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Abstract
Modern data processing clusters are highly dynamic –

both in terms of the number of concurrently running jobs
and their resource usage. To improve job performance, re-
cent works have focused on optimizing the cluster sched-
uler and the jobs’ query planner with a focus on picking
the right query execution plan (QEP) – represented as
a directed acyclic graph – for a job in a resource-aware
manner, and scheduling jobs in a QEP-aware manner.
However, because existing solutions use a fixed QEP
throughout the entire execution, the inability to adapt
a QEP in reaction to resource changes often leads to large
performance inefficiencies.

This paper argues for dynamic query re-planning,
wherein we re-evaluate and re-plan a job’s QEP during
its execution. We show that designing for re-planning
requires fundamental changes to the interfaces between
key layers of data analytics stacks today, i.e., the query
planner, the execution engine, and the cluster scheduler.
Instead of pushing more complexity into the scheduler
or the query planner, we argue for a redistribution of re-
sponsibilities between the three components to simplify
their designs. Under this redesign, we analytically show
that a greedy algorithm for re-planning and execution
alongside a simple max-min fair scheduler can offer prov-
ably competitive behavior even under adversarial resource
changes. We prototype our algorithms atop Apache Hive
and Tez. Via extensive experiments, we show that our
design can offer a median performance improvement of
1.47× compared to state-of-the-art alternatives.

1 Introduction
Batch analytics is widely used today to drive business in-
telligence and operations at organizations of various sizes.
Such analytics is driven by systems such as Hive [5] and
SparkSQL [19] that offer SQL-like interfaces running
atop cluster computing frameworks such as Hadoop [4]
and Spark [59]. Figure 1 shows the key layers of data
analytics stacks today. At the core of these systems are
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Figure 1: Traditional batch query execution pipeline.

query planners (QPs) , such as Calcite for Hive [3] and
Catalyst for SparkSQL [19]. QPs leverage data statistics
to evaluate several potential query execution plans (QEPs)
for each query to determine an optimized QEP. The opti-
mized QEP is a DAG of interconnected stages, where each
stage has many tasks. An execution engine then handles
the scheduling of these tasks on the underlying cluster
by requesting resources from a scheduler. The scheduler
allocates resources considering a variety of metrics such
as packing, fairness, and job performance [35, 36, 61].

To improve query performance, existing works have
primarily looked at optimizations limited to specific lay-
ers in the data analytics stack. Some of them [58, 61,
18, 34, 36, 35, 51] have focused on improved scheduling
given the optimized QEP by incorporating rich informa-
tion, such as task resource requirements, expected task
run times, and dependencies. Others have considered im-
proving the QP to take into account resource availability
at query launch time (in addition to data statistics) to find
good resource-aware QEPs [54, 55].

We argue that these state-of-the-art techniques fall short
in dynamic environments, where resource availability can
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Figure 2: Dynamic replanning in action using QOOP. Omitted
part of the query planner is similar to that of Figure 1.

vary significantly over the duration of a job’s lifetime.
This is because existing techniques are early-binding in
nature – a QEP is pre-chosen at query launch time and the
QEP’s low-level details (e.g., the physical tasks, task re-
source needs, dependencies) are used to make scheduling
decisions (which tasks to run and when). This fundamen-
tally leaves limited options to adapt to resource dynamics.
Our paper makes a case for constant query replanning in
the face of dynamics. Here, a given job switches query
plans during its execution to adapt to changing resource
availability and ensure fast completion.

Dynamic resource variabilities can arise in at least two
situations: (i) running multiple jobs on small private clus-
ters, which is a very common use-case in practice [6];
and (ii) leveraging spot market instances for running an-
alytics jobs, which is an attractive option due to the cost
savings it can offer [45, 52, 62, 38]. We empirically study
resource changes in these situations in Section 2.

To enable effective adaptation in these situations, we
develop and analyze strategies for query replanning. We
prove two basic results: (1) When dynamically switching
QEPs, it is important for a query to potentially back-
track and forgo already completed work. Given imperfect
knowledge of future resource availability, a query’s per-
formance can be arbitrarily bad without backtracking. (2)
A greedy algorithm – which always picks a QEP offering
the best completion time assuming current allocation per-
sists into the future – performs well. We prove that the
greedy algorithm has a competitive ratio of 4; the lower
bound for any online algorithm is 2.

To realize the aforementioned replanning strategies
in practice, we eschew the early binding in today’s ap-
proaches. Instead, we propose a new system, QOOP, that
has the following radically different division of labor and
interfaces among the layers of analytics stacks (Figure 2):

• The cluster scheduler implements simple cluster-
wide weighted resource shares and explicitly informs a
job’s execution engine of changes to its cluster share. The
cluster share of a job is defined as the total amount of
each resource divided by the number of active jobs. Dur-
ing a jobs’s execution, our scheduler tracks a job’s current
resource usage – measured as the maximum of the frac-
tions of any resource it is using – and allocates freed up
resources to the job with the least current usage, emu-
lating simple max-min fair sharing. Thus, the scheduler
decouples the feedback about cluster contention – this
helps queries replan and adapt – from task-level resource
allocation, which is instantaneously max-min fair.

• When resource shares change significantly, the query
planner compares a query’s remaining time to completion
based on its current progress against its expected com-
pletion time from replanning and switching to a different
plan. It uses a model of task executions and available
checkpoints in the execution engine to make this deci-
sion. It picks a better QEP to switch to (if one exists), and
informs the execution engine of the new set of tasks to
execute and existing ones to revoke.

• The execution engine supports the query planner by
informing it of the query’s current progress and main-
taining checkpoints of the query’s execution from which
alternate QEPs’ computation can begin.

Overall, QOOP pushes complexity up the stack, out of
cluster schedulers – where most of the scheduling com-
plexity exists today – and into a tight replanning feedback
loop between the query planner and the execution engine.
We show that the resulting late binding enables better
dynamic query adaptation.

We prototype QOOP by refactoring the interfaces be-
tween Hive, Tez, and YARN. Our evaluations on a 20-
node cluster using TPC-DS queries show that QOOP’s
dynamic query replanning and simple scheduler outper-
form existing state-of-the-art static approaches. From a
single job’s perspective, QOOP strictly outperforms a
resource-aware but static QP. For example, when resource
profiles fluctuate rapidly, with high volatility, QOOP of-
fers more than 50% of the jobs improvements of 1.47×
or more; 10% of the jobs see more than 4× gains! We
also use QOOP to manage the execution of multiple jobs
on a small 20-node private cluster. We find that QOOP
performs well on all three key metrics, i.e., job comple-
tion times, fairness, and efficiency, by approaching close
to the individual best solutions for each metric.

2 Background and Motivation
In this section, we highlight multiple sources of resource
dynamics in a cluster (§2.1), discuss the opportunities lost
from not being able to switch a query’s plan in response to
resource dynamics (§2.2), and why the existing interfaces
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Figure 3: Analysis of resource perturbations in a shared cluster and spot market. The gaps between each pair of the same symbols in
(a) demarcate one resource volatility event.

between cluster schedulers, execution engines, and query
planners make dynamic switching difficult (§2.3).

2.1 Resource Dynamics in Big Data Environments

Modern big data queries run in dynamic environments that
range from dedicated resources in private clusters [25, 22]
and public clouds [1] to best-effort resources put together
from spot markets in the cloud [45, 52, 62, 38].

In case of the former, resources are arbitrated between
queries by an inter-job scheduler [35, 30, 36, 61, 18]. As
new jobs arrive and already-running jobs complete, re-
source shares of each job are dynamically adjusted by the
scheduler based on criteria such as fairness, priority, and
time-to-completion. Although in large clusters, such as
those run by Google [25, 28] and Microsoft [22], indi-
vidual job arrivals or departures have negligible impact
on other jobs, most on-premise and cloud-hosted clusters
comprise less than 100 machines [6, 9] and run only a
handful of jobs concurrently. A 2016 Mesosphere sur-
vey [6] found that 96% of new users, and 75% of regular
users use fewer than 100 nodes. A single job’s arrival or
completion in such scenarios can create large resource
perturbations.

To better highlight resource perturbations in small clus-
ters, we ran a representative workload on a 20-node clus-
ter managed by Apache YARN. The cluster uses the
Tetris [34] cluster scheduler, and it can concurrently run
600 containers at it’s maximum capacity (1 core per con-
tainer in a 600 core cluster). For our workload, we use
the TPC-DS [12] workload, where jobs arrive following a
Poisson process with an average inter-arrival time of 20
seconds. The average completion time per job is around
500s. We pick a job executed in the cluster and show it’s
view of cluster resources in Figure 3a. Specifically, we
show the number of cores allocated (out of a maximum of
600) to all the other jobs running concurrently. During its
lifetime, the job we picked experiences resource volatility
– we call an x% increase or decrease in resource (number
of cores in this case) over some period of time as an x%
resource volatility. In Figure 3a, we identify 15% resource
volatility within uniquely shaped red markers; e.g., the

region between two solid red circles indicates one such
15% resource volatility. The job observes 3 such resource
volatility events during its lifetime (identified within simi-
larly shaped markers). To understand resource volatility
as observed by different jobs for different resource volatil-
ity magnitudes (different values of x), in Figure 3b, we
plot a CDF of the number of resource volatility events
seen by each of the individual jobs in our workload for
three values of x = 10%, 15% and 20%. We observe that
almost 78% of the jobs experience at least one 10% re-
source volatility event during their lifetime, and 20% of
the jobs see at least 4 resource volatility events of 10% or
more.

At the other extreme, running jobs on spot instances
– with their input on blob storage like Amazon S3 [2]
– is becoming common because spot instances offer an
attractive price point [45, 52, 62, 38]. However, cloud
providers can arbitrarily revoke spot instances, which can
cause perturbations in the number of machines available
to a job. We now empirically examine the extent of such
potential resource variations as experienced by a resource-
intensive, batch job that runs for five hours. We use the
spot-market price trend for i3.2xlarge instance type in
Amazon EC2 cluster in the us-west-2c region for the
time period from 17:00 UTC to 21:00 UTC for Septem-
ber 21, 2017. We also assume that the job has a budget
of 5$/hour and that spot instances that were reserved at
less than the current spot market price are taken away
immediately. The spot instance prices typically update
every minute. We use a simple cost-saving bidding strat-
egy where the job progressively adds 2 spot instances
every minute, provided the budget is not exceeded, by
bidding at a price 5% over the current spot market price.
Under such a bidding strategy and a budget of 5$, the
maximum number of machines that the job gets is 20 and
the minimum is 2. The number of spot instances available
to the job over time is shown in Figure 3c. We make the
following observations. First, the job experiences many
perturbations in the number of machines, which is espe-
cially true with cost-saving bidding strategies. Second,
the magnitude of perturbation is the largest around the 3
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hour mark when the spot market instance price reaches
a maxima of 0.5828$/hour and all but 2 machines are
revoked. Finally, throughout the entire duration of the
job, the job experiences 60, 53 and 40 resource volatility
events of 10%, 15% and 20% respectively.

Other common sources of resource fluctuations include
machine/rack failures, planned or unplanned upgrades,
network partitions, etc. [21, 56].

2.2 Query Execution Today: Fixed Plans

Regardless of the extent of resource dynamics, existing
approaches keep the query plan fixed throughout the en-
tire duration of a query’s execution. However, these ap-
proaches do vary in terms of what information they use
during query planning and how they execute a query.
Resource-Agnostic Query Execution: A large number
of today’s data-analytics jobs are submitted as SQL
queries via higher-level interfaces such as Hive [5] or
Spark SQL [19] to cluster execution engines (Figure 1).

A cost-based optimizer (CBO) examines multiple
equivalent logical plans for executing a query, and lever-
ages heuristics to select a good plan, also called a query
execution plan (QEP).1 The QEP represents the selected
logical plan and its relational operators as a job with a
directed acyclic graph (DAG) of computation stages and
corresponding tasks that will be executed by the underly-
ing execution engine on a cluster of machines. Given the
chosen QEP – also called the physical plan – the execution
engine interacts with the cluster resource scheduler in a
repeated sequence of resource requests and corresponding
allocations until all the tasks in the physical plan of the job
complete. Crucially, the optimizer’s heuristics are based
on data statistics and not resource availability; thus, it
is resource-agnostic. An example is the Volcano query

1Some optimizers consider a narrow set of resources, such as the
buffer cache or memory, but ignore disk and network [5].

planner in Hive [5]. Figure 4 shows a Volcano-generated
plan – a QEP corresponding to a “left deep” plan – that is
preferred by the Volcano CBO based on data statistics.
Resource-Aware QEP Selection: Given the obvious in-
flexibility of resource-agnostic query optimization, some
recent works [54, 55] have proposed resource-aware QEP
selection. In this case, the CBO takes available resources
into account before selecting a QEP and handing it over to
the execution engine. While this is an improvement over
the state-of-the-art, the execution engine still runs a fixed
QEP even when resource availability changes over time.
An example of a resource-aware planner is Clarinet [54].
As shown in Figure 4, the Clarinet plan is chosen based
on the resources available at t = 0. When the resources
change at t = 1, the static plan ceases to be the best.
Room for Improvement: Instead of sticking to the orig-
inal resource-aware or -agnostic QEP throughout exe-
cution, one can find room for improvements by switch-
ing to a new QEP on the fly based on resource changes.
For example, when the available resource increases at
t = 1 in Figure 4, we can switch to a different join order
– (A 1C) 1 (B 1 D) instead of (A 1 B) 1 (C 1 D) – and
further decrease query completion time.

Although this is a toy example, overall benefits of dy-
namic query re-planning improve with the complexity
of query plans, magnitudes of resource volatility, and
pathological fluctuations of resources due to unforeseen
changes in the future (§6).

2.3 Scheduler Constraints on QEP Switching

Unfortunately, today’s cluster schedulers and their inter-
faces with the execution engine and the query planner
make resource-aware QEP switching challenging.

On the one hand, existing schedulers provide little feed-
back to jobs about the level of resource contention in
a cluster – today, jobs simply ask the scheduler for re-
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sources for runnable tasks and the scheduler grants a
subset of those requests. Consequently, it is difficult for
a job to know how to adapt in an informed manner to
changing cluster contention or resource availability. One
may think that jobs can infer contention by looking at the
rate at which their resource requests are satisfied. How-
ever, such an inference mechanism can be biased by the
resource requirements of the tasks in the currently chosen
QEP instead of being correlated to the level of contention.

On the other hand, scheduling decisions are tied to
the intrinsic knowledge of job physical plan. Schedulers
are tasked with improving inter-job and cluster-wide met-
rics, such as fairness, makespan, and average completion
time [30, 34, 27, 35, 36]. For example, DRF tracks domi-
nant resources, which relies on the multi-dimensional re-
source requirements of physical tasks. Others [36, 34, 35]
go further and combine resource requirements with the
number of outstanding tasks and dependencies to esti-
mate finish times using which scheduling decisions are
made. The tight coupling of schedulers with pre-chosen
QEPs constrains the scheduler to make decisions to match
resources with the demands imposed by the pre-chosen
QEP’s tasks.

Overall, neither the job nor the scheduler has any way
of knowing whether picking a different QEP with a very
different structure and task-level resource requirements
would have performed better – w.r.t. per-job or cluster-
wide metrics – under resource dynamics.

3 QOOP Design
In this paper, we argue for breaking the constraints of
fixed QEPs, and we make a case for continuous query
re-planning by rethinking the division of labor between
cluster schedulers, execution engines, and query planners.
We first give an overview of our design (§3.1) and then
present its three key components: a simple max-min fair
scheduler (§3.2), an execution engine design to track ad-
ditional states needed to speed up dynamic re-planning
(§3.3), and a greedy QP that performs well with provable
performance guarantees (§3.4).

3.1 Design Overview

The state-of-the-art approaches for improving query per-
formance universally argue for pushing more complexity
into the inter- and intra-job scheduling to achieve effi-
ciency and improve job performance; by design, this pre-
vents adaptation at the query level. Instead, to achieve
replanning, we propose a significant refactoring. (1) We
advocate having a simple max-min fair scheduler that
effectively does “1-over-n” allocation of every resource
across n jobs. (2) Jobs are informed as soon as their share
changes due to changing n or machine/rack failures. (3)
We push re-planning complexity up the stack, maintaining
a dynamic re-planning feedback loop between the query

planner and the execution engine: based on changes to the
share, the planner – with help from the execution engine –
determines if a better QEP exists and how to switch to it.

We choose this work division because each instance of
an application framework today implements its own query
planner and execution engine (e.g., both implemented in
the Job Manager in case of frameworks using Apache
YARN), whereas all jobs running in a cluster share the
same centralized resource scheduler (i.e., the Resource
Manager in Apache YARN). Our division of labor has the
benefit of enabling many different applications with their
intrinsic continuous re-planners to effectively run atop our
simple cluster scheduler. For simplicity, our paper focuses
just on re-planning batch SQL queries.

Figure 2 presents our architecture with the sequence
of actions that take place on a resource change event: 1
The cluster scheduler or the resource manager notifies
the execution engine of its new resource share (§3.2). 2
The execution engine, in turn, notifies the query planner
of the current state, which includes the current QEP it is
executing along with its progress, current resource avail-
ability it received from the scheduler, and the available
set of checkpoints it is maintaining (§3.3). 3 Given this
information, the query planner must determine whether
switching to a new plan is feasible (considering available
checkpoints, cost of possible backtracking, and hystere-
sis) (§3.4). 4 If the decision is yes, then it informs the
execution engine of the new QEP. 5 Finally, the execu-
tion engine will switch to the new QEP; if required, it will
cancel some already-running stages and tasks.

Realizing dynamic re-planning raises a few key algo-
rithmic questions. First, what is a good switching strategy
when resources change? A simple and easy-to-implement
choice is Greedy: i.e., always pick the QEP that offers
the least estimated finish time assuming the new resource
availability persists into the future. Does this offer good
properties under arbitrary resource fluctuations? Second,
switching from a QEP with partial progress to a new one
that needs to be started from scratch necessarily wastes
work. Is this “backtracking” necessary? In Section 4, we
show that the simple Greedy approach performs well, and
that backtracking is essential.

Before presenting the analysis, in Sections 3.3 and 3.4,
we discuss key systems issues that arise in supporting
greedy behavior with backtracking: How to estimate the
relative runtimes of different QEPs? How to preserve
work to support backtracking and leverage already com-
puted work when switching to a new QEP? We start by
outlining the functionality of our inter-job scheduler next.

3.2 Cluster Resource Scheduler

Our inter-job scheduler is simple (Pseudocode 1). For
each job, our scheduler tracks the job’s current (weighted)
share in every resource dimension, i.e., the total fraction
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of the resource that all currently running tasks of the job
are using. The scheduler computes the current share of
the job as the maximum of these fractions taken over all
resources. When a resource is freed on a machine, our
scheduler simply assigns it to the job with the lowest
current share that can run on that machine, emulating
simple instantaneous max-min fair allocation of resources
across jobs, similar to [14, 30]. This is shown in lines 4–8.
We are algorithmically similar to DRF, but differ in API.
When resources become available DRF allocates to the
job with least dominant-share; QOOP informs each job
of its dominant share on resource-change events.

To enable re-planning, we introduce two changes to the
interface between the scheduler and the execution engine.
First, we do not require the execution engine to propagate
the entire QEP to the cluster scheduler. Decoupling the
QEP from the resources assigned to a job has the desirable
property that the execution engine can change the QEP
without affecting its fair share of resources, which is not
the case for the state-of-the-art techniques [30, 36, 35].

Second, we introduce feedback from the cluster sched-
uler to the execution engine (line 9 in Pseudocode 1).
Whenever the current cluster share of a job changes, the
scheduler informs the job’s execution engine. The cluster-
wide fair-share informs each job of its minimum resource
share given the current contention in the cluster. This acts
as a minimum resource guarantee for the query planner
when determining whether to re-plan in order to finish
faster. In fact, any scheduler that can offer feedback in
the form of an eventual minimum resource guarantee of
resources to each job is compatible with QOOP.

3.3 Execution Engine

We discuss how job execution engine redesign can enable
query re-planning, specifically backtracking.
Task Execution: Given a job QEP DAG (i.e., the output
of a query planner), the execution engine executes tasks
by interacting with the cluster scheduler while maintain-
ing their dependencies. To determine the order of task
execution, it can simply traverse the DAG in a breadth-
first manner [59, 19] or use a multi-resource packing
algorithm such as Tetris [34]. In QOOP, we use Tetris.
Checkpointing for Potential Switching Points: On any
multi-resource update from the cluster scheduler, the ex-
ecution engine relays the updated resource vector to the
query planner to evaluate the possibility of switching to a
different QEP. Determining whether to actually switch to
a new QEP relies on multiple factors (§3.4). A major one
is finding the suitable point(s) in the currently executing
DAG to switch from. One may consider that switching
from the currently executing stage or its immediate parent
stage(s) would suffice. However, we prove in Section 4
that backtracking to ancestor stage(s) is essential for com-
petitively coping with unknown future resource changes.

Pseudocode 1 Cluster Scheduler
1: J . active jobs prioritized by lowest current share
2:
−→
R . total cluster resource capacity

3:
−→
U . consumed cluster resource portion

4: procedure MAXMINFAIRSCHEDULER

5: pick first J ∈ J . triggered when
−→
R −−→U >

−→
0

6: allocate demand
−→
Di ∈ J s.t. maxi,m

−→
Di ·(
−→
Rm−

−→
Um)

7: update J
8: end procedure

9: procedure RESOURCEFEEDBACK(Event E)
10: J = J ⊕ GETJOBCHANGES(E)
11:

−→
R =
−→
R ⊕ GETRESOURCECHANGES(E)

12: f airShare =
−→
R
|J|

13: for all Jk ∈ J do
14: SENDRESOURCEFEEDBACKUPDATE(Jk,

f airShare)
15: end for
16: end procedure

Current QEP Candidate QEP

Map 

Stage S2  

Map 

Stage S1  

Reduce 

Stage S3  

·

·

σA1=‘a’

A

σB1=‘b’

B

Πp1,p2

inner join

Logical Operator 

Tree for Stage S3

σA1=‘a’ Λ

B1=‘b’

inner join

Πp1,p2

B A

Logical Operator 

Tree for Stage T3

Completed Stage

is 

equivalent 

to

Reduce 

Stage T2  

Map 

Stage T1  

Reduce 

Stage T3

·

·

Figure 5: Progress propagation. First, we obtain logical operator
trees for stages S3 and T 3 from provenance. Stages S3, T 3 are
deemed equivalent as their logical operator trees are equivalent.

Consequently, QEP switching may not just re-plan the
future stages of the query, but it requires the ability to
checkpoint past progress and switch to a different QEP
from an ancestor stage that was executed in the past. To
enable this, the execution engine needs to checkpoint past
progress for all the different QEPs it has executed thus
far. Each checkpoint includes the intermediate outputs of
completed tasks. Note that checkpointing of intermedi-
ate data is common in modern execution engines – disk-
based frameworks write intermediate data to disks [25, 7],
whereas in-memory frameworks periodically checkpoint
to avoid long recomputation chains [59, 60]. QOOP can
use this existing checkpointing.
Switching the QEP: The call back to the query planner
(upon resource updates) is asynchronous. While the query
planner is evaluating possible alternatives, the execution
engine continues on with the current plan. When the query
planner suggests a change, the execution engine revokes
the resource requests for runnable tasks not belonging
to the new QEP. Additionally, the execution engine may
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abort running tasks not belonging to the new QEP. There-
after, the execution engine resumes running tasks from
the most-recent set of checkpoints for the new QEP.

3.4 Query Planner (QP)

In Section 4, we show that effective re-planning requires
backtracking and that a greedy approach to re-planning
results in a competitive online algorithm. Here, we present
the details of how our query re-planner implements greedy
re-planning by leveraging backtracking.

We introduce two key changes to the design of tradi-
tional QPs; neither requires extensive modifications. First,
instead of discarding intermediate computations to ex-
plore and choose a particular QEP, we generate and cache
several candidate QEPs. The cached QEPs later aid us in
dynamic query re-planning. We also annotate each QEP
with provenance, which consists of the original logical
plan the QEP was derived from and the list of logical
operators associated with each stage of the QEP. Figure 5
shows the provenance of each stage of a QEP.

Second, unlike traditional QPs [3, 54], our QP is made
aware of the underlying resource contention to accurately
predict runtimes for each QEP and greedily switch to the
QEP with minimum completion time. To do so, we extend
the interface between the QP and the execution engine so
that the QP receives parameters to its dynamic cost model
– the current resources available to the job (the share that
the execution engine obtains from the cluster scheduler),
the intra-job scheduling logic (packing), the progress of
the current QEP and the available set of checkpoints.

Whenever the query planner receives a notification
about resource changes from the execution engine, it trig-
gers a cost-based optimization that involves predicting the
completion times of all the QEPs and greedily switching
to the QEP with earliest completion time. There are two
steps to evaluate a particular QEP: progress propagation
and completion time estimation.
Progress Propagation: To evaluate a candidate QEP, the
QP first evaluates the work in the candidate QEP that
is already done by the currently running QEP. It does
so by identifying common work between the tasks of
the candidate QEP, the running tasks of the current QEP,
and the current set of checkpoints. We refer to this as
progress propagation, and it is crucial in evaluating which
candidate QEP to switch to and where to execute it from.

To identify common work as part of progress propa-
gation, we identify equivalence between the stages of a
candidate QEP and the set of checkpointed stages and the
current running stages of the current QEP. To evaluate
equivalence between two stages we generate the stages’
logical operator trees using the provenance associated
with each QEP. Two stages are deemed equivalent if their
logical operator trees are equivalent. Equivalence of log-
ical operator trees is evaluated using standard relational

algebra equivalence rules. This is illustrated in Figure 5.
Completion Time Estimation: Next, we perform a sim-
ulated execution of the remaining tasks in the candidate
QEP being evaluated (i.e., candidate QEP tasks whose
work is not captured in the currently running QEP). Using
the scheduling algorithm of the intra-job scheduler, i.e.,
Tetris, the remaining tasks are tightly packed in space and
time given the current available resources. This yields an
estimate for this QEPs completion time assuming that the
current resource availability will persist in the future.

After evaluating the completion times of all candidate
QEPs, query planner triggers a query plan switch if it finds
a QEP that finishes faster than the currently running QEP.
To avoid unnecessary query plan flapping, we add hystere-
sis by having a threshold on the percentage improvement
of the query completion time – a query plan switch is
triggered only if improvements exceed this threshold.

In case of a switch, the query planner sends the new
QEP to the execution engine. This QEP is modified from
its original form so that the DAG now contains the check-
points as input stages, marks the running stages it shares
with the running stages of the current QEP, and identifies
the dataflow from these to the remaining stages.

4 Analysis
We now present analysis of the query planner (QP; Sec-
tion 3.4). Each query has several alternative query exe-
cution plans (QEPs). We motivate the choices made in
the query replanning algorithm regarding why, when and
which QEP to switch to during the execution of a query in
response to the resource allocations made by the scheduler
to the query. This is an online algorithm since it operates
without the knowledge of future resource allocations. We
analyze the performance of our online algorithm in the
form of its competitive ratio. Our goal is to argue that our
online algorithm performs well no matter the sequence of
resource allocations made to the query. We will compare
our online algorithm’s performance against an hindsight
optimal (a.k.a. offline) algorithm which chooses the single
best QEP knowing the entire sequence of resource alloca-
tions made to the query. The competitive ratio is the ratio
of the performance of the online algorithm to that of the
hindsight optimal (a.k.a. offline) algorithm. We provide a
precise measure of comparison shortly (Section 4.3).

4.1 Notation and Assumptions

Notation: We represent each QEP as a×b. This denotes
a QEP with a bag of b tasks, each task needing a resource-
units (e.g., number of cores) and each task completing in
1 step. The total work for this QEP is denoted by w and is
equal to ab.
Assumptions: For the upper and lower bounds on per-
formance, we assume an adversarial scheduler that can
look at the algorithm’s choices in the previous steps and
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change future resource allocation in a worst-case manner.
We require that the QP has the ability to backtrack a QEPs
execution i.e., the QP can checkpoint each completed task
in a QEP and any completed task need not be re-executed
when the QP decides to switch back to and resume the
execution of that QEP. We also assume that backtracking
does not incur any overheads; in other words that our
analysis ignores system-level costs (time spent and com-
pute/memory used) in writing checkpoints and reading
from checkpoints during a QEP switch.

4.2 Motivating Example

We motivate why QEP switching and specifically back-
tracking is necessary to obtain a bound on the perfor-
mance of our online algorithm.

Our toy examples, with large work-differences in QEPs,
serve to show that if the online algorithm does not make
good decisions then its performance can become unbound-
edly worse.

Example 4.1.
QEP switching is necessary. Consider a query with two
QEP choices: the first one being 2× 2 and the second
one being 1×100. Suppose that the scheduler starts by
giving the query 2 resource-units in the first step. We also
suppose that the query cannot switch QEPs.
CASE-1: If the query starts running the 1×100 QEP, the
scheduler gives it another 2 resource-units in the second
step. With this allocation, the optimal choice would be to
run the 2×2 QEP, finishing in two steps and performing
only 4 units of work. The online algorithm instead per-
forms 100 units of work if it continues to use the 1×100
QEP.
CASE-2: On the other hand, if the query starts running
the 2×2 QEP, the scheduler switches to a resource allo-
cation of 1 resource-unit second step and onwards. Now
the 2×2 QEP is stalled. Unless the algorithm switches
to the 1×100 QEP, it is unable to finish.
QEP backtracking is necessary. Backtracking helps
avoid stalling, ensures fast completion, and bounds wasted
work. We continue the previous example. As before, the
scheduler continues to be adversarial. It allocates 1 and
2 resource-units in the next step whenever the query is
executing 2×2 and 1×100 QEP in the current step, re-
spectively. Also, we now suppose that the query has the
ability to switch QEPs but not backtrack i.e., no ability to
checkpoint and resume QEPs from checkpoint.
We continue from where we left-off in the previous exam-
ple i.e., CASE-2 where the query is executing the 2× 2
QEP and the scheduler allocates 1 resource-unit in the
second step. With the ability to switch, to avoid stalling,
the query switches to the 1×100 QEP in the second step.
Without backtracking, the query has to restart execution
of 1× 100 QEP from the beginning. Now on switching
to the 1×100 QEP, the adversarial scheduler gives the

query 2 resource-units third step onwards. This leads us
back to CASE-1. If the QEP continues with the 1×100
QEP it leads to slower completion.
If instead the query switches back to 2× 2 QEP in the
third step, without backtracking the QEP restarts execu-
tion from the beginning and the adversarial scheduler
gives the query 1 resource-unit fourth step and onwards.
This is CASE-2 all over again. We can now see that, with-
out backtracking, the query flips between CASE-1 and
CASE-2 and stalls infinitely with unbounded wasted work.
Even if the query decides to limit wasted work by stopping
the switch to 2× 2 QEP, complete execution of 1× 100
QEP to completion leads to 100 units of additional work
and 100 additional steps. This leads to slower completion
as in CASE-1.
If the query could backtrack – we would have only one
additional task to run from the 2×2 QEP in the third step
and the query would complete execution in the third step
with just 1 units of wasted work.

4.3 Competitive Ratio

A natural way to compare the performance of our algo-
rithm against the hindsight optimal algorithm is to com-
pare the time each algorithm takes to complete the query.
As the next example shows, this is not a meaningful com-
parison, because the scheduler has the power to starve the
online algorithm after a single bad choice.

Example 4.2. Starvation. Consider the above example
again. As before, the scheduler starts by giving the query
2 resource-units in the first step. If the query starts run-
ning the 1× 100 QEP, the scheduler gives it another 2
resource-units in the second step, and then gives no more
resources to this query in subsequent steps. Regardless of
whether the query continues running the 1×100 QEP or
switches to the 2×2 QEP in the second step, the query is
unable to finish the work and stalls. Its completion time
is unbounded. With the same allocation of resources, the
hindsight optimal algorithm could have finished the query
by just running the 2×2 QEP.

On the other hand, say the query starts running the
2× 2 QEP and the scheduler gives 1 unit resource for
the next 99 steps and then gives no more resources. Once
again no matter what the online algorithm does, it cannot
complete the query. However, the hindsight optimal algo-
rithm would have been able to complete the query given
these resources.

In each of the cases in the above example, the sched-
uler could stall the query for an unlimited time, whereas
the hindsight optimal algorithm terminates in bounded
time. In order to allow for some wasted work due to the
online nature of the algorithm, the scheduler must pro-
vide more resources to the online algorithm than just the
minimum necessary for the hindsight optimal algorithm.
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Pseudocode 2 Online Query Planning Algorithm
Input n QEPs, ai×bi, with a1 < a2 < a3 < · · ·< an

1: Let wi = aibi denote the total work of QEP i.
2: for all i ∈ [n] do
3: if wi >

1
2 wi−1 then remove QEP i from the list.

4: end if
5: end for
6: At every step, given the current resource allocation a,

consider all QEPs with ai ≤ a. Of these, run the QEP
with the least remaining processing time, breaking
ties in favor of the QEP with the smallest ai.

To formalize this, we will compare the completion time
of the online algorithm to that of an hindsight optimal
algorithm that is required to perform extra work.

Definition 4.1. Competitive Ratio. We say that an on-
line QEP selection algorithm achieves a competitive ratio
of α if for any query and any sequence of resource al-
locations, the completion time achieved by the online
algorithm is at most equal to the completion time of an
offline optimum that runs α back-to-back copies of the
query.

We note that α above does not have to be an integer.

4.4 Bounds for the Competitive Ratio

We show that no online algorithm can achieve a competi-
tive ratio < 2. Proofs for the theorems below can be found
in extended version of QOOP [47].

Theorem 4.1. No online query planning algorithm can
achieve a competitive ratio of 2−ε for any constant ε > 0
when the resource allocation is adversarial.

Our query planning algorithm corresponding to the sim-
plifying assumptions in Section 4.1 is formally described
above. It is greedy and at every step runs the QEP with the
least remaining completion time with the assumption that
the resource allocation persists forever. Also, it is “lazy”
as it switches QEPs only when the resource allocation
changes. Our overall approach in Sections 3.4 and 3.3 is
a generalization of this algorithm for complex queries.

We prove that this algorithm is competitive:

Theorem 4.2. The online greedy query planning algo-
rithm described above achieves a competitive ratio of 4.
Further, if the QEPs satisfy the property that every pair
of QEPs is sufficiently different in terms of total work, in
particular, wi ≤ 1

2 wi−1 for all i > 1, then the competitive
ratio is ≤ 2, matching the lower bound.

We note that constant competitive ratio implies that the
performance of our online query planning algorithm is in-
dependent of the nature of workloads or the environment.

5 Implementation
Implementation of QOOP involved changes to Calcite [3],
Hive [5], Tez [7], and YARN [53]. QOOP’s implemen-
tation took ∼13k SLOC. The majority of our changes
were in Tez mostly devoted to dynamic CBO module we
elaborate upon shortly.
Hive and Calcite: Hive uses the Volcano query planner
implemented in Calcite to get a cost-based optimized
(CBO) plan. We add the ability to cache several logical
plans in Calcite during its plan evaluation process and
make changes to Hive to fetch multiple physical plans (i.e.,
Tez QEPs). Also, we make changes to annotate each QEP
with provenance—the set of logical relational operators
associated with each stage of the QEP. We widened the
RPC interface from Hive to Tez, to push multiple QEPs
to Tez as part of a single job.
Tez and Yarn: To enable dynamic query plan switching
we added modules to Tez that are responsible for (i) ac-
counting checkpoints to enable backtracking; (ii) dynamic
cost-based optimization to make Tez QEP switching deci-
sions; (iii) runtime QEP changes to realize QEP switch-
ing; and (iv) the RPC mechanism from YARN to Tez to
give resource feedback (i.e., resource updates about the
dynamic “1-over-n” share of resources).

Any resource change event from YARN triggers our dy-
namic CBO module that evaluates all QEPs. This module
first propagates progress using provenance and estimates
completion time of each QEP via simulated packing in
the available resource share (§3.4). Our CBO relies on es-
timates of tasks’ resource demands—CPU, memory, disk,
and the network—and their durations. Peak resource esti-
mates are based on prior runs for each QEP. We use these
peak resource estimates to decide the container request
sizes for tasks in the currently executing QEP.)

Checkpointing for backtracking and runtime changes
to the QEP involve changes to the QEP, Vertex, and Task
state machines in Tez. All checkpointing state is main-
tained at the Tez QEPAppMaster—which keeps the file
handle of task output after every task completion event.
For QEP switching, we added the SWITCHING state to the
QEP state machine. On a resource change event a QEP is
forced from RUNNING to SWITCHING. Any running tasks
of the QEP continue running in this state but the launch of
any new vertex (and hence its tasks) is prevented in this
state. The QEP switches to RUNNING state after, if at all,
QEP switching happens. During a QEP switch, the set of
runnable Vertices is re-initialized to those from the new
QEP. The Vertex definition is changed so that the inputs
for the tasks spawned by any runnable Vertex points to
the appropriate checkpoint.

6 Evaluation
In this section, we evaluate QOOP in situations with vary-
ing degrees of resource variabilities. We examine both
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the performance of an individual query using QOOP’s
replanning as well as overall performance when multiple
queries run atop QOOP.

We start by studying the execution of a single job, sub-
jecting it to real resource change events or resource pro-
files. Specifically, in these micro-benchmarks, our focus is
on answering the following key question: does QOOP’s
dynamic query re-planning improve a job’s completion
time when compared to static, early-binding approaches?

Next, we evaluate the key system components of QOOP
– backtracking, overheads of QEP switching, robustness
to errors in the task estimates, and hysteresis.

Finally, we consider a small private cluster, where
QOOP is used to manage the execution of multiple jobs.
We evaluate QOOP by running multiple jobs on the
testbed, wherein job arrivals and completions can lead to
large resource perturbations. This macro-benchmark ad-
dresses the question: does QOOP’s simple cluster sched-
uler and dynamic query re-planner approach improve
system-wide objectives when compared against systems
with complex schedulers and static query planners?

6.1 Experimental Setup

Workloads: Our workloads consist of queries from the
publicly available TPC-DS [12] benchmark. We experi-
ment with a total of 50 queries running at a scale of 500,
i.e., running on a 500GB dataset. 2 For micro-benchmarks,
we focus on the perspectives of individual queries. For
macro-benchmarks, each workload consists of jobs drawn
at random from our 50 queries and arriving in a Poisson
process with an average inter-arrival time of 80s. 3

Cluster: Our testbed has 20 bare-metal servers – each ma-
chine has 32 cores, 128 GB of memory, 480 GB SSD, 1
Gbps NIC and runs Ubuntu 14.04. For micro-benchmarks,
we evaluate QOOP under different realistic resource pro-
files, as elaborated later in this section. In such experi-
ments, we provide as much resources from the cluster
to each job over time as dictated by the resource profile.
Specifically, whenever there is an increase in the amount
of resources in the resource profile we make available
to the job corresponding number of containers, whereas
whenever there is a decrease in the amount of resources
in the resource profile we immediately revoke equivalent
number of containers and fail any tasks running on them.

For macro-benchmarks, we run our entire collection of
jobs across the entire cluster. At its maximum capacity,
the cluster can run 600 tasks (containers) in parallel.
Baselines: In micro-benchmarks, we compare QOOP’s
query planner against static query plans obtained from

2We cached plans obtained while exploring QEPs in the Volcano
planner, and retained plans with significant differences in cost according
to Volcano’s cost model. We used the first 50 TPC-DS queries that gave
the most number of QEP alternatives.

3Google cluster trace [8] analysis on 20-machine sets yielded an
average job inter-arrival time of 80s.

the Clarinet QP, which is a resource-aware QP imple-
mented in Hive [54] that improves upon Volcano. We
only compare against Clarinet QP as it outperforms Vol-
cano. We adapted Clarinet to our setting to choose a QEP
that minimizes completion time using resource estimates
just before query execution begins. It represents the per-
formance upper-bound of fixed-QEP approaches.

In macro-benchmarks, we compare QOOP – dynamic
query planner on top of our simple max-min fair scheduler
– against the following approaches on the three system-
wide objectives of fairness, job completion time, and ef-
ficiency: (1) DRF: The default DRF multi-resource fair
scheduler [30] in conjunction with Hive’s default Vol-
cano QP; (2) Tetris: A multi-resource packing scheduler
[34] with Volcano; (3) SJF: Shortest-Job-First scheduler
[27] with Volcano; (4) Carbyne: A meta-scheduler that
leverages DRF, Tetris, and SJF [35] with Volcano; (5)
DRF+Clarinet: DRF with the Clarinet QP [54]; (6) Car-
byne+Clarinet: Carbyne scheduler with Clarinet QP.

These reflect combinations of query planners that differ
in whether they are resource-aware with schedulers that
differ in the complexity of information they leverage in
making scheduling decisions.
Metrics: Our primary metric to quantify performance
improvement using QOOP is improvement in the average
job completion time (JCT): (Average) JCT of an Approach

(Average) JCT of QOOP
Additionally, in multi-job scenarios, we consider Jain’s

fairness index [42] to measure fairness between jobs, and
makespan (i.e., when the last job completes in a workload)
to measure overall resource efficiency of the cluster.

6.2 QOOP in Micro-Benchmarks

QOOP has two core components: the dynamic query re-
planning logic for a single query (Sections 3.3 and 3.4),
and the simple cross-job cluster wide scheduler (Sec-
tion 3.2). We study the two separately, with this section
focusing on the former using micro-benchmarks.

Specifically, in these micro-benchmarks, we ask: given
a certain resource change profile, how well does a single
query perform from using QOOP’s query replanning al-
gorithms? We study QOOP under two classes of resource
change profiles, spot instances and cluster resources .

6.2.1 Spot Markets Resource Profiles

We obtained a 5-hour spot market price trend for
i3.2xlarge instance type in Amazon EC2 cluster in
the us-west-2c region for the time period from 17:00
UTC to 21:00 UTC for September 21, 2017. We infer the
resource profile for the spot market price trend by apply-
ing the bidding strategy described in Section 2. We then
divide the entire resource profile into “low”, “medium”,
and “high” regions by time. To do so, we divide the entire
resource profile into 10 minute regions and calculate the
maximum increase or decrease in the resources in this 10
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Figure 6: Improvements using QOOP w.r.t. Clarinet under re-
source variations observed in different resource profiles.

minute region. We call an x% increase or decrease in re-
source in atleast one of the resource dimensions (compute
or memory) over some period of time as an x% resource
volatility. If the maximum resource volatility in resources
is less than 10% then we classify this region as “low”, if
it is between 10% and 20% then we classify this region as
“medium”, if it is greater than 20% then it is classified as
“high”. We also refer to these as having “low”, “medium”
and “high” resource volatility . We then run each of our
50 TPC-DS queries individually against each of these
three resource profiles – “low”, “medium”, and “high” –
using both QOOP and Clarinet. For each query run with
a particular resource profile type, we pick 10 different
randomly selected regions of that particular profile type
and report the mean from these 10 runs.

We plot the CDF of QOOP’s improvements over Clar-
inet for the three resource profiles in Figure 6a. We see
that QOOP strictly outperforms Clarinet, with its gains im-
proving with increasing resource volatility – overall, 58%,
62% and 66% of the jobs experience faster completion
times in each of “low”, “medium”, and “high” profiles, re-
spectively. Median improvements for the “low”, “medium”
and “high” profiles are respectively 1.08×, 1.11× and
1.47×. For “high” profiles, 10% of jobs see gains > 4×!
We also note that 34% of the jobs show no improvements
over Clarinet even with “high”. On further analysis, we
found that these jobs are queries in the TPC-DS workload
that are either (i) less complex queries with lesser number
of joins, or (ii) queries with short durations. Less com-
plex queries may lack attractive alternative QEPs, whereas
short queries may miss out on resource perturbations. This
limits opportunities for re-planning and improvement. We
dig deeper into these issues later in this section.

6.2.2 Shared Cluster Resource Profile

Similar to the spot market scenario, we generate three
different resource profiles for the shared cluster scenario
described in Section 2. Following a similar methodol-
ogy, we identify “low”, “medium” and “high” resource
volatility periods, and we run each of the 50 queries.

As before, we plot the CDF of QOOP’s improvements
in Figure 6b. We see the trends similar to that of the
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Figure 7: Improvements vs. job durations using QOOP
w.r.t. Clarinet under different resource profiles.

spot market trace – overall, 56%, 58% and 60% of the
jobs complete faster in “low”, “medium”, and “high” pro-
files, respectively. The median improvements in the three
profiles are 1.08×, 1.11× and 1.20×, with higher perfor-
mance improvements in greater resource volatility scenar-
ios; for the “high” profile, 10% of jobs see gains > 3.3×.

In both the spot instance and cluster profiles, gains are
higher for profiles with higher volatility. In other words,
QOOP’s dynamic replanning is most effective relative to
static query plans when resource volatility is at its highest.
Also, the improvements for spot market and shared cluster,
while similar for “low” and “medium”, differ on the “high”
resource profiles. We attribute this to spot market “high”
resource profiles experiencing 7% larger magnitudes of
resource changes at median than that of the shared cluster.

6.2.3 Delving into Improvements

Next, we take a deep dive into the aforementioned sce-
narios to understand when QOOP offers the greatest/least
improvements. We study the impact of job duration, com-
plexity, and the number of QEP switches that occur.
Job Durations vs. Observed Gains: The improvements
in per-job performance due to QOOP as a function of
job duration is shown in Figures 7a and 7b for the spot
market and cluster resource profiles, respectively. Both
figures also show results for the “low”, “medium” and
“high” volatility profiles using different-colored dots. In
both cases, QOOP’s benefits increase with increasing job
durations. This is because longer jobs receive more op-
portunities for switching query plans and the comparative
overhead of a switch of a longer job is smaller w.r.t. its
completion time. Nevertheless, some shorter jobs benefit
from QOOP in case of higher resource volatility.
Job Complexity vs. Improvement: Figures 8a and 8b
show improvements obtained with QOOP as we increase
query complexity for the spot market and cluster profiles,
respectively. We measure query complexity in terms of
the number of join operations in the query. We make two
observations. First, increased query complexity gener-
ally correlates with increased gains. This is because the
number of alternate query execution plans is higher with
a greater number of joins. Second, keeping complexity
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Figure 8: Improvements vs. query complexity (number of joins)
using QOOP w.r.t. Clarinet under various resource profiles.
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Figure 9: Improvements vs. number of QEP switches using
QOOP w.r.t. Clarinet under various resource profiles.

constant, higher volatility results in the highest factor of
improvement (as indicated above).
QEP switches vs. Improvement: Figures 9a and 9b
shows the trend between improvements and number of
runtime QEP switches. First, we see that an increase in the
number of query execution plan switches correlates with
increased gains. Second, keeping the number of switches
constant, higher volatility results in the highest factor of
improvement. In general, the greater flexibility a query
intrinsically has in terms of multiple alternate plans to-
gether with the flexibility QOOP offers in switching to
these plans results in a higher degree of improvement.
Task Throughput: Finally, we consider how fast QOOP
helps the query complete tasks over time. We measure
task throughput as the average number of tasks of the
job executed per second; higher implies better utilization.
In Figure 10 we show the task throughput of QOOP and
Clarinet across queries. The number of tasks per second
in the case of QOOP exceeds Clarinet by ∼ 24% in the
average case. Further analysis showed that an increase in
the number of resources available leads QOOP to switch
to query execution plans that favor more parallelism (i.e.,
“bushy” joins) and contributes to increased utilization.

6.3 Impact of Various QOOP Features

In this section, we study the effect of different aspects of
QOOP on the performance observed by a single query.
Backtracking: Figure 12 shows the relationship between
improvement factor and the depth of backtracking in a
shared cluster setting with different resource profiles. We
observe that the depth of backtracking (i.e. the maximum
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Figure 10: Improvements
w.r.t. Clarinet vs. number of
QEP switches in spot market.
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Figure 11: Overheads due to
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of a job’s completion time.
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Figure 12: Improvements
vs. depth of backtracking.
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Figure 13: Improvements
with and without backtracking.

distance of the vertex in the switched-to QEP from any
running/completed vertex in the current QEP) increases
with the magnitude of resource change events. 5.7% of
all the runs experience a backtracking to two stages deep
in the past and is triggered only by “high” volatile re-
source profile. 85.3% of the experimental runs with “low”
volatile resource profile experienced no backtracking. We
observe similar results for spot market setting. Figure 13
shows the CDF of factor of improvement w.r.t. Clarinet
with and without backtracking turned on for the runs of
all our TPC-DS queries when run under shared cluster
resource profiles. We observe that when backtracking is
turned on QOOP yields higher factor of improvement as
backtracking finds better QEP switches.
Overhead of QEP switch: Figure 11 shows the over-
heads of QOOP in the shared cluster and spot market
settings. We measure overhead as the time a job spends
in switching to alternate QEPs as a percentage of total
job time. The overheads in the shared cluster are 0.15%
higher than in the spot market setting. This is because of
the higher number of overall QEP switches when a job
runs in a shared cluster – also shown in Figure 9b. On
the whole, however, the overhead due to QEP switching
has negligible impact (< 1%) on overall job performance.
The overall QEP switching overhead is low as hysteresis
prevents unnecessary QEP switching and the absolute
number of QEP switches in a job is low – at most 3 as
shown in Figures 9a and 9b.
Robustness to Error: Figure 15 shows QOOP’s ro-
bustness to error in the estimates of task resource de-
mands and durations. We introduce X% errors in our
estimated task demands and durations. Specifically, we
select X in [-25, 25] as suggested by prior work [35],
and increase/decrease resource demands by tasknewReq =
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Figure 14: Comparison of performance, fairness, and cluster efficiency of QOOP w.r.t. existing solutions. Higher values are better
for fairness, whereas the opposite is true for the rest.
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in QOOP.
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Figure 16: Effect of hystere-
sis on improvements.

(1+X/100)∗ taskorigReq, and task durations change simi-
larly. We study these errors in simulation against low and
high volatile spot market resource profiles. We observe
even at the highest error rates of ±25%, QOOP offers
substantial performance improvements (e.g., 1.4× for the
high volatile profile). For low volatile resource profile,
QOOP is more robust to estimation errors: at 25% error
rate, the performance improvement is 1.18× compared
to 1.25× at no error. However, mis-estimations are costly
at high volatility: errors ≥ 10% cause performance im-
provement to drop 33% or more; nevertheless, QOOP’s
performance is always better than Clarinet.
Hysteresis: Figure 16 shows the effect of our hysteresis
threshold (h) on the improvements. In QOOP, hysteresis
prevents QEP switch unless there is an h% improvement
in the estimated job completion time. We experiment with
different values of h for “high” resource profiles for both
spot market and shared cluster. A very high hysteresis
threshold prevents switching, hurting performance. By
definition, setting hysteresis parameter (h) to 0 causes
more QEP switching (because of lower thresholds for
QEP switching) and hence slightly higher overhead; we
still see positive gains. However, for both traces, we ob-
serve that there is a wide range of h values where the
factor of improvement sustains it’s peak. This means that
QOOP has flexibility to choose h; any value in the 10%
- 25% range offers good performance at low switching
overhead.

6.4 QOOP in Macro-Benchmarks

So far we have evaluated QOOP in offline, micro-
benchmarks against the Clarinet QP with an aim to under-
stand its query re-planning capabilities. In a real cluster,
however, jobs arrive in an online fashion. Consequently,
the impact of scheduling on job performance and its inter-

play with the QP become important.
In this section, we evaluate QOOP in an online setting

in our shared cluster, where 200 TPC-DS jobs – randomly
drawn from the 50 TPC-DS queries – arrive following a
Poisson process with an average inter-arrival time of 80
seconds (Figure 14). As mentioned earlier, we compare
QOOP against a wide range of solutions in both cate-
gories: scheduling and query planning. On the one hand,
we consider a variety of scheduling solutions such as DRF,
Tetris, SJF, and Carbyne that focus on objectives ranging
from simple fairness (QOOP) to improving multiple goals.
On the other hand, we consider QPs that range from static
resource-agnostic planning (Volcano in Hive) to resource-
aware early-binding (Clarinet) to QOOP’s late-binding
re-planner. Finally, in addition to focusing only on job
completion time, which is useful only to individual jobs,
we consider cluster-level metrics such as fairness (mea-
sured in terms of Jain’s fairness index [42]) and efficiency
(measured in terms of makespan).
Job Performance: First, we observe that QOOP signifi-
cantly improves the average JCT w.r.t. simple state-of-the-
art solutions (Tetris, DRF) and comes closest to the aver-
age JCT of SJF (Figure 14a). Furthermore, it outperforms
the state-of-the-art in complex scheduling and QP alterna-
tives: Carbyne and DRF+Clarinet, respectively. Only by
combining two complicated solutions (Carbyne+Clarinet),
the state-of-the-art can come close to QOOP. This sug-
gests that the inflexibility of the current interfaces have
tangible costs and overcoming them requires introducing
complexities at every layer of the analytics stack.
Fairness Between Jobs: If performance were the only
concern, one could get away with simply using SJF in-
stead of using the complex alternatives or QOOP. How-
ever, performance and fairness have a strong tradeoff [35]
as shown in Figure 14b – SJF has the worst fairness char-
acteristics! We observe that while DRF and DRF+Clarinet
are the most fair solutions, QOOP comes the closest to
them while ensuring almost 1.5× smaller average JCT.
Cluster Efficiency: Finally, Tetris performs well in its
goal of packing tasks better and achieving high efficiency
(Figure 14c), but QOOP again comes the closest to Tetris.

Overall, QOOP improves all three metrics – perfor-
mance, fairness, and efficiency – over complex state-of-
the-art solutions or combinations thereof, and achieves
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these benefits using a simple scheduler with a dynamic,
resource-aware QP that can re-plan queries at runtime.

7 Related Work
Other Applications: Although we focus SQL queries,
the high-level principle of designing dynamic resource-
aware plan switching can be applied to many other appli-
cations. This is because many frameworks use query plan-
ners to create execution plans for workloads, e.g., in ma-
chine learning [32, 44, 49], graph processing [33, 46, 48],
approximation [15, 10] and streaming [60, 11, 13, 16, 50].
Query Planners in Big Data Clusters: Query planning
is a well-trodden research area with numerous prior work
[37]. We restrict our focus on query planners designed
for distributed big data clusters that fall into two broad
categories: those who plan a query in a resource-agnostic
manner [3, 19] and those who are resource-aware [54].
Both, however, result in static query plans throughout the
execution of a job. There is a massive body of work on
adaptive query processing [26] in the context of traditional
(single-machine) database systems. We focus on big data
analytics in multi-node clusters.
Execution Engines: Execution engines take job DAGs
and interact with the cluster scheduler to run all the tasks
of each job until its completion. Examples of popular exe-
cution engines include Apache Spark [59], Dryad [39, 57],
and Apache Tez [7]. Execution engines such as Tez [7]
and DryadLINQ [57] allow for dynamic optimizations
to the job DAG in the form of dynamism in vertex paral-
lelism, data partitioning, and aggregation tree but lack the
interfaces to make logical-level DAG switches.
Cluster Schedulers: Today’s schedulers are multi-
resource [30, 34, 43, 24, 17], DAG-aware [23, 34, 59],
and allow a variety of constraints [61, 40, 18, 31, 58].
Given all these inputs, they optimize for objectives such
as fairness [30, 41, 29, 20], performance [27], efficiency
[34], or different combinations of the three [35, 36]. Over
time, schedulers are becoming more complex and tak-
ing increasingly more job-level information as inputs. In
contrast, we propose a simplified scheduler and argue for
pushing complexity up the stack.

8 Conclusion
In this paper, we considered the problem of improving
query performance in dynamic environments – e.g., in
small private clusters, where resources vary with job
arrivals and completions, and in clusters composed of
spot instances, where resource availability changes due
to changing prices. We showed that existing approaches
are insufficient to adapt to dynamics because they use a
fixed QEP throughout execution. We made the case for
on-the-fly query re-planning and argued that it requires
rethinking the division of labor among three key compo-
nents of modern data analytics stacks: cluster scheduler,

execution engine, and query planner. We propose a greedy
re-planning algorithm, which offers provably competitive
behavior, coupled with a simple cluster-wide scheduler
that informs jobs of their current share. Our evaluation of
a prototype using various workloads and resource profiles
shows that our replanning approach driven by a simple
scheduler matches or outperforms state-of-the-art solu-
tions with complex schedulers and query planners.
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