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ABSTRACT

A lot of recent work has focused on reducing in network
queueing latency in datacenter networks. In this paper, we
focus on a less explored topic — latency increases caused by
queueing in rate limiters on the end-host. First, we show that
latency can be increased by an order of magnitude by rate
limiters in cloud networks. To solve this problem, we extend
ECN marking into rate limiters and use a datacenter conges-
tion control algorithm — DCTCP. Unfortunately, while this
reduces latency, it also leads to throughput oscillation. Thus,
this solution is not sufficient. In this paper, we also analyze the
specific reasons that ECN marking in software rate limiters
leads to the throughput oscillation problem. Finally, we pro-
pose two potential solutions to design software rate limiters
that can achieve stable high throughput and low latency.
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1 INTRODUCTION

The ability to create bandwidth allocations is an indispens-
able feature of multi-tenant clouds. Bandwidth allocations
can be used to provide bandwidth reservations to a tenant
or to guarantee that network bandwidth is fairly shared be-
tween multiple competing tenants [18, 21, 22]. Bandwidth
allocations are often implemented with software rate limiters'
running in the hypervisor or operating system of the end-
hosts attached to the network (e.g., Linux Hierarchical Token
Bucket, aka HTB). This is because software rate limiters are
flexible and scalable.

Unfortunately, typical software rate limiters (e.g., HTB)
also increase network latency by adding an additional layer
of queuing for packets. To be able to absorb bursts of incom-
ing packets while also ensuring that network traffic does not
exceed the configured rate, rate limiters maintain a queue of
packets to send and control the speed at which packets are de-
queued into the network. This queuing introduces additional
network latency. For example, in our experiments, we find
that software rate limiting (HTB) increases latency by 1-3
milliseconds across a range of different environment settings.
This increase in latency is about an order of magnitude higher
than the base latency of the network (200 us) [14]. In multi-
tenant clouds, this additional queuing latency can increase
flow completion times, leading to unacceptable service-level
agreement (SLA) violations [16, 24, 25].

Inspired by recent work that reduces queuing delay for in-
network devices like switches [6, 6, 15, 19, 27], in this paper,
we explore how to use a congestion-control-based approach
to address the latency issues associated with using software
rate limiters. As a promising first step, we find that the exist-
ing datacenter congestion control protocol DCTCP [6] can be
used to reduce the latency incurred by rate limiters. Unfortu-
nately, we find that a straightforward application of DCTCP
to software rate limiters also hurts throughput. In this paper,
we also identify two problems unique to end-hosts that hurt
the throughput of DCTCP and propose potential solutions to
these problems.
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In order to use DCTCP to try to reduce end-host queuing
latency, we implement software rate limiters that perform
ECN marking and configure the end-host in DCTCP mode.
This causes the end-host to use the fraction of ECN-marked
packets to adjust congestion window (CWND). Unfortunately,
we find this naive application of DCTCP introduces a sig-
nificant performance problem — TCP throughput tends to
oscillate (between 50% to 95% in some cases, see Section 3).
This reduction in throughput is unacceptable in cloud net-
works because it could significantly degrade the performance
of some applications.

We have identified two issues that arise with simply ap-
plying DCTCP+ECN on end-host rate limiters: Firstly, TCP
segmentation offload (TSO) causes ECN to be applied at a
coarse granularity. Secondly, the latency of the congestion
control loop latency is too high.

Different from hardware switches in the network, end-hosts
process TCP segments instead of MTU-sized packets. TCP
Segmentation Offload (TSO) [3] is an optimization technique
that is widely used in modern operating systems to reduce
CPU overhead for fast speed networks. Because Linux has
difficult driving 10Gbps (and beyond) line-rates when TSO
is not enabled, Linux uses a TSO size of 64KB by default.
That means that marking the ECN bit in one 64KB segment
causes 44 consecutive MTU-sized packets to have the ECN bit
marked. This is because the ECN bits in the segment header
are copied into each packet by the NIC. Oppositely, if a TCP
segment is not marked, none of the packets in this segment is
marked. This kind of coarse-grained segment-level marking
leads to an inaccurate estimation of congestion level which
consequently leads to throughput oscillation.

The second problem with DCTCP+ECN is that the ECN
mark takes one round-trip time (RTT) to get back to the
source. Because of this, the congestion window computation
at the source uses a stale value from one RTT ago. As a
result, congestion cannot be detected at early stage, and the
congestion level would be exacerbated during this one-RTT
delay.

Due to the insufficiencies of existing solutions (Linux HTB)
and the strawman solution (DCTCP+ECN), we aim to de-
sign a software rate limiter for datacenter networks. It should
satisfy four requirements: high bandwidth saturation, low la-
tency, low throughput oscillation, and generic (i.e., the ability
to handle both ECN flows and non-ECN flows). We pro-
pose two potential methods for these four requirements. The
first method refines the ECN marking mechanism, instead
of marking outgoing TCP segments, it directly marks ECE
bit of ACK packets on the reverse path. This method avoids
marking large TCP segments and also reduces congestion
control loop latency. Thus, it can achieve stable high through-
put with low latency. The second method runs a real time
queue length based congestion control algorithm out of the
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VMs and enforces congestion control decisions using (RWND)
field in ACK packets. Compared with the first method, the
second method is generic and can handle both ECN flows
and non-ECN flows. The contributions of this paper are as
follows:

e We conduct systematic measurements of an existing soft-
ware rate limiter (i.e., Linux HTB) and show that it intro-
duces unacceptable latency to cloud networks.

¢ We implement DCTCP+ECN as a strawman solution to
solve the latency problem, and reveal that it leads to the
throughput oscillation problem that is specific in end hosts
software rate limiters.

o We analyze the design requirements for software rate lim-
iters in cloud networks and propose two potential solutions
to achieve the design requirements.

2 BACKGROUND AND RELATED WORK

Hardware/software rate limiters. In order to perform band-
width allocation, prior work has relied on end-host rate lim-
iting [9, 17, 18]. In this paper, we focus on software rate
limiters because they are commonly used method for pro-
viding bandwidth allocation in clouds [4]. Compared with
hardware rate limiters [20], software rate limiters are more
flexible (i.e., can boot up at any server), scalable (i.e., multiple
instances can be created for different tenants), and have more
functionalities (e.g., hierarchical rate limiting). However, even
though we only focus on software rate limiters, hardware rate
limiters must also queue data. Because of this, we expect
that hardware rate limiters also suffer from throughput versus
latency trade-offs that are similar to software rate limiters. We
leave an investigation into the performance of hardware rate
limiters to future work.

Fundamentally, there are two ways to configure rate lim-
iters: traffic shaping, and traffic policing. In traffic shaping,
packets are first pushed into a queue, and then packets are
sent to the network based on periodically refreshed tokens
assigned to the queue. The queue in traffic shaping works as a
buffer which can effectively absorb bursty traffic, avoiding the
need to drop packets. Tokens are refreshed at the speed of the
configured sending rate, which ensures that outgoing packets
are well paced. This avoids sending bursts of packets into the
network, which is especially important for modern datacenter
networks because the network consists of shallow-buffered
switches [23]. In contrast, traffic policing monitors the packet
arrival rate and only pushes a packet into the network when
traffic rate is not above the desired rate, otherwise the packet
is dropped.

In this paper, we only focus on rate limiting through traffic
shaping because it is the preferred method of rate limiting
for cloud networks [4]. This is because traffic policing drops
packets, and prior work has found that packet drops are very
harmful to small flows in data center applications [26].
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Figure 1: Experiment setup

Low-latency datacenter networks. Some datacenter ap-
plications are latency sensitive [5]. To improve performance,
recent work has focused on reducing network latency while
simultaneously providing high throughput and a low loss
rate [6, 8, 13, 15, 19, 27]. This work can be roughly classified
into two categories. The first category is congestion control
based, where network congestion signal (e.g., ECN) is sent
back to the source, and the source run congestion control algo-
rithms to reduce the sending rate, so that queues in networks
are drained to reduce queuing delay [6, 27]. The second cat-
egory is priority based, where flows in high priority queues
would be sent first, getting low latency [7, 8, 13].

To solve the latency problems of rate limiters, we use con-
gestion control instead of traffic prioritization. This is for a
few reasons. First, priority-based solutions may cause star-
vation for low-priority flows, and flows with the same low
priority still suffer from queuing delay. Second, hypervisors
in public clouds are typically agnostic to the priority of ten-
ant traffic. In this scenario, a priority-based solution is not
possible.

Summary. Software rate limiters with traffic shaping in
clouds cause queuing latency to traversing flows. Existing
congestion-control (CC) based low-latency solutions are pre-
ferred in clouds and focus on in-network latency. Thus, it
is intuitive for us to consider transplanting a CC based low-
latency solution to software rate limiters.

3 MEASUREMENT AND ANALYSIS

In this section, we first show that the Linux HTB rate limiter
introduces a serious latency problem. Next, we design a straw-
man solution that uses DCTCP and ECN marking to reduce
queuing latency. Finally, we evaluate this strawman solution.
Our experiments show that naively applying DCTCP to soft-
ware rate limiters has a side effect of causing throughput
oscillation.

3.1 Performance of Linux HTB

In HTB, packets are classified into traffic classes, and HTB
is designed to ensure that a minimum amount of bandwidth
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is guaranteed to each traffic class. If the required minimum
amount of bandwidth is not fully used, the remaining band-
width is distributed to other classes. The distribution of spare
bandwidth is in proportion to the minimum bandwidth speci-
fied to a class [2].

To evaluate HTB, we setup servers with 10 Gbps NICs in
CloudLab [1]. The experiment setup is shown in Figure 1. In
these experiments, we setup multiple VMs and configure a
rate limiter for each sender VM. To generate background traf-
fic, we use iperf to send a variable number of flows between
each sender-receiver VM pair. We configure HTB to control
both the bandwidth for each VM pair and the total sending
rate of all VM pairs (i.e., using the hierarchical feature of
HTB). With these settings, we run sockperf between sender
and receiver pairs to measure TCP RTT.

We conduct two sets of experiments. In the first set of
experiments, we have one sender VM and one receiver VM.
In these experiments, we set the sender side rate limiter to
1Gbps, 2Gbps, 4Gbps and 8Gbps, and we vary the number
of iperf flows from the sender to receiver (1, 2, 8 and 16). In
the second set of experiments, we configure two rate limiters
on the sender server and setup two VMs (one rate limiter
for each VM). We configure the minimum rate of each rate
limiter to 2Gbps, 3Gbps, 4Gbps and 5Gbps, and we configure
the total rate of the two rate limiters to always be 10Gbps.

The experimental results are shown in Table 1 and 2. In all
the experiments, network bandwidth is saturated. The total
throughput is between 91-96% of the configured rate limit.
Note that in Table 2, if the sum of individual rate limiter’s
rate is smaller than the configured total rate, HTB would
allow all flows to utilize and compete for the spare band-
width. Surprisingly, using more flows in these experiments
leads to lower bandwidth saturation. This is because there is
more competition between flows, which leads to throughput
oscillation.

To better understand the scenario where there is only one
receiver VM, we visualize the TCP RTT results in Figure 2. In
this figure, each subfigure shows the CDF of the sockperf RTT
measurements given different rate limits. Different subfigures
show the results for a different number of background iperf
flows. We can draw three conclusions from these results. First,
TCP RTT increases dramatically when packets go through a
congested rate limiter. In the baseline case where no HTB is
configured and no iperf background flow running, the median
TCP RTT is 62us. In contrast, with one background iperf
flow and rate limits from 1Gbps to 8Gbps, the median RTT
increases to 957us-1583us, which is 15-25X larger compared
with the baseline case. Second, TCP RTT increases as the
number of background flows running increases. For example,
with a 1Gbps rate limit, the median RTT is 957us for one
background flow and 3192us for 16 background flows. Third,
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Table 1: HTB experiments for one receiver VM

numReceiver 1 |1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
numFlows/receiver |- |1 1 1 1 2 2 2 2 8 8 8 8 16 16 16 16
rate/receiver (Gbps)|- |1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8
total rate (Gbps) - |1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8
total tput (mbps) |- (951 19103820 7380|945 19103820 7500(958 19153827 7627|960 1920 3829 7655

b/w saturation (%) |- |95.1 95.5 95.5 95.394.5 95.5 95.5 93.8 [95.8 95.8 95.7 953 (96 96 95.7 95.7
50% RTT (us) 116|957 883 643 1583|1513 1078 1047 853 (2316 1766 1529 1110(3192 2373 1880 1262
99.9% RTT (us)  [237|1115 1000706 1673|1701 1203 1132933 (2527 1939 1637 1208|3320 2511 2016 1486

Table 2: HTB experiments for two receiver VMs

numReceiver 2 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
numFlows/receiver 1 1 1 1 2 2 2 2 8 8 8 8 16 16 16 16
rate/receiver (Gbps)|- 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

total rate (Gbps) |- |10 10 10 10 (10 10 10 10 (10 10 10 10 (10 10 10 10

total tput (mbps) |- |9420 9420 9410 9410/9410 9420 9420 9420(9224 9392 9321 9401|9182 9161 9225 9296
b/w saturation (%) |- |94.2 94.2 94.1 94.1 |94.1 94.2 94.2 94.2 192.2 93.9 93.2 94.0 [91.8 91.6 92.3 93.0
50% RTT (us) 118475 797 15151658|699 916 1006 1036|1512 1407 1410 1587|2023 2040 2064 1986

99.9% RTT (us) 135551 849 16261751983 989 1102 11151697 1673 1532 1768|2147 21822185 2100
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Figure 2: HTB experiment: one receiver VM, varying rate limiting and number of background flows
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Figure 3: HTB experiment: two receiver VMs, varying rate limiting and number of background flows
TCP RTT decreases as the configured rate limiter speed in- In the experiments with two receiver VMs (Figure 3), we
creases’. This is because rate limiter speed determines the can draw the same conclusions regarding RTT increase and
dequeue speed of the HTB queue. Thus, with a higher rate the impact of the number of background flows. The main
limit, the queue tends to be drained faster. difference in these experiments is that TCP RTT increases

as the configure rate limit increases. This is because we did

2The only exception is the case with one background flow and 8 Gbps rate not constrain the total transmission rate in these experiments,

limiting. We suspect that this is caused by experiment noise.
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which allows HTB to utilize spare bandwidth. Thus, the de-
queue speed is constant in each figure (10Gbps/numFlow).
One possible reason for the RTT trend is that enqueue speed
is higher when the rate limiter speed is higher. For a fixed
dequeue speed, larger enqueue speed implies higher latency.

3.2 Strawman Solution: DCTCP + ECN

Inspired by solutions that reduce queuing latency in switches [6],
we test using DCTCP+ECN as a strawman solution to reduce
rate limiter latency. Specifically, in our strawman solution, we
implement ECN marking in Linux HTB queues and enable
DCTCP at the end-points. For ECN marking, there is a tun-
able parameter — marking threshold. When the queue length
exceeds the marking threshold, all enqueued packets would
have their ECN bits set; otherwise, packets are not modified.
DCTCP then reacts to ECN marking and adjusts sender’s
congestion window based on the ratio of marked packets [6].

To evaluate DCTCP+ECN, we setup experiments with one
sender and one receiver. In these experiments, we configure
the HTB rate limit to be 1Gbps and 2Gbps, and we vary the
ECN marking threshold. The results from this experiment
are shown in Figure 4. We observe that TCP RTT can be
reduced significantly (<1ms) by extending ECN into rate
limiter queues. For example, with the marking threshold set
to 60KB, median TCP RTT is 224us (1Gbps case in Figure 4),
which is less than 1/4 of the native HTB RTT (957us). Further,
a smaller ECN marking threshold can achieve even lower
latency — with the threshold from 100KB to 20KB, median
TCP RTT is reduced from 375 us to 93us.

While latency can be improved, we observe that DCTCP+ECN

can have negative effect on throughput, which is shown in
Figure 4. TCP throughput appears to have large oscillation,
which implies that applications cannot get constantly high
throughput and that the available bandwidth is not fully uti-
lized. For example, with a 2Gbps rate limit (the 2Gbps case
in Figure 4), even when we set the marking threshold to be
100KB (much larger than the best theoretical value recom-
mended by Alizadeh et al. [6]), there is still occasional low
throughput (e.g., 1000Mbps) within a 20-second experiment
duration.

4 ANALYSIS AND POTENTIAL DESIGN

Analysis of throughput oscillation. There are two reasons
that directly applying the standard ECN marking approach
to rate limiter queues causes TCP throughput oscillation.
First, end-host networking stacks enable optimization tech-
niques such TSO (TCP Segmentation Offload [3]) to improve
throughput and reduce CPU overhead. By default, the maxi-
mum TCP segment size is 64KB. Because of TSO, the end-
host networking stack (including the software rate limiters)
processes TCP segments instead of MTU-sized packets. In
order to implement TSO, a NIC copies a segment’s IP header
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into each MTU-sized packet generated by the NIC. Because
of this, marking one TCP segment in the rate limiter queue re-
sults in many consecutive MTU-sized packets being marked.
For example, marking a 64KB segment means 44 consecutive
Ethernet frames are marked. Such coarse-grained segment-
level marking causes the accuracy of congestion estimation
in DCTCP to be greatly decreased.

Second, ECN marking happens on the transmitting path,
and it takes one RTT for congestion feedback to travel back to
the sender before congestion control actions are taken. More-
over, TCP RTT can be affected by the “in network" latency,
and “in network" latency can be on the order of milliseconds
or even tens of milliseconds [14]. In DCTCP+ECN, this one
RTT control loop latency causes the ECN marks to be “out-
dated”, not precisely reflecting the instantaneous queue length
when the marks are used for congestion window update in
DCTCP. Without a congestion control algorithm that can re-
act to instantaneous queue length, the one-RTT control loop
latency exacerbates the incorrect segment-level ECN marking.
Thus, congestion window computation in DCTCP tends to
change more dramatically, leading to throughput oscillation.

Requirements of high performance software rate lim-
iters. Niether raw HTB nor DCTCP+ECN achieve satisfac-
tory performance. Raw HTB can achieve high and stable
throughput but with very high latency. Further, raw HTB
has the advantage of being generic in that it can handle both
ECN-capable and non-ECN-capable flows. In contrast, HTB
with DCTCP+ECN satisfies our low latency requirement, but
it cannot achieve stable high throughput and can only han-
dle ECN-capable flows. Therefore, there is a need for better
software rate limiters.

Summarizing the problems with raw HTB and DCTCP+ECN
as well as considering the practicability concerns that arise
in multi-tenant clouds, we list the design requirements of
high-performance software rate limiters. First, rate limiters
should be able to control configured sending rate and pro-
vide high bandwidth saturation without introducing signif-
icant latency. Second, rate limiters should also overcome
the throughput oscillation problem in the strawman solution,
achieving constantly stable throughput. Violating any of these
three requirements would cause SLA violations, degrading
the performance of network applications. Third, consider-
ing the practicability of the solution, a rate limiter must be
compatible with various TCP flows (ECN-capable and non-
ECN-capable).

Potential solutions. Fortunately, software rate limiters are
implemented on the end-host, which gives us opportunities to
design and implement better software rate limiters for cloud
networks. First, end-host has enough memory to store per-
flow information. Second, we have sufficient programmability
(e.g., loadable OVS module). For example, we can correlate
an incoming ACK with its outgoing queue length, and we
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Figure 4: DCTCP experiments, 1 flow, varying threshold, 1Gbps(left) and 2Gbps(right)

can compute per-flow window size and encode it in packets
before they arrive at VMs.

We propose the following solutions to satisfy these four re-
quirements: First, to avoid the shortcomings of DCTCP+ECN
marking, our key idea is to directly set TCP ECN-Echo (ECE)
bit on the reverse path (ACK) based on real-time queue length.
This approach avoids the problems caused by performing
coarse-grained segment-level marking and allows the conges-
tion control loop latency to be reduced to almost 0.

Second, to make our solution not dependent on tenant VMs
or TCP flows being ECN capable, we propose implementing a
rate limiter queue length-based congestion control algorithm
outside of the VM (e.g., at the virtual switches) and enforc-
ing congestion control decisions using TCP ACK’s RWND
field [12, 15].

Preliminary Results. We implemented the two proposed
solutions in Open vSwitch (OVS) and Linux HTB. Our pre-
liminary experimental results show that they are able to achieve
both stable high throughput and low latency. Applying the first
scheme, we are able to achieve: 950Mbps throughput with
median latency of 166us for a 1Gbps rate limiter; 1.88Gbps
throughput with median latency of 102us for a 2Gbps rate
limiter. Applying the second scheme, we are able to achieve:
956Mbps throughput with median latency of 161us for a
1Gbps rate limiter; 1.90Gbps throughput with median latency
of 115us for a 2Gbps rate limiter.

S DISCUSSION

“Back pressure” is another potential solution to reduce rate
limiter queueing latency. It blocks TCP write/send calls when
the queue size reaches a small threshold. However, this ap-
proach has a few disadvantages. First, back pressure signals
should be populated from the rate limiter queue back up to
the source TCP stack. Along this path, there are multiple
buffers [11]. Adding back pressure signals for all the buffers
in the virtualized network stack seems to involve non-trivial
engineering efforts. Second, backp ressure schemes need to
enqueue at least a single segment from each VM and/or TCP
flow to avoid starvation. Given that segments may be large,

even allowing a single segment per-VM/flow can lead unac-
ceptable latencies.

The two potential solutions proposed in this paper also have
a few limitations. First, they can only work with TCP traffic.
It has been reported that 99.91% of the traffic in datacenters
is TCP traffic [6]. Second, they support nonencrypted TCP
traffic and SSL/TLS traffic but not IPSec traffic because they
need to inspect and modify TCP headers. Recently, cloud
providers like Microsoft proposed to use FPGA to perform
computation intensive operations such as encryption and com-
pression [10], which implies that the virtual switches are most
likely exposed to non-encrypted traffic.

6 CONCLUSION

Rate limiters are important for network bandwidth sharing
and reservation in multi-tenant clouds, but they also introduce
large latency to the traversing flows. Thus, in this paper, we
systematically quantify the impact of software rate limiter
(i.e., HTB) on network latency and demonstrate that network
latency can be increased by an order of magnitude or more.
To the best of our knowledge, we are the first to perform this
quantification. We also measure the performance of a straw-
man solution — DCTCP with ECN marking in the rate limiter
queue, and find that this approach leads to TCP throughput
oscillation. We analyze the reasons of the throughput oscil-
lation problem (coarse-grained segment-level ECN marking
and long control loop latency) and also point out potential
solutions (i.e., direct ECE marking and queue length-based
congestion control enforcement via RWND).
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