capacity additions to these links such that the network is not
overloaded under the given failure scenarios.

Figure 4 illustrates the upgraded link capacities computed
by QARC. The traffic sent by class S → T is 90 Gbps. As
we can see, under 2-link failure scenarios (e.g., D − A and
B −A), some links’ utilization exceeds capacity (e.g., B −C).
QARC computes the minimum capacity additions to the links
(shown in green—e.g., +10); by increasing the capacities, no
1- or 2-link failure scenario can cause violations.

We use QARC to compute new link capacities such that
link utilization never exceeds the “new” capacity under the
provided failure scenarios. We use the QARC constraints
(§4.1-§4.4) and compute the minimum link capacity that link
l should have using the following objective:

maximize
∑

tc ∈TC
[Flow(l , tc) + ∆(l , tc)] ×T (tc) (17)

QARC computes the maximum utilization for the link under
the different failure scenarios given the input traffic charac-
teristics with bounded variation, which is the minimum new
capacity required on the link to ensure that the particular

PLDI ’20, June 15–20, 2020, London, UK Kausik Subramanian, Anubhavnidhi Abhashkumar, Loris D’Antoni, and Aditya Akella

link is not overloaded. Note that, this capacity is not depen-
dent on the capacity of other links, as the distributed control
plane chooses the “best” active path(s) under failures based
on configuration parameters such as static link weights and
path lengths. Thus, similar to verification, we can parallelize
the phase of computing the upgraded link capacities.

The set of links whose capacities need an upgrade is min-
imal—i.e., if any of these links have capacities less than the
computed ones, there exists a failure scenario under which
a link will be overloaded.

8 Limitations
QARC relies on the underlying ARC’s graph abstraction and
the path-equivalence property to model the flow of traffic
in the network to detect load violations. Thus, QARC can
only be used for network configurations that can be faith-
fully represented by ARC. ARC cannot model local path
selection criteria, e.g., BGP local preference, because it is not
possible to statically assign edge weights to ETGs such that
local decisions (e.g., local preferences) override the global
costs (e.g., path lengths) without compromising the path
equivalence property. Similarly, iBGP’s path selection does
not use global costs like path lengths, and hence, cannot be
modeled by ARC. ARC also does not support BGP communi-
ties, which are tags on route advertisements that influence
path selection at routers. While state-of-art frameworks like
Minesweeper [6] can support the above configuration con-
structs, the generality comes at the cost of performance (Fig-
ure 2). Tiramisu [4] also supports a wide range of configura-
tion constructs like Minesweeper, but Tiramisu’s abstraction
is tied to qualitative verification algorithms, and cannot be
extended to support quantitative verification.

Moreover, a majority of real-world network configurations
do not deploy these complex BGP features. Gember-Jacobson
et. al [20] analyzed the network configurations of 314 data-
center networks operated by a large Online Service Provider
and showed that ARC produces path-equivalent abstractions
for more than 95% of the networks. Those networks did not
use BGP local preferences or other protocol features not sup-
ported by ARC. Thus, QARC has sufficiently high feature
coverage to be useful in real-world settings.

9 Evaluation
QARC is implemented in Java using the open-source ARC [2]
and Batfish [1] frameworks. QARC uses the Gurobi ILP
solver [37] for solving the verification and repair constraints.
Our evaluation answers the following questions:
Q1: Do real datacenter and ISP networks suffer from link
overload under failures? (§9.1)
Q2: How quickly can QARC detect load violations or report
the absence of violations? (§9.2)
Q3: Do our optimizations speed up verification? (§9.3)
Q4: How quickly canQARC compute links to upgrade? (§9.4)

Experiments were conducted on a 5-node 40-core Intel-
Xeon 2.40GHz CPU machine with 128GB of RAM.
Networks. We study 112 datacenter networks operated by
Microsoft, and 86 ISP networks obtained from the Topology
Zoo [28] dataset. The network configurations use OSPF, BGP,
static routing constructs, and ECMP load-balancing which
are all modeled by ARC. We refer to the datacenter networks
as DCi , and the ISP topologies by their names from Topology
Zoo. We also study two synthetic fat-tree [5] datacenter
topologies: Fat6 (45 routers) and Fat8 (80 routers).
Link Capacities. We vary the link capacities to be either
40Gbps or 100Gbps picked randomly or dependent on topol-
ogy structure (e.g., for fat-tree: core-aggregate links are
100Gbps while edge-aggregate links are 40Gbps).
Traffic Matrices (TM). To verify the datacenter networks
on realistic input traffic characteristics, we sample the dat-
acenter packet traces from the Fbflow dataset [41]. We use
the gravity [40] model to generate traffic matrices for our
datacenter and ISP networks. The traffic matrices describe
the traffic between all edge-edge router pairs for the datacen-
ter networks or all endpoint pairs for the ISP networks. We
denote the maximum link utilization of our network with 0
failures asMLU0. We run our experiments using the traffic
matrices obtained from Fbflow or gravity which have the
property that MLU0 ∈ [0.65, 0.8] 1; Under no failures, the
max link utilization in the network is less than 80%. Our
traffic matrices model scenarios when the network is not
overloaded when all links are active, but certain 1 or 2 link
failures could potentially lead to some links getting over-
loaded. Unless otherwise mentioned, we bound the variation
of an individual traffic class so that it cannot increase more
than 50%, and we bound the total traffic variation summed
over all traffic classes to 10% of the total network traffic.

9.1 Verifying Real Networks
We use QARC to detect if the datacenter (DC) and ISP net-
works experience link overload under k = {1, 2} link failures.
We generate 20 random traffic matrices (Fbflow for datacen-
ter and gravity for ISP) and run QARC’s verification. We
report our findings in Table 3.

QARC finds link overload events for 1-link failures for 139
of the 200 networks. Moreover, 87 networks show link over-
load violations for more than 10 out of 20 TMs, indicating
that these networks are quite susceptible to link overload
events even under a single-link failure scenario. QARC like-
wise finds overload for over 90% of the ISP networks, com-
pared to 50% for the datacenter networks, indicating that
datacenter networks are less susceptible to link overload
due to higher path diversity than ISP networks. Notice that,
the number of networks experiencing violations decreases
for 2-link compared to 1-link failures. This is because 2-link

1We extract matrices using gravity/fbflow and multiply each field of the
matrix with a constant factor to obtain the desired MLU0

Detecting Network Load Violations for Distributed Control Planes PLDI ’20, June 15–20, 2020, London, UK

Table 3. Networks which experience link overload for one
or more TMs (>0%) and more than 10 of 20 TMs (>50%) at
k = 1 and k = 2.

Class Total k=1
(>0%)

k=1
(>50%)

k=2
(>0%)

k=2
(>50%)

DC 114 56 20 52 23
ISP 86 83 67 82 63

Table 4. Percentage overload violations for 1-link failures
for datacenter networks with Fbflow and Gravity traffic
matrices

Matrix DC1
(<100)

DC2
(<100)

DC3
(<100)

Fat6
(216)

DC4
(<1000)

Fbflow 74% 72% 28% 100% 100%
Gravity 83% 96% 38% 100% 100%

failures disconnect more traffic classes; the number of active
traffic classes reduces, and thus, links’ utilizations do not
exceed capacities.
Min Traffic Variation. QARC can be used to find the min-
imum total variation of traffic (each traffic class cannot in-
crease by more than 50%) which can cause overload under
1-link and 2-link failure scenarios. Minimum variation can
be used to judge how the network handles unexpected spikes
in load under failures. For this experiment, we use traffic
matrices such that MLU0 = 0.7 (high utilization) and find
the average minimum traffic variation. For our ISP and dat-
acenter networks in Figure 5, we report the variation as a
percentage of total network volume. We can observe that the
ISP networks require lower variations (2-12%) to cause link
overload, i.e., if the total traffic increases by 12%, the network
is likely to be overloaded under failures. Meanwhile, data-
center networks require more traffic variation for links to
get overloaded (2-40%), highlighting intrinsic robustness per-
taining to meeting traffic demands and higher path diversity.
Also, k = 2 requires lower variation than k = 1.
Effect of Traffic Matrices. We also study the effect of dif-
ferent types of traffic matrices causing link overloads. We
consider 5 datacenter networks and use QARC to find link
overload for k = 1 failure scenarios. We generate 100 TMs
using both Fbflow and gravity models such that MLU0 =
[0.65, 0.8] and bounded variation is 10%; in Table 4 we report
the percentage of violations found in these networks for the
different matrices. We observe that Fbflow matrices lead to
fewer load violations than gravity matrices for some of the
datacenter networks. This shows the impact of using QARC
to verify if significant changes to traffic patterns can affect a
network’s load properties under failures.

Q1: QARC finds network load violations under fail-
ures in 70% of real datacenter and ISP networks, and ISP
networks are more susceptible to link overload than data-
center networks. To the best of our knowledge, this is the
first study of finding potential violations for control planes.

9.2 Verification Performance
We now evaluate the performance of QARC’s algorithm for
detecting link overload for the datacenter and ISP networks
using 20 different traffic matrices with MLU0 ∈ [0.65, 0.8]
for 1 and 2-link failure scenarios. The datacenter networks
have on the order of 10 to order of 100 links (exact numbers
hidden for confidentiality) and order of 100 traffic classes,

0 50
DC Networks

0

20

40

V
ar
ia
ti
on

(%
)

k=1 k=2

0 25 50
ISP Networks

0

5

10

15

V
ar
ia
ti
on

(%
)

k=1 k=2

Figure 5. Variation % for different ISP and datacenter net-
works for 1 and 2 link failure scenarios.

and the ISP networks have 8-125 links and 10-2000 traffic
classes. We use 5 nodes to run parallel verification and report
the average time to successfully find violations (Yes) or verify
no violations (No) for the networks.
Figure 6 shows the results. We observe that verification

time for k = 2 is greater than k = 1 due to the larger search
space. We sort the networks by number of network links and
observe that network time in general increases with size of
the network. Also, the ISP topologies have higher verification
times compared to the datacenter networks (due to larger
number of traffic classes). For most networks, QARC is able
to verify if the network will experience link overload (Yes)
or not (No) in under an hour (6.7% of the runs timed out
due to the large number of links or traffic classes). With our
choice of traffic matrices withMLU0 ∈ [0.65, 0.8], the times
taken to find a violation or proving the absence of violations
follow similar trends, indicating similar difficulty.

We also look atQARC’s performance with increasing num-
ber of link failures. We consider 3 datacenter networks (DC2,
DC4, Fat6) and one ISP network (Abilene) and use 50 random
gravity matrices withMLU0 ∈ [0.65, 0.8] and 10% traffic vari-
ation, and verify for k = [1, 4] failure scenarios. We present
the median verification times in Table 5. As k increases, ver-
ification times generally increase (Fat-6 and DC4 experience
a drastic increase at k = 3 and k = 4, respectively). For k ≤ 2,
QARC terminates within an hour for most instances (<1%
instances timed out). QARC experiences more timeouts for
k = 3 (7%) and k = 4 (25%) due to the exponential complexity
of verification.

We now consider how QARC performs compared to naive
enumeration. We fix the input traffic matrix, find the time

PLDI ’20, June 15–20, 2020, London, UK Kausik Subramanian, Anubhavnidhi Abhashkumar, Loris D’Antoni, and Aditya Akella

0 20 40 60 80 100 120
DC Networks

10−3

10−2

10−1

100
101
102
103

T
im

e
(s

)

Yes No

(a) k=1

0 20 40 60 80 100 120
DC Networks

10−3

10−2

10−1

100
101
102
103

T
im

e
(s

)

Yes No

(b) k=2

0 10 20 30 40 50 60 70 80 90
ISP Networks

10−3

10−2

10−1

100
101
102
103

T
im

e
(s

)

Yes No

(c) k=1

0 10 20 30 40 50 60 70 80 90
ISP Networks

10−3

10−2

10−1

100
101
102
103

T
im

e
(s

)

Yes No

(d) k=2

Figure 6. Verification time (log scale) sorted by network links for different WAN and datacenter networks for 1 and 2 link
failure scenarios.

Table 5. Verification times (s) for k = [1, 4] link failures.

Network(Links) k=1 k=2 k=3 k=4
Abilene(28) 0.7 7.9 9.1 10.7
DC2 (<100) 1.4 17.5 17.1 20.1
Fat6 (216) 3.3 2.8 1,550.6 1,357.7
DC4 (<1000) 9.6 22.1 81.2 1,496.0

taken to verify one failure and extrapolate by the number of
failures. We consider a 5-node parallelism, so enumeration is
spread across 5 machines equally. For a network with >100
links, the naive enumeration time versus median QARC time
for different failure scenarios are: (a) k = 1: 12.8s vs 9.6s,
(b) k = 2: 1,017s vs 22s, (c) k = 3: 14.8hrs vs 81s, and (d)
k = 4: 584hrs vs 0.4hrs . While for 1-link failures, the naive
enumeration is comparable, QARC has significant speedup
for k ≥ 2. Moreover, verification with non-zero traffic matrix
variation cannot be performed by enumeration, as there are
infinitely many rational-value traffic matrices to consider.

Q2: QARC can verify network overload for medium-
sized datacenter and ISP networks for different failure
scenarios in under an hour.

9.3 QARC Optimizations
We now evaluate how the optimizations presented in §6
improve QARC’s performance. We consider 3 datacenter
(DC2, DC4, Fat6) and one ISP network (Abilene) and use 50
random gravity matrices with MLU0 ∈ [0.65, 0.8] and no
traffic variation, and verify for k = 1 failures.
ETG Minimization. Table 6 reports the speedup obtained
by ETGminimization (speedup = time without minimization/
time with minimization) and edge reductions for the net-
works. For the bigger networks, the speedup in verification
is significantly larger, aiding in making QARC’s verification
more tractable. When verifying the Fat6 and DC4 network
with k = 1, we are able to reduce 86% and 95% of the ETG
edges respectively, achieving significant speedups of 69×
and 18× for Fat6 and DC4. The ETG minimization phase is
quick, taking under 5 seconds for all the networks.

Table 6. Speedups due to optimizations for k = 1 failures.

Optimizations Abil-
ene(28)

DC2
(<100)

Fat6
(216)

DC4
(<1000)

Edges Removed 54% 67% 86% 95%
Minimize Speedup 2.3 4.5 69 18
Parallel Speedup 1.3 1.3 5.0 9.5
Partition Classes 68% 50% 42% 36%
Partition Speedup 1.00 1.19 1.38 1.52

Parallelization. We now consider the speedup achieved by
parallelizing the verification (with optimal partitions) over
verification run on a single node. We run verification on
5 nodes and compare the performance with 1-node verifi-
cation. In the parallel scenario, we terminate verification
if any one node finds a link load violation, otherwise we
wait till all nodes report no violations (with a timeout of 1
hour). Table 6 shows the verification speedup achieved due
to parallelization. For the bigger networks (Fat6 and DC4),
we achieve average speedup of over 5× and 10× over the sin-
gle node case; thus, QARC parallelization further improves
the tractability of verification.
Partitioning. Finally, we evaluate the speedup due to the
optimal partitioning scheme which minimizes the number
of traffic classes in each of the 5 partitions. We compare
the performance of 5-node optimal partition verification to
to a 5-node random partitioning scheme which randomly
divides the links in equal sized partitions. For this experiment,
we pre-compute the optimal partitioning (not included in
verification time) and compare verification using the optimal
and random naive partitions on 5 nodes. Table 6 shows the
verification speedup achieved by the optimal versus naive
partitions. The speedup achieved for DC2, DC4 and Fat6 is
about 20-50%. We report the percentage of traffic classes in
the optimal partitions (Partition Classes) for each network
in Table 6; we are able to reduce more than half of the traffic
classes in each partition for DC2, DC4 and Fat6.

Q3: QARC optimizations speed up verification signif-
icantly for different networks and failure scenarios, with the

Detecting Network Load Violations for Distributed Control Planes PLDI ’20, June 15–20, 2020, London, UK

DC2
(<100)

DC3
(<100)

Geant
(76)

Fat6
(216)

DC4
(<1000)

Networks

0

50

100

150

200

250

300

350

400

T
im

e
(s

)

k=1 k=2

Figure 7. Capacity upgrade computation time

most benefits coming from ETG minimization and parallel
verification for the bigger Fat6 and DC4 networks.

9.4 Upgrade Performance
We use QARC to generate the minimal link capacity addi-
tions required to prevent link overload under 1-link and
2-link failures. For this experiment, we consider traffic ma-
trices with MLU0 ∈ [0.8, 0.95] and zero variation. Similar
to verification, we parallelize the phase of computing the
new link capacities to 5 nodes. We report the median up-
grade time for 5 different networks in Figure 7. QARC is able
to compute new link capacities for the networks in under
5 minutes using the 5 nodes. In our runs, QARC requires
changing capacities of order of 10 links (Fat6 repair has the
highest number of links whose capacity has to be increased).
Finding the repair for all 2-link failure scenarios takes more
time than 1-link scenarios due to the larger search space.

Q3:QARC can upgrade link capacities to prevent net-
work overload under failures for different networks in
under 400 seconds.

10 Other Related Work
Config. verification/repair. Our work complements con-
figuration analysis tools [4, 6, 7, 13, 15, 16, 19, 20, 23, 44, 47,
49] that focus on qualitative properties; to the best of our
knowledge, we are the first to show how to reason about
quantitative properties in networks with distributed control
planes. Our ETG minimization approach is inspired by the
idea of surgery proposed by Plotkin et. al [38] to slice the net-
work and headers to speed up reachability verification. The
key difference is that QARC identifies network components
which are not traversed under different failure scenarios,
while Plotkin et. al do not verify reachability under failures.
Quantitative properties. ProbNetKAT [18, 43] supports
probabilistic routing behavior and can answer congestion
and latency queries about the network using a link failure
probability distribution. ProbNetKAT cannot express com-
plex routing strategies—e.g., distributed routing protocols
such as OSPF—that recompute new paths under failures
based on the global network state. Chang et. al. [11] propose
a framework to validate network design under failures and

uncertain demands. Specifically, the input is a global rout-
ing strategy that can adapt to the current network topology
to optimize the max link utilization (MLU); examples are
multi-commodity flow (which finds optimal network paths)
and MPLS tunneling (best path chosen from a set of pre-
specified tunnels). The system finds the worst case (max)
value that MLU can achieve under a set of failure scenarios/-
traffic demands when the adaptive routing strategy is in use
by relaxing a non-linear formulation to a linear program.

The routing in distributed control planes does not seek to
minimize the global objective of maximum link utilization
(MLU), and, thus, cannot be reasoned about directly using
this framework. QARC leverages ARC to reason about real
router configurations deployed in different real-world net-
works, while Chang et. al’s framework deals with the abstract
routing strategies like multi-commodity flow. Moreover, our
formulation is sound, i.e., it will find a failure scenario where
link overload happens if one exists, however Chang et. al’s
framework solves a relaxed formulation, so cannot provide
soundness guarantees for all routing strategies.
Traffic Engineering. Our work is orthogonal to traffic en-
gineering (TE) works [17, 30, 32, 48] that develop/configure
routing strategies to react to uncertain traffic demands or
failure scenarios. In a sense, TE systems solve a narrow “syn-
thesis” problem, whereas we focus on analyzing the joint
impact of the routing in use in a network, input traffic charac-
teristics, and arbitrary failures on the network’s current link
bandwidths, i.e., verification. Also, the scope of TE systems
is narrow in the sense that they only consider generating
routes that satisfy quantitative properties, but ignore effects
of such routes on qualitative properties.

11 Conclusion and Future Work
We presented QARC, a control plane abstraction to support
verification of network link overload under different failure
scenarios. QARC can efficiently verify complex network con-
figurations thanks to its new Mixed-Integer-Programming
encoding.QARC can also be used for determining which link
capacities need to be upgraded to prevent load violations. We
use QARC to show network load violations can occur in ex-
isting datacenter and ISP networks. For future work, QARC
can be extended to support verification of other quantitative
properties like latencies and rate-limits. Finally, to tackle
general repair for quantitative properties, joint changes to
the network control plane and link capacities are required.
Acknowledgments. We thank the anonymous reviewers,
and our shepherd Arjun Guha for their insightful feedback
and suggestions. We also thank the network engineers at
Microsoft who provided us with real network configurations.
This work is supported by the National Science Foundation
grants CNS-1637516, CNS-1763512, CNS-1763871 and CCF-
1750965.

PLDI ’20, June 15–20, 2020, London, UK Kausik Subramanian, Anubhavnidhi Abhashkumar, Loris D’Antoni, and Aditya Akella

References
[1] 2018. Batfish. https://github.com/batfish/batfish.
[2] 2019. ARC. http://bitbucket.org/uw-madison-networking-research/

arc.
[3] 2019. Cisco IOS Configuration Fundamentals Command Refer-

ence. http://cisco.com/c/en/us/td/docs/ios/fundamentals/command/
reference/cfbook.html.

[4] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson, and Aditya
Akella. 2020. Tiramisu: Fast Multilayer Network Verification. In 17th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 20). USENIX Association, Santa Clara, CA, 201–219. https:
//www.usenix.org/conference/nsdi20/presentation/abhashkumar

[5] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008.
A scalable, commodity data center network architecture. In ACM SIG-
COMM Computer Communication Review, Vol. 38. ACM, 63–74.

[6] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2017.
A General Approach to Network Configuration Verification. In Pro-
ceedings of the Conference of the ACM Special Interest Group on Data
Communication (Los Angeles, CA, USA) (SIGCOMM ’17). ACM, New
York, NY, USA, 155–168. https://doi.org/10.1145/3098822.3098834

[7] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitu Padhye, and David
Walker. 2016. Don’t Mind the Gap: Bridging Network-wide Objectives
and Device-level Configurations. In Proceedings of the ACM SIGCOMM
2016 Conference on SIGCOMM (SIGCOMM ’16).

[8] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and
David Walker. 2017. Network configuration synthesis with abstract
topologies. In Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation. ACM, 437–451.

[9] Theophilus Benson, Aditya Akella, and David Maltz. 2009. Unraveling
the Complexity of Network Management. In Proceedings of the 6th
USENIX Symposium on Networked Systems Design and Implementation
(Boston, Massachusetts) (NSDI’09). USENIX Association, Berkeley, CA,
USA, 335–348. http://dl.acm.org/citation.cfm?id=1558977.1559000

[10] Theophilus Benson, Aditya Akella, and Aman Shaikh. 2011. Demys-
tifying Configuration Challenges and Trade-offs in Network-based
ISP Services. In Proceedings of the ACM SIGCOMM 2011 Conference
(Toronto, Ontario, Canada) (SIGCOMM ’11). ACM, New York, NY, USA,
302–313. https://doi.org/10.1145/2018436.2018471

[11] Yiyang Chang, Sanjay Rao, and Mohit Tawarmalani. 2017. Robust
Validation of Network Designs under Uncertain Demands and Fail-
ures. In 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17). USENIX Association, Boston, MA, 347–
362. https://www.usenix.org/conference/nsdi17/technical-sessions/
presentation/chang

[12] Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An
Efficient SMT Solver. In Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), 14th International Conference. 337–340.
https://doi.org/10.1007/978-3-540-78800-324

[13] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, and Martin
Vechev. 2017. Network-wide Configuration Synthesis. In 29th Interna-
tional Conference on Computer Aided Verification, Heidelberg, Germany,
2017 (CAV’17).

[14] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, and Martin
Vechev. 2018. NetComplete: Practical Network-Wide Configuration
Synthesis with Autocompletion. In 15th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 18). USENIX Asso-
ciation, Renton, WA, 579–594. https://www.usenix.org/conference/
nsdi18/presentation/el-hassany

[15] Seyed K Fayaz, Tushar Sharma, Ari Fogel, Ratul Mahajan, Todd Mill-
stein, Vyas Sekar, and George Varghese. 2016. Efficient Network Reach-
ability Analysis using a Succinct Control Plane Representation. In 12th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16). USENIX Association, 217–232.

[16] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh
Govindan, Ratul Mahajan, and Todd Millstein. 2015. A general ap-
proach to network configuration analysis. In 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 15). 469–483.

[17] Bernard Fortz and Mikkel Thorup. 2000. Internet traffic engineering
by optimizing OSPF weights. In INFOCOM 2000. Nineteenth annual
joint conference of the IEEE computer and communications societies.
Proceedings. IEEE, Vol. 2. IEEE, 519–528.

[18] Nate Foster, Dexter Kozen, Konstantinos Mamouras, Mark Reitblatt,
and Alexandra Silva. 2016. Probabilistic netkat. In European Symposium
on Programming Languages and Systems. Springer, 282–309.

[19] Aaron Gember-Jacobson, Aditya Akella, Ratul Mahajan, and
Hongqiang Harry Liu. 2017. Automatically repairing network con-
trol planes using an abstract representation. In Proceedings of the 26th
Symposium on Operating Systems Principles. ACM, 359–373.

[20] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella, and
Ratul Mahajan. 2016. Fast Control Plane Analysis Using an Abstract
Representation. In Proceedings of the 2016 ACM SIGCOMM Conference
(Florianopolis, Brazil) (SIGCOMM ’16). ACM, New York, NY, USA,
300–313. https://doi.org/10.1145/2934872.2934876

[21] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella, and
Ratul Mahajan. 2016. Fast Control Plane Analysis Using an Abstract
Representation. Technical Report. University of Wisconsin-Madison.

[22] Aaron Gember-Jacobson, Wenfei Wu, Xiujun Li, Aditya Akella, and
Ratul Mahajan. 2015. Management Plane Analytics. In Proceedings
of the 2015 Internet Measurement Conference (Tokyo, Japan) (IMC
’15). ACM, New York, NY, USA, 395–408. https://doi.org/10.1145/
2815675.2815684

[23] Nick Giannarakis, Devon Loehr, Ryan Beckett, and DavidWalker. 2020.
NV: An Intermediate Language for Verification of Network Control
Planes. In PLDI. ACM.

[24] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. 2011. Under-
standing Network Failures in Data Centers: Measurement, Analysis,
and Implications. In Proceedings of the ACM SIGCOMM 2011 Conference
(Toronto, Ontario, Canada) (SIGCOMM ’11). ACM, New York, NY, USA,
350–361. https://doi.org/10.1145/2018436.2018477

[25] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and
Sudipta Sengupta. 2009. VL2: A Scalable and Flexible Data Center
Network. In Proceedings of the ACM SIGCOMM 2009 Conference on
Data Communication (Barcelona, Spain) (SIGCOMM ’09). ACM, New
York, NY, USA, 51–62. https://doi.org/10.1145/1592568.1592576

[26] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vi-
jay Gill, Mohan Nanduri, and Roger Wattenhofer. 2013. Achieving
High Utilization with Software-driven WAN. In Proceedings of the
ACM SIGCOMM 2013 Conference on SIGCOMM (Hong Kong, China)
(SIGCOMM ’13). ACM, New York, NY, USA, 15–26. https://doi.org/
10.1145/2486001.2486012

[27] C. Hopps. 2000. Analysis of an Equal-Cost Multi-Path Algorithm.
[28] S. Knight, H.X. Nguyen, N. Falkner, R. Bowden, and M. Roughan. 2011.

The Internet Topology Zoo. Selected Areas in Communications, IEEE
Journal on 29, 9 (october 2011), 1765 –1775. https://doi.org/10.1109/
JSAC.2011.111002

[29] Alok Kumar, Sushant Jain, Uday Naik, Anand Raghuraman, Nikhil
Kasinadhuni, Enrique Cauich Zermeno, C. Stephen Gunn, Jing Ai,
Björn Carlin, Mihai Amarandei-Stavila, Mathieu Robin, Aspi Siganpo-
ria, Stephen Stuart, and Amin Vahdat. 2015. BwE: Flexible, Hierarchical
Bandwidth Allocation for WAN Distributed Computing. In Proceedings
of the 2015 ACM Conference on Special Interest Group on Data Commu-
nication (London, United Kingdom) (SIGCOMM ’15). ACM, New York,
NY, USA, 1–14. https://doi.org/10.1145/2785956.2787478

[30] Praveen Kumar, Yang Yuan, Chris Yu, Nate Foster, Robert Kleinberg,
Petr Lapukhov, Chiun Lin Lim, and Robert Soulé. 2018. Semi-Oblivious

https://github.com/batfish/batfish
http://bitbucket.org/uw-madison-networking-research/arc
http://bitbucket.org/uw-madison-networking-research/arc
http://cisco.com/c/en/us/td/docs/ios/fundamentals/command/reference/cf_book.html
http://cisco.com/c/en/us/td/docs/ios/fundamentals/command/reference/cf_book.html
https://www.usenix.org/conference/nsdi20/presentation/abhashkumar
https://www.usenix.org/conference/nsdi20/presentation/abhashkumar
https://doi.org/10.1145/3098822.3098834
http://dl.acm.org/citation.cfm?id=1558977.1559000
https://doi.org/10.1145/2018436.2018471
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/chang
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/chang
https://doi.org/10.1007/978-3-540-78800-3_24
https://www.usenix.org/conference/nsdi18/presentation/el-hassany
https://www.usenix.org/conference/nsdi18/presentation/el-hassany
https://doi.org/10.1145/2934872.2934876
https://doi.org/10.1145/2815675.2815684
https://doi.org/10.1145/2815675.2815684
https://doi.org/10.1145/2018436.2018477
https://doi.org/10.1145/1592568.1592576
https://doi.org/10.1145/2486001.2486012
https://doi.org/10.1145/2486001.2486012
https://doi.org/10.1109/JSAC.2011.111002
https://doi.org/10.1109/JSAC.2011.111002
https://doi.org/10.1145/2785956.2787478

Detecting Network Load Violations for Distributed Control Planes PLDI ’20, June 15–20, 2020, London, UK

Traffic Engineering: The Road Not Taken. In 15th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 18).
USENIX Association, Renton, WA, 157–170. https://www.usenix.org/
conference/nsdi18/presentation/kumar

[31] Dave Lenrow. 2015. Intent: What. Not How. http:
//opennetworking.org/?p=1633&option=comwordpress&Itemid=471.

[32] Hongqiang Harry Liu, Srikanth Kandula, Ratul Mahajan, Ming Zhang,
and David Gelernter. 2014. Traffic Engineering with Forward Fault
Correction. In Proceedings of the 2014 ACM Conference on SIGCOMM
(Chicago, Illinois, USA) (SIGCOMM ’14). ACM, New York, NY, USA,
527–538. https://doi.org/10.1145/2619239.2626314

[33] Gary Scott Malkin. 1998. RIP Version 2. STD 56. RFC Editor. http:
//www.rfc-editor.org/rfc/rfc2453.txt http://www.rfc-editor.org/rfc/
rfc2453.txt.

[34] David A. Maltz, Geoffrey Xie, Jibin Zhan, Hui Zhang, Gísli Hjálmtýs-
son, and Albert Greenberg. 2004. Routing Design in Operational Net-
works: A Look from the Inside. In Proceedings of the 2004 Conference
on Applications, Technologies, Architectures, and Protocols for Computer
Communications (Portland, Oregon, USA) (SIGCOMM ’04). ACM, New
York, NY, USA, 27–40. https://doi.org/10.1145/1015467.1015472

[35] Athina Markopoulou, Gianluca Iannaccone, Supratik Bhattacharyya,
Chen-Nee Chuah, Yashar Ganjali, and Christophe Diot. 2008. Charac-
terization of failures in an operational IP backbone network. IEEE/ACM
Transactions on Networking (TON) 16, 4 (2008), 749–762.

[36] John Moy. 1998. OSPF Version 2. STD 54. RFC Editor. http://www.rfc-
editor.org/rfc/rfc2328.txt http://www.rfc-editor.org/rfc/rfc2328.txt.

[37] Gurobi Optimization. 2019. Gurobi. http://www.gurobi.com/.
[38] Gordon D. Plotkin, Nikolaj Bjørner, Nuno P. Lopes, Andrey Ry-

balchenko, and George Varghese. 2016. Scaling Network Verification
Using Symmetry and Surgery. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(St. Petersburg, FL, USA) (POPL ’16). ACM, New York, NY, USA, 69–83.
https://doi.org/10.1145/2837614.2837657

[39] Yakov Rekhter, Tony Li, and Susan Hares. 2005. A border gateway
protocol 4 (BGP-4). Technical Report.

[40] Matthew Roughan, Albert Greenberg, Charles Kalmanek, Michael
Rumsewicz, Jennifer Yates, and Yin Zhang. 2002. Experience in Mea-
suring Backbone Traffic Variability: Models, Metrics, Measurements
and Meaning. In Proceedings of the 2Nd ACM SIGCOMMWorkshop on
Internet Measurment (Marseille, France) (IMW ’02). ACM, New York,
NY, USA, 91–92. https://doi.org/10.1145/637201.637213

[41] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C.
Snoeren. 2015. Inside the Social Network’s (Datacenter) Network.
In Proceedings of the 2015 ACM Conference on Special Interest Group
on Data Communication (London, United Kingdom) (SIGCOMM
’15). ACM, New York, NY, USA, 123–137. https://doi.org/10.1145/
2785956.2787472

[42] Rachee Singh, Manya Ghobadi, Klaus-Tycho Foerster, Mark Filer, and
Phillipa Gill. 2018. RADWAN: Rate Adaptive Wide Area Network. In

Proceedings of the 2018 Conference of the ACM Special Interest Group on
Data Communication (Budapest, Hungary) (SIGCOMM ’18). ACM, New
York, NY, USA, 547–560. https://doi.org/10.1145/3230543.3230570

[43] Steffen Smolka, Praveen Kumar, Nate Foster, Dexter Kozen, andAlexan-
dra Silva. 2017. Cantor Meets Scott: Semantic Foundations for Prob-
abilistic Networks. In Proceedings of the 44th ACM SIGPLAN Sympo-
sium on Principles of Programming Languages (Paris, France) (POPL
2017). ACM, New York, NY, USA, 557–571. https://doi.org/10.1145/
3009837.3009843

[44] Kausik Subramanian, Loris D’Antoni, and Aditya Akella. 2018. Syn-
thesis of Fault-Tolerant Distributed Router Configurations. Proc.
ACM Meas. Anal. Comput. Syst. 2, 1, Article 22 (April 2018), 26 pages.
https://doi.org/10.1145/3179425

[45] Kausik Subramanian, Loris DâĂŹAntoni, and Aditya Akella. 2017.
Genesis: Synthesizing Forwarding Tables in Multi-Tenant Networks.
SIGPLAN Not. 52, 1 (Jan. 2017), 572âĂŞ585. https://doi.org/10.1145/
3093333.3009845

[46] Yu-Wei Eric Sung, Xiaozheng Tie, Starsky HYWong, and Hongyi Zeng.
2016. Robotron: Top-down network management at facebook scale.
In Proceedings of the 2016 ACM SIGCOMM Conference. ACM, 426–439.

[47] Anduo Wang, Limin Jia, Wenchao Zhou, Yiqing Ren, Boon Thau Loo,
Jennifer Rexford, Vivek Nigam, Andre Scedrov, and Carolyn Talcott.
2012. FSR: Formal Analysis and Implementation Toolkit for Safe
Interdomain Routing. IEEE/ACM Trans. Netw. 20, 6 (Dec. 2012), 1814–
1827. https://doi.org/10.1109/TNET.2012.2187924

[48] Hao Wang, Haiyong Xie, Lili Qiu, Yang Richard Yang, Yin Zhang,
and Albert Greenberg. 2006. COPE: Traffic Engineering in Dy-
namic Networks. In Proceedings of the 2006 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communica-
tions (Pisa, Italy) (SIGCOMM ’06). ACM, New York, NY, USA, 99–110.
https://doi.org/10.1145/1159913.1159926

[49] KonstantinWeitz, DougWoos, Emina Torlak, Michael D. Ernst, Arvind
Krishnamurthy, and Zachary Tatlock. 2016. Scalable Verification of
Border Gateway Protocol Configurations with an SMT Solver. In Pro-
ceedings of the 2016 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications (Amster-
dam, Netherlands) (OOPSLA 2016). ACM, New York, NY, USA, 765–780.
https://doi.org/10.1145/2983990.2984012

[50] Junlan Zhou, Malveeka Tewari, Min Zhu, Abdul Kabbani, Leon
Poutievski, Arjun Singh, and Amin Vahdat. 2014. WCMP: Weighted
Cost Multipathing for Improved Fairness in Data Centers. In Proceed-
ings of the Ninth European Conference on Computer Systems (Ams-
terdam, The Netherlands) (EuroSys ’14). ACM, New York, NY, USA,
Article 5, 14 pages. https://doi.org/10.1145/2592798.2592803

[51] Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Klaus-Tycho Förster,
Arvind Krishnamurthy, and Thomas Anderson. 2017. Understanding
and Mitigating Packet Corruption in Data Center Networks. In Pro-
ceedings of the Conference of the ACM Special Interest Group on Data
Communication (Los Angeles, CA, USA) (SIGCOMM ’17). ACM, New
York, NY, USA, 362–375. https://doi.org/10.1145/3098822.3098849

https://www.usenix.org/conference/nsdi18/presentation/kumar
https://www.usenix.org/conference/nsdi18/presentation/kumar
http://opennetworking.org/?p=1633&option=com_wordpress&Itemid=471
http://opennetworking.org/?p=1633&option=com_wordpress&Itemid=471
https://doi.org/10.1145/2619239.2626314
http://www.rfc-editor.org/rfc/rfc2453.txt
http://www.rfc-editor.org/rfc/rfc2453.txt
http://www.rfc-editor.org/rfc/rfc2453.txt
http://www.rfc-editor.org/rfc/rfc2453.txt
https://doi.org/10.1145/1015467.1015472
http://www.rfc-editor.org/rfc/rfc2328.txt
http://www.rfc-editor.org/rfc/rfc2328.txt
http://www.rfc-editor.org/rfc/rfc2328.txt
https://doi.org/10.1145/2837614.2837657
https://doi.org/10.1145/637201.637213
https://doi.org/10.1145/2785956.2787472
https://doi.org/10.1145/2785956.2787472
https://doi.org/10.1145/3230543.3230570
https://doi.org/10.1145/3009837.3009843
https://doi.org/10.1145/3009837.3009843
https://doi.org/10.1145/3179425
https://doi.org/10.1145/3093333.3009845
https://doi.org/10.1145/3093333.3009845
https://doi.org/10.1109/TNET.2012.2187924
https://doi.org/10.1145/1159913.1159926
https://doi.org/10.1145/2983990.2984012
https://doi.org/10.1145/2592798.2592803
https://doi.org/10.1145/3098822.3098849

	Abstract
	1 Introduction
	2 Motivation
	2.1 Network Control Planes
	2.2 Control Plane Abstractions
	2.3 ARC vs. Minesweeper

	3 QARC (ARC with Quantities)
	3.1 Problem Definition

	4 QARC Encoding
	4.1 Flow Constraints
	4.2 Distance Constraints
	4.3 Load Balancing Constraints
	4.4 Failure Constraints

	5 Verification using QARC
	6 Optimizations
	6.1 ETG Minimization
	6.2 Parallel Verification

	7 Upgrading Link Capacities in QARC
	8 Limitations
	9 Evaluation
	9.1 Verifying Real Networks
	9.2 Verification Performance
	9.3 QARC Optimizations
	9.4 Upgrade Performance

	10 Other Related Work
	11 Conclusion and Future Work
	References

