AC/DC TCP: Virtual Congestion Control Enforcement
for Datacenter Networks

Eric Roznert
Wes Feltert

Kegiang Hef

fUniversity of Wisconsin—Madison

ABSTRACT

Multi-tenant datacenters are successful because tenants can
seamlessly port their applications and services to the cloud.
Virtual Machine (VM) technology plays an integral role in
this success by enabling a diverse set of software to be run
on a unified underlying framework. This flexibility, how-
ever, comes at the cost of dealing with out-dated, inefficient,
or misconfigured TCP stacks implemented in the VMs. This
paper investigates if administrators can take control of a VM’s
TCP congestion control algorithm without making changes
to the VM or network hardware. We propose AC/DC TCP,
a scheme that exerts fine-grained control over arbitrary ten-
ant TCP stacks by enforcing per-flow congestion control in
the virtual switch (vSwitch). Our scheme is light-weight,
flexible, scalable and can police non-conforming flows. In
our evaluation the computational overhead of AC/DC TCP
is less than one percentage point and we show implementing
an administrator-defined congestion control algorithm in the
vSwitch (i.e., DCTCP) closely tracks its native performance,
regardless of the VM’s TCP stack.

CCS Concepts

*Networks — Transport protocols;

Keywords

Datacenter Networks; Congestion Control; Virtualization;

1. INTRODUCTION

Multi-tenant datacenters are a crucial component of to-
day’s computing ecosystem. Large providers, such as Ama-
zon, Microsoft, IBM, Google and Rackspace, support a di-

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions @acm.org.

SIGCOMM ’16, August 22 - 26, 2016, Florianopolis , Brazil

© 2016 Copyright held by the owner/author(s). Publication rights licensed to
ACM. ISBN 978-1-4503-4193-6/16/08. .. $15.00

DOL: http://dx.doi.org/10.1145/2934872.2934903

Kanak Agarwal*
John Carter~

Yu (Jason) Gu*
Aditya Akellat

1IBM Research *IBM

verse set of customers, applications and systems through
their public cloud offerings. These offerings are success-
ful in part because they provide efficient performance to a
wide-class of applications running on a diverse set of plat-
forms. Virtual Machines (VMs) play a key role in support-
ing this diversity by allowing customers to run applications
in a wide variety of operating systems and configurations.

And while the flexibility of VMs allows customers to eas-
ily move a vast array of applications into the cloud, that same
flexibility inhibits the amount of control a cloud provider
yields over VM behavior. For example, a cloud provider
may be able to provide virtual networks or enforce rate lim-
iting on a tenant VM, but it cannot control the VM’s TCP/IP
stack. As the TCP/IP stack considerably impacts overall net-
work performance, it is unfortunate that cloud providers can-
not exert a fine-grained level of control over one of the most
important components in the networking stack.

Without control over the VM TCP/IP stack, datacenter
networks remain at the mercy of inefficient, out-dated or
misconfigured TCP/IP stacks. TCP behavior, specifically
congestion control, has been widely studied and many issues
have come to light when it is not optimized. For example,
network congestion caused by non-optimzed stacks can lead
to loss, increased latency and reduced throughput.

Thankfully, recent advances optimizing TCP stacks for
datacenters have shown high throughput and low latency can
be achieved through novel TCP congestion control algorithms.
Works such as DCTCP [3] and TIMELY [43] provide high
bandwidth and low latency by ensuring network queues in
switches do not fill up. And while these stacks are deployed
in many of today’s private datacenters [36, 59], ensuring a
vast majority of VMs within a public datacenter will update
their TCP stacks to a new technology is a daunting, if not
impossible, task.

In this paper, we explore how operators can regain author-
ity over TCP congestion control, regardless of the TCP stack
running in a VM. Our aim is to allow a cloud provider to uti-
lize advanced TCP stacks, such as DCTCP, without having
control over the VM or requiring changes in network hard-
ware. We propose implementing congestion control in the
virtual switch (vSwitch) running on each server. Implement-
ing congestion control within a vSwitch has several advan-

http://dx.doi.org/10.1145/2934872.2934903

tages. First, vSwitches naturally fit into datacenter network
virtualization architectures and are widely deployed [52].
Second, vSwitches can easily monitor and modify traffic
passing through them. Today vSwitch technology is mature
and robust, allowing for a fast, scalable, and highly-available
framework for regaining control over the network.

Implementing congestion control within the vSwitch has
numerous challenges, however. First, in order to ensure adop-
tion rates are high, the approach must work without mak-
ing changes to VMs. Hypervisor-based approaches typically
rely on rate limiters to limit VM traffic. Rate limiters im-
plemented in commodity hardware do not scale in the num-
ber of flows and software implementations incur high CPU
overhead [54]. Therefore, limiting a VM’s TCP flows in a
fine-grained, dynamic nature at scale (10,000’s of flows per
server [46]) with limited computational overhead remains
challenging. Finally, VM TCP stacks may differ in the fea-
tures they support (e.g., ECN) or the congestion control al-
gorithm they implement, so a vSwitch congestion control
implementation should work under a variety of conditions.

This paper presents Administrator Control over Datacen-
ter TCP (AC#DC TCP, or simply AC#/DC), a new technology
that implements TCP congestion control within a vSwitch to
help ensure VM TCP performance cannot impact the net-
work in an adverse way. At a high-level, the vSwitch mon-
itors all packets for a flow, modifies packets to support fea-
tures not implemented in the VM’s TCP stack (e.g., ECN)
and reconstructs important TCP parameters for congestion
control. AC/DC runs the congestion control logic specified
by an administrator and then enforces an intended conges-
tion window by modifying the receive window (RWND) on
incoming ACKs. A policing mechanism ensures stacks can-
not benefit from ignoring RWND.

Our scheme provides the following benefits. First, AC/DC
allows administrators to enforce a uniform, network-wide
congestion control algorithm without changing VMs. When
using congestion control algorithms tuned for datacenters,
this allows for high throughput and low latency. Second,
our system mitigates the impact of varying TCP stacks run-
ning on the same fabric. This improves fairness and addi-
tionally solves the ECN co-existence problem identified in
production networks [36, 72]. Third, our scheme is easy to
implement, computationally lightweight, scalable, and mod-
ular so that it is highly complimentary to performance iso-
lation schemes also designed for virtualized datacenter envi-
ronments. The contributions of this paper are as follows:

1. The design of a vSwitch-based congestion control mech-
anism that regains control over the VM’s TCP/IP stack
without requiring any changes to the VM or network
hardware.

2. A prototype implementation to show our scheme is ef-
fective, scalable, simple to implement, and has less
than one percentage point computational overhead in
our tests.

3. A set of results showing DCTCP configured as the host
TCP stack provides nearly identical performance to when

the host TCP stack varies but DCTCP’s congestion con-
trol is implemented in the vSwitch. We demonstrate
how AC/DC can improve throughput, fairness and la-
tency on a shared datacenter fabric.

The outline of this paper is as follows. Background and
motivation are discussed in §2. ACZDC’s design is outlined
in §3 and implementation in §4. Results are presented in §5.
Related work is surveyed in §6 before concluding.

2. BACKGROUND AND MOTIVATION

This section first gives a brief background of congestion
control in the datacenter. Then the motivation for moving

congestion control into the vSwitch is presented. Finally, AC/DC

is contrasted from a class of related bandwidth allocation
schemes.

2.1 Datacenter Transport

Today’s datacenters host applications such as search, ad-
vertising, analytics and retail that require high bandwidth
and low latency. Network congestion, caused by imperfect
load balancing [1], network upgrades or failures, can ad-
versely impact these services. Unfortunately, congestion is
not rare in datacenters. For example, recently Google re-
ported congestion-based drops were observed when network
utilization approached 25% [59]. Other studies have shown
high variance and substantial increase in the 99.9™ percentile
latency for round-trip times in today’s datacenters [45, 69].
Large tail latencies impact customer experience, result in
revenue loss [3, 17], and degrade application performance [26,
33]. Therefore, significant motivation exists to reduce con-
gestion in datacenter fabrics.

TCP’s congestion control algorithm is known to signifi-
cantly impact network performance. As a result, datacenter
TCP performance has been widely studied and many new
protocols have been proposed [3, 35, 43, 62, 71]. Specifi-
cally, DCTCP [3] adjusts a TCP sender’s rate based on the
fraction of packets experiencing congestion. In DCTCP, the
switches are configured to mark packets with an ECN bit
when their queue lengths exceed a threshold. By propor-
tionally adjusting the rate of the sender based on the fraction
of ECN bits received, DCTCP can keep queue lengths low,
maintain high throughput, and increase fairness and stabil-
ity over traditional schemes [3, 36]. For these reasons, we
implement DCTCP as the vSwitch congestion control algo-
rithm in AC/DC.

2.2 Benefits of AC/DC

Allowing administrators to enforce an optimized conges-
tion control without changing the VM is the first major ben-
efit of our scheme. This is an important criteria in untrusted
public cloud environments or simply in cases where servers
cannot be updated due to a dependence on a specific OS or
library. [36]

The next benefit is AC£DC allows for uniform conges-
tion control to be implemented throughout the datacenter.
Unfairness arises when stacks are handled differently in the
fabric or when conservative and aggressive stacks coexist.

lllinois —4— Max —&—
CUBIC —&— 4L Min —6—
Mean —»—

Median —&—

Tput (Gbps)
Tput (Gbps)

ol
12 3 45 6 7 8 910 1 2 3 4 5 6 7 8 910

Tests Tests

(a) 5 different CCs. (b) All CUBIC.
Figure 1: Different congestion controls lead to unfairness.

Studies have shown ECN-capable and ECN-incapable flows
do not exist gracefully on the same fabric because packets
belonging to ECN-incapable flows encounter severe packet
drops when their packets exceed queue thresholds [36, 72].
Additionally, stacks with different congestion control algo-
rithms may not share the same fabric fairly. For example,
Figure 1 shows the performance of five different TCP flows
on the topology in Figure 7a. Each flow selects a conges-
tion control algorithm available in Linux: CUBIC [29], Illi-
nois [41], HighSpeed [21], New Reno [22] and Vegas [13].
Figure 1a shows aggressive stacks such as Illinois and High-
Speed achieve higher bandwidth and thus fairness is worse
than all flows using the same stack (Figure 1b).

Another benefit of AC/DC is it allows for different con-
gestion control algorithms to be assigned on a per-flow ba-
sis. A vSwitch-based approach can assign WAN flows to
a congestion control algorithm that optimizes WAN perfor-
mance [20, 63] and datacenter flows to one that optimizes
datacenter performance, even if these flows originate from
the same VM (e.g., a webserver). Additionally, as shown
in §3.4, a flexible congestion control algorithm can provide
relative bandwidth allocations to flows. This is useful when
tenants or administrators want to prioritize flows assigned to
the same quality-of-service class. In short, adjusting con-
gestion control algorithms on a per-flow basis allows for en-
hanced flexibility and performance.

Finally, congestion control is not difficult to port. While
the entire TCP stack may seem complicated and prone to
high overhead, the congestion control aspect of TCP is rel-
atively light-weight and simple to implement. Indeed, stud-
ies show most TCP overhead comes from buffer manage-
ment [42], and in our evaluation the computational overhead
of AC/DC is less than one percentage point. Porting is also
made easy because congestion control implementations in
Linux are modular: DCTCP’s congestion control resides in
tcp_dctcep. c and is only about 350 lines of code. Given
the simplicity of congestion control, it is not hard to move
its functionality to another layer.

2.3 Tenant-Level Bandwidth Allocation

While AC#DC enforces congestion control, transport layer
schemes do not provide fair bandwidth allocation among
tenants because a tenant with more concurrent flows can ob-
tain a higher share of bandwidth. In order to provide per-
formance isolation in the network, datacenter operators can
implement a variety of bandwidth allocation schemes by ei-

1 L

0.9
0.8
0.7

L 06
gos
0.4
0.3

0.2 CUBIC (RL=2Gbps) —&—
0.1 DCTCP —o—
0 | | | | | | | | |

0 1 2 3 4 5 6 7 8 9 10

TCP Round Trip Time (milliseconds)
Figure 2: CDF of RTTs showing CUBIC fills buffers.

ther guaranteeing or proportionally allocating bandwidth for
tenants [10, 28, 33, 34, 38, 53, 56, 58, 73]. Some of these
schemes share high-level architectural similarities to AC/DC.
For example, EyeQ [34] handles bandwidth allocation at the
edge with a work-conserving distributed bandwidth arbitra-
tion scheme. It enforces rate limits at senders based on feed-
back generated by receivers. Similarly, Seawall [58] pro-
vides proportional bandwidth allocation to a VM or appli-
cation by forcing all traffic through a congestion-controlled
tunnel configured through weights and endpoint feedback.

The fundamental difference between these schemes and
our approach is the design goals determine the granularity on
which they operate. Performance isolation schemes gener-
ally focus on bandwidth allocation on a VM-level and are not
sufficient to relieve the network of congestion because they
do not operate on flow-level granularity. For example, the
single switch abstraction in EyeQ [34] and Gatekeeper [56]
explicitly assumes a congestion-free fabric for optimal band-
width allocation between pairs of VMs. This abstraction
doesn’t hold in multi-pathed topologies when failure, traf-
fic patterns or ECMP hash collisions [1] cause congestion in
the core. Communication between a pair of VMs may con-
sist of multiple flows, each of which may traverse a distinct
path. Therefore, enforcing rate limits on a VM-to-VM level
is too coarse-grained to determine how specific flows should
adapt in order to mitigate the impact of congestion on their
paths. Furthermore, a scheme like Seawall [58] cannot be
easily applied to flow-level granularity because its rate lim-
iters are unlikely to scale in the number of flows at high net-
working speeds [54] and its allocation scheme does not run
at fine-grained round-trip timescales required for effective
congestion control. Additionally, Seawall violates our de-
sign principle by requiring VM modifications to implement
congestion-controlled tunnels.

The above points are not intended to criticize any given
work, but rather support the argument that it is important
for a cloud provider to enforce both congestion control and
bandwidth allocation. Congestion control can ensure low
latency and high utilization, and bandwidth allocation can
provide tenant-level fairness. Bandwidth allocation schemes
alone are insufficient to mitigate congestion because certain
TCP stacks aggressively fill switch buffers. Consider a sim-
ple example where five flows send simultaneously on the 10

Virtual Machines

AC/DC
Apps Apps Apps (sender) [®
S S
3
2 @
VvNIC vNIC vNIC ci “9
£ g 3
Control plane £ z
= %)
Data path (AC/DC) Q £ ‘g

=)

Server e

[———— AC/DC

Datacenter Network (receiver)

Figure 3: AC/DC high-level architecture.

Gbps topology in Figure 7a. Even when the bandwidth is
allocated "perfectly" at 2 Gbps per flow, CUBIC saturates
the output port’s buffer and leads to inflated round-trip times
(RTTs) for traffic sharing the same link. Figure 2 shows
these RTTs for CUBIC and also DCTCP, which is able to
keep queueing latencies, and thus RTTs, low even though
no rate limiting was applied. Therefore, it is important for
cloud providers to exercise a desired congestion control.

In summary, our vision regards enforcing tenant conges-
tion control and bandwidth allocation as complimentary and
we claim an administrator should be able to combine any
congestion control (e.g., DCTCP) with any bandwidth allo-
cation scheme (e.g., EyeQ). Flow-level congestion control
and tenant performance isolation need not be solved by the
same scheme, so AC#DC’s design goal is to be modular
in nature so it can co-exist with any bandwidth allocation
scheme and its associated rate limiter (and also in the ab-
sence of both).

3. DESIGN

This section provides an overview of AC#DC’s design.
First, we show how basic congestion control state can be
inferred in the vSwitch. Then we study how to implement
DCTCEP. Finally, we discuss how to enforce congestion con-
trol in the vSwitch and provide a brief overview of how per-
flow differentiation can be implemented.

snd_una snd_nxt

In Flight

sequence numbers —»

Figure 4: Variables for TCP sequence number space.

3.1 Obtaining Congestion Control State

Figure 3 shows the high-level structure of AC/DC. Since
it is implemented in the datapath of the vSwitch, all traffic
can be monitored. The sender and receiver modules work
together to implement per-flow congestion control (CC).

We first demonstrate how congestion control state can be
inferred. Figure 4 provides a visual of the TCP sequence
number space. The snd_una variable is the first byte that
has been sent, but not yet ACKed. The snd_nxt vari-
able is the next byte to be sent. Bytes between snd_una
and snd_nxt are in flight. The largest number of packets
that can be sent and unacknowledged is bounded by CWND.
snd_una is simple to update: each ACK contains an ac-
knowledgement number (ack_seq), and snd_una is up-
dated when ack_seq > snd_una. When packets traverse
the vSwitch from the VM, snd_nxt is updated if the se-
quence number is larger than the current snd_nxt value.
Detecting loss is also relatively simple. If ack_seq <
snd_una, then a local dupack counter is updated. Time-
outs can be inferred when snd_una < snd_nxt and an
inactivity timer fires. The initial CWND is set to a default
value of 10 [14]. With this state, the vSwitch can determine
appropriate CWND values for canonical TCP congestion con-
trol schemes. We omit additional details in the interest of
space.

3.2 Implementing DCTCP

This section discusses how to obtain DCTCP state and
perform its congestion control.

ECN marking DCTCP requires flows to be ECN-capable,
but the VM’s TCP stack may not support ECN. Thus, all
egress packets are marked to be ECN-capable on the sender
module. When the VM’s TCP stack does not support ECN,
all ECN-related bits on ingress packets are stripped at the
sender and receiver modules in order to preserve the original
TCP settings. When the VM’s TCP stack does support ECN,
the AC/DC modules strip the congestion encountered
bits in order to prevent the VM’s TCP stack from decreasing
rates too aggressively (recall DCTCP adjusts CWND propor-
tional to the fraction of congested packets, while traditional
schemes conservatively reduce CWND by half). A reserved
bit in the header is used to determine if the VM’s TCP stack
originally supported ECN.

Obtaining ECN feedback In DCTCP, the fraction of pack-
ets experiencing congestion needs to be reported to the sender.
Since the VM’s TCP stack may not support ECN, the ACZDC
receiver module monitors the total and ECN-marked bytes
received for a flow. Receivers piggy-back the reported totals
on ACKs by adding an additional 8 bytes as a TCP Option.
This is called a Piggy-backed ACK (PACK). The PACK is
created by moving the IP and TCP headers into the ACK
packet’s skb headroom [60]. The totals are inserted into the
vacated space and the memory consumed by the rest of the
packet (i.e., the payload) is left as is. The IP header check-
sum, IP packet length and TCP Data Offset fields are recom-
puted and the TCP checksum is calculated by the NIC. The
PACK option is stripped at the sender so it is not exposed to
the VM’s TCP stack.

If adding a PACK creates a packet larger than the MTU,
the NIC offload feature (i.e., TSO) will replicate the feed-
back information over multiple packets, which skews the
feedback. Therefore, a dedicated feedback packet called a

l Incoming ACK

Extract CCinfo if it is PACK or FACK;
Drop FACK;
1
Update connection tracking variables;
Update aonce every RTT;

Yes

Cut wnd in this
window before?
No
| wnd=wnd*(1 - a/2); |

Congestion?

Yes
| tcp_cong_avoid(); |

AC/DC enforces CC on the flow;
Send ACK to VIVj;

Figure 5: DCTCP congestion control in AC/DC.

Fake ACK (FACK) is sent when the MTU will be violated.
The FACK is sent in addition to the real TCP ACK. FACKs
are also discarded by the sender after logging the included
data. In practice, most feedback takes the form of PACKs.

DCTCP congestion control Once the fraction of ECN-
marked packets is obtained, implementing DCTCP’s logic
is straightforward. Figure 5 shows the high-level design.
First, congestion control (CC) information is extracted from
FACKSs and PACKSs. Connection tracking variables (described
in §3.1) are updated based on the ACK. The variable a is an
EWMA of the fraction of packets that experienced conges-
tion and is updated roughly once per RTT. If congestion was
not encountered (no loss or ECN), then tcp_cong_avoid
advances CWND based on TCP New Reno’s algorithm, using
slow start or congestion avoidance as needed. If congestion
was experienced, then CWND must be reduced. DCTCP’s
instructions indicate the window should be cut at most once
per RTT. Our implementation closely tracks the Linux source
code, and additional details can be referenced externally [3,
11].

3.3 Enforcing Congestion Control

There must be a mechanism to ensure a VM’s TCP flow
adheres to the CWND determined in the vSwitch. Luckily,
TCP provides built-in functionality that can be reprovisioned
for AC/DC. Specifically, TCP’s flow control allows a re-
ceiver to advertise the amount of data it is willing to process
via a receive window (RWND). Similar to other works [37,
61], the vSwitch overwrites RWND with its calculated CWND.
In order to preserve TCP semantics, this value is overwritten
only when it is smaller than the packet’s original RWND. The
VM’s flow then uses min(CWND, RWND) to limit how many
packets it can send.

This enforcement scheme must be compatible with TCP
receive window scaling to work in practice. Scaling en-
sures RWND does not become an unnecessary upper-bound in
high bandwidth-delay networks and provides a mechanism
to left-shift RWND by a window scaling factor [31]. The win-

dow scaling factor is negotiated during TCP’s handshake,
so AC#/DC monitors handshakes to obtain this value. Cal-
culated congestion windows are adjusted accordingly. TCP
receive window auto-tuning [57] manages buffer state and
thus is an orthogonal scheme AC#DC can safely ignore.

Ensuring a VM’s flow adheres to RWND is relatively sim-
ple. The vSwitch calculates a new congestion window ev-
ery time an ACK is received. This value provides a bound
on the number of bytes the VM’s flow is now able to send.
VMs with unaltered TCP stacks will naturally follow our en-
forcement scheme because the stacks will simply follow the
standard. Flows that circumvent the standard can be policed
by dropping excess packets not allowed by the calculated
congestion window, which incentivizes tenants to respect the
standard.

While simple, this scheme provides a surprising amount
of flexibility. For example, TCP enables a receiver to send
a TCP Window Update to update RWND [6]. AC/DC can
create these packets to update windows without relying on
ACKSs. Additionally, the sender module can generate dupli-
cate ACKSs to to trigger retransmissions. This is useful when
the VM’s TCP stack has a larger timeout value than AC£DC
(e.g., small timeout values have been recommended for in-
cast [67]). Another useful feature is when ACZDC allows
a TCP stack to send more data. This can occur when a VM
TCP flow aggressively reduces its window when ECN feed-
back is received. By removing ECN feedback in AC/DC,
the VM TCP stack won’t reduce CWND. In a similar manner,
DCTCP limits loss more effectively than aggressive TCP
stacks. Without loss or ECN feedback, VM TCP stacks
grow CWND. This causes AC£DC’s RWND to become the lim-
iting window, and thus AC#DC can increase a flow’s rate in-
stantly when RWND < CWND. Note, however, AC£ZDC cannot
force a connection to send more data than the VM’s CWND
allows.

Another benefit of AC/DC is that it scales in the number
of flows. Traditional software-based rate limiting schemes,
like Linux’s Hierarchical Token Bucket, incur high overhead
due to frequent interrupts and contention [54] and therefore
do not scale gracefully. NIC or switch-based rate limiters
are low-overhead, but typically only provide a handful of
queues. Our enforcement algorithm does not rate limit or
buffer packets because it exploits TCP flow control. There-
fore, rate limiting schemes can be used at a coarser granular-
ity (e.g., VM-level).

Finally, we outline AC#DC’s limitations. Since AC£#DC
relies on sniffing traffic, schemes that encrypt TCP headers
(e.g., IPSec) are not supported. Our implementation only
supports TCP, but we believe it can be extended to handle
UDP similar to prior schemes [34, 58]. Implementing per-
flow DCTCP-friendly UDP tunnels and studying its impact
remains future work, however. And finally, while MPTCP
supports per-subflow RWND [23], it is not included in our
case study and a more detailed analysis is future work.

3.4 Per-flow Differentiation

AC?DC can assign different congestion control algorithms
on a per-flow basis. This gives administrators additional

[
-

CWND —&—

Throughput (Gbps)
OFENWAUIONOWOO
Throughput (Gbps)
OFRFNWAUIONOWOO

1 \RWN\D 1 1
W
o Yo Y9, %, g <y, 02 % 6 & % dys
Max CWND (pkts) or RWND (MSS) Max CWND (pkts) or RWND (MSS)
(a) MTU = 1.5KB. (b) MTU = 9KB.

Figure 6: Using RWND can effectively control throughput.

flexibility and control by assigning flows to specific conges-
tion control algorithms based on policy. For example, flows
destined to the WAN may be assigned CUBIC and flows des-
tined within the datacenter may be set to DCTCP.

Administrators can also enable per-flow bandwidth allo-
cation schemes. A simple scheme enforces an upper-bound
on a flow’s bandwidth. Traditionally, an upper-bound on
a flow’s CWND can be specified by snd_cwnd_clamp in
Linux. AC#/DC can provide similar functionality by bound-
ing RWND. Figure 6 shows the behavior is equivalent. This
graph can also be used to convert a desired upper-bound on
bandwidth into an appropriate maximum RWND (the graph is
created on an uncongested link to provide a lower bound on
RTT).

In a similar fashion, administrators can assign different
bandwidth priorities to flows by altering the congestion con-
trol algorithm. Providing differentiated services via conges-
tion control has been studied [58, 68]. Such schemes are use-
ful because networks typically contain only a limited num-
ber of service classes and bandwidth may need to be allo-
cated on a finer-granularity. We propose a unique priority-
based congestion control algorithm for AC/DC. Specifically,
DCTCP’s congestion control algorithm is modified to incor-
porate a priority, p € [0, 1]:

rwnd = rwnd(1 — (o — O%ﬁ)) (1)
Higher values of [give higher priority. When § = 1, Equa-
tion | simply converts to DCTCP congestion control. When
B = 0, flows aggressively back-off (RWND is bounded by 1
MSS to avoid starvation). This equation alters multiplica-
tive decrease instead of additive increase because increas-
ing RWND cannot guarantee the VM flow’s CWND will allow
the flow to increase its sending rate.

4. IMPLEMENTATION

This section outlines relevant implementation details. We
implemented AC/DC in Open vSwitch (OVS) v2.3.2 [50]
and added about 1200 lines of code (many are debug/com-
ments). A high-level overview follows. A hash table is
added to OVS, and flows are hashed on a 5-tuple (IP ad-
dresses, ports and VLAN) to obtain a flow’s state. The flow
entry state is 320 bytes and is used to maintain the conges-
tion control state mentioned in §3. SYN packets are used to
create flow entries, and FIN packets, coupled with a course-
grained garbage collector, are used to remove flow entries.

Other TCP packets, such as data and ACKs, trigger updates
to flow entries. There are many more table lookup operations
(to update flow state) than table insertions or deletions (to
add/remove flows). Thus, Read-Copy-Update (RCU) hash
tables [27] are used to enable efficient lookups. Addition-
ally, individual spinlocks are used on each flow entry in
order to allow for multiple flow entries to be updated simul-
taneously.

Putting it together, the high-level operation on a data packet
is as follows. An application on the sender generates a packet
that is pushed down the network stack to OVS. The packet
is intercepted in ovs_dp_process_packet, where the
packet’s flow entry is obtained from the hash table. Se-
quence number state is updated in the flow entry and ECN
bits are set on the packet if needed (see §3). If the packet’s
header changes, the IP checksum is recalculated. Note TCP
checksumming is offloaded to the NIC. The packet is sent
over the wire and received at the receiver’s OVS. The re-
ceiver updates congestion-related state, strips off ECN bits,
recomputes the IP checksum, and pushes the packet up the
stack. ACKs eventually triggered by the packet are inter-
cepted, where the congestion information is added. Once the
ACK reaches the sender, the AC£ZDC module uses the con-
gestion information to compute a new congestion window.
Then it modifies RWND with a memcpy, strips off ECN feed-
back and recomputes the IP checksum before pushing the
packet up the stack. Since TCP connections are bi-directional,
two flow entries are maintained for each connection.

Our experiments in §5.1 show the CPU overhead of AC/DC
is small and several implementation details help reduce com-
putational overhead. First, OVS sits above NIC offloading
features (i.e., TSO and GRO/LRO) in the networking stack.
Briefly, NIC offloads allow the host to pass large data seg-
ments along the TCP/IP stack and only deal with MTU-sized
packets in the NIC. Thus, AC/DC operates on a segment,
rather than a per-packet, basis. Second, congestion control
is a relatively simple algorithm, and thus the computational
burden is not high. Finally, while AC#DC is implemented in
software, it may be possible to further reduce the overhead
with a NIC implementation. Today, "smart-NICs" imple-
ment OVS-offload functionality [40, 47], naturally provid-
ing a mechanism to reduce overhead and support hypervisor
bypass (e.g., SR-IOV).

S. RESULTS

This section quantifies the effects of AC/DC and deter-
mines if the performance of DCTCP implemented in the
vSwitch (i.e., AC/DC) is equivalent to the performance of
DCTCP implemented in the host TCP stack.

Testbed The experiments are conducted on a physical testbed
with 17 IBM System x3620 M3 servers (6-core Intel Xeon
2.53GHz CPUs, 60GB memory) and Mellanox ConnectX-2
EN 10GbE NICs. Our switches are IBM G8264, each with
a buffer of 9MB shared by forty-eight 10G ports.

System settings We run Linux kernel 3.18.0 which imple-
ments DCTCP as a pluggable module. We set RT O, to 10

receivers

(a) Dumbbell topology.

Senders

Receiver < ‘

(b) Multi-hop, multi-bottleneck (parking lot) topology.
Figure 7: Experiment topologies.

ms [36,67] and set t cp_no_metrics_save, tcp_sack
and tcp_low_latency to 1. Results are obtained with
MTU sizes of 1.5KB and 9KB, as networks typically use one
of these settings. Due to space constraints, a subset of the re-
sults are presented and unless otherwise noted, the MTU is
set to 9KB.

Experiment details To understand AC/DC performance,
three different congestion control configurations are consid-
ered. The baseline scheme, referred to as CUBIC, config-
ures the host TCP stack as CUBIC (Linux’s default conges-
tion control), which runs on top of an unmodified version of
OVS. Our goal is to be similar to DCTCP, which configures
the host TCP stack as DCTCP and runs on top of an un-
modified version of OVS. Our scheme, AC#DC, configures
the host TCP stack as CUBIC (unless otherwise stated) and
implements DCTCP congestion control in OVS. In DCTCP
and AC/DC, WRED/ECN is configured on the switches. In
CUBIC, WRED/ECN is not configured.

The metrics used are: TCP RTT (measured by sockpert [48]),

TCP throughput (measured by iperf), loss rate (by collecting
switch counters) and Jain’s fairness index [32]. In §5.2, flow
completion time (FCT) [19] is used to quantify application
performance. All benchmark tools are run in a container on
each server, rather than in a VM.

5.1 Microbenchmarks

We first evaluate AC/DC’s performance using a set of
microbenchmarks. The microbenchmarks are conducted on
topologies shown in Figure 7.

Canonical topologies We aim to understand the perfor-
mance of our scheme on two simple topologies. First, one
long-lived flow is started per server pair (s; to 1;) in Figure 7a.
The average per-flow throughput of AC/#ZDC, DCTCP and
CUBIC are all 1.98Gbps. Figure 8 is a CDF of the RTT
from the same test. Here, increases in RTT are caused by

CUBIC (Default) —&—
DCTCP —&—
AC/DC —¢—

0% I I I | | | I | I
o 1 2 3 4 5 6 7 8 9 10

TCP Round Trip Time (milliseconds)
Figure 8: RTT of schemes on dumbbell topology.

30 30
@25 DCTCP @25 DCTCP
el AC/DC 25l AC/DC
Q15 015
=z 4
210 S10 F
€5, 25|
O O
0 I I I I 0 | | | |
0 0.02 0.04 0.06 0.08 0.1 0 1 2 3 4 5
Seconds Seconds

(a) First 100 ms of a flow. (b) Moving average.
Figure 9: AC#DC’s RWND tracks DCTCP’s CWND (1.5KB
MTU).

@25 L CUBIC @ | CUBIC

el AC/DC 2% AC/DC

Q15 015

=z 4

210 - 210

I I I I 0 | | | |
0 0.02 0.04 0.06 0.08 0.1 2 2.02 2.04 2.06 2.08 2.1
Seconds Seconds

(a) Starting from O sec. (b) Starting from 2 sec.
Figure 10: Who limits TCP throughput when AC#DC is run
with CUBIC? (1.5 KB MTU)

queueing delay in the switch. AC#DC achieves comparable
RTT with DCTCP and significantly outperforms CUBIC.
Second, each sender in Figure 7b starts a long-lived flow
to the receiver. Each flow traverses a different number of
bottleneck links. CUBIC has an average per-flow through-
put of 2.48Gbps with a Jain’s fairness index of 0.94, and
both DCTCP and AC/DC obtain an average throughput of
2.45Gbps with a fairness index of 0.99. The 50 and 99.9"
percentile RTT for AC/DC (DCTCP, CUBIC) are 124us
(136us, 3.3ms) and 279us (301us, 3.9ms), respectively.

Tracking window sizes Next, we aim to understand how
accurately AC/DC tracks DCTCP’s performance at a finer
level. The host’s TCP stack is set to DCTCP and our scheme
runs in the vSwitch. We repeat the experiment in Figure 7a
and measure the RWND calculated by AC/DC. Instead of
over-writing the RWND value in the ACKs, we simply log the
value to a file. Thus, congestion is enforced by DCTCP and
we can capture DCTCP’s CWND by using t cpprobe [65].
We align the RWND and CWND values by timestamps and se-
quence numbers and show a timeseries in Figure 9. Fig-
ure 9a shows both windows for the first 100 ms of a flow
and shows that AC#DC’s calculated window closely tracks

60
55 ~ Baseline =1
50 - AC/DC
$45 -
240 +
L35 -
©30 -
D25
220
515 - " ;
10 ol
5 X
- _ i
100 500 1K 5K 10K

Number of concurrent TCP connections
Figure 11: CPU overhead: sender side (1.5KB MTU).

30

Baseline =
AC/DC

N N
o w
T T

CPU Usage (%)
[
o w
T T

— [l

100 500 1K 5K 10K

Number of concurrent TCP connections
Figure 12: CPU overhead: receiver side (1.5KB MTU).

o wn

DCTCP’s. Figure 9b shows the windows over a 100ms mov-
ing average are also similar. This suggests it is possible to
accurately recreate congestion control in the vSwitch. These
results are obtained with 1.5KB MTU. Trends for 9KB MTU
are similar but the window sizes are smaller.

We were also interested to see how often AC/DC’s con-
gestion window takes effect. We rerun the experiment (MTU

is still 1.5KB), but set the host TCP stack to CUBIC. The RWND

computed by AC#DC is both written into the ACK and logged

to a file. We again use t coprobe to measure CUBIC’s CWND.

Figure 10 is a timeseries (one graph from the start of the ex-
periment and one graph 2 seconds in) that shows AC#DC’s
congestion control algorithm is indeed the limiting factor. In
the absence of loss or ECN markings, traditional TCP stacks
do not severely reduce CWND and thus AC/DC’s RWND be-
comes the main enforcer of a flow’s congestion control. Be-
cause DCTCP is effective at reducing loss and AC#/DC hides
ECN feedback from the host TCP stack, AC#DC’s enforce-
ment is applied often.

CPU overhead We measure the CPU overhead of AC/DC
by connecting two servers to a single switch. Multiple si-
multaneous TCP flows are started from one server to the
other and the total CPU utilization is measured on the sender
and receiver using sar. Each flow is given time to perform
the TCP handshake and when all are connected, each TCP
client sends with a demand of 10 Mbps by sending 128KB
bursts every 100 milliseconds (so 1,000 connections satu-
rate the 10 Gbps link). The system-wide CPU overhead
of AC#DC compared to the system-wide CPU overhead of

Fl == F2 &==== F3 = F4 —— F5 —/—2

10

Tput (Gbps)
B [e)] [ee]
T

N
T

o

[2,2,2 2[2,2'1 1[2,2’2 1[3'2' 1[3,3’2 2[4,4'4 0
< lyg T g T g g S g Y0l
Experiments (with different B combinations)

Figure 13: AC#/DC provides differentiated throughput via
QoS-based CC. p values are defined on a 4-point scale.

baseline (i.e., just OVS) is shown for the sender in Figure 11
and the receiver in Figure 12. Error bars show standard de-
viation over 50 runs. While AC/DC increases CPU usage
in all cases, the increase is negligible. The largest difference
is less than one percentage point: the baseline and AC£DC
have 16.27% and 17.12% utilization, respectively for 10K
flows at the receiver. The results are shown with 1.5KB
MTU because smaller packets incur higher overhead. Note
experiments with 9KB MTU have similar trends.

ACY/DC flexibility AC/DC aims to provide a degree of
control and flexibility over tenant TCP stacks. We consider
two cases. First, AC/DC should work effectively, regard-
less of the tenant TCP stack. Table 1 shows the performance
of our scheme when various TCP congestion control algo-
rithms are configured on the host. Data is collected over
10 runs lasting 20 seconds each on the dumbbell topology
(Figure 7a). The first two rows of the table, CUBIC* and
DCTCP*, show the performance of each stack with an un-
modified OVS. The next six rows show the performance of a
given host stack with AC/DC running DCTCP in OVS. The
table shows AC#DC can effectively track the performance
of DCTCP*, meaning it is compatible with popular delay-
based (Vegas) and loss-based (Reno, CUBIC, etc) stacks.

Second, AC£DC enables an administrator to assign differ-
ent congestion control algorithms on a per-flow basis. For
example, AC/DC can provide the flexibility to implement
QoS through differentiated congestion control. We fix the
host TCP stack to CUBIC and alter AC#DC’s congestion
control for each flow by setting the (3 value (in Equation 1)
for each flow in the dumbbell topology. Figure 13 shows
the throughput achieved by each flow, along with its 5 set-
ting. AC/DC is able to provide relative bandwidth alloca-
tion to each flow based on . Flows with the same 5 value
get similar throughputs and flows with higher § values ob-
tain higher throughput. The latencies (not shown) remain
consistent with previous results.

Fairness Three different experiments are used to demon-
strate fairness. First, we show AC#DC can mimic DCTCP’s
behavior in converging to fair throughputs. We repeat the ex-
periment originally performed by Alizadeh [3] and Judd [36]
by adding a new flow every 30 seconds on a bottleneck link

CC Variants 50T percentile RTT (us) 99t percentile RTT (us) Avg Tput (Gbps) Fairness Index
mtu=1.5KB | mtu=9KB | mtu=1.5KB | mtu=9KB | mtu=1.5KB | mtu=9KB | mtu=1.5KB | mtu=9KB
CUBIC* 3232 3448 3641 3865 1.89 1.98 0.85 0.98
DCTCP* 128 142 232 259 1.89 1.98 0.99 0.99
CUBIC 128 142 231 252 1.89 1.98 0.99 0.99
Reno 120 149 235 248 1.89 1.97 0.99 0.99
DCTCP 129 149 232 266 1.88 1.98 0.99 0.99
Illinois 134 152 215 262 1.89 1.97 0.99 0.99
HighSpeed 119 147 224 252 1.88 1.97 0.99 0.99
Vegas 126 143 216 251 1.89 1.97 0.99 0.99
Table 1: AC/DC works with many congestion control variants. Legend: CUBIC*: CUBIC + standard OVS, switch

WRED/ECN marking off. DCTCP*: DCTCP + standard OVS, switch WRED/ECN marking on. Others: different CCs +
AC/DC, switch WRED/ECN marking on.

=
o

o
o

|

Flow 1
9 9 Flow 2
L Flow 3
8 8 Flow 4
7 7+ Flow 5
2 6 2 6
Q Q
A 2 st
o o
2 4 3 4
= =
3 3 -
2 2 -
1 1L
0 L 0
0 50 100 150 200 250 300 0 50 100

Time (seconds)

(a) CUBIC convergence test.

150
Time (seconds)

(b) DCTCP convergence test.

—_— Flow 1 ——
e 9r Flow 2 ——
— 8L Flow 3 ——
—_— Flow 4 ——
_— 7 Flow 5 ——
2 6
e}
@ st
o
3 4t
2
3 |-
2 |-
1 |-
1 0 1
200 250 300 0 50 100 150 200 250 300

Time (seconds)

(c) AC#DC convergence test.

Figure 14: Convergence tests: flows are added, then removed, every 30 secs. AC/DC performance matches DCTCP.

CUBIC DCTCP CUBIC DCTCP
10 10

7 8 Q8

& &

R CRa

-4t -4t

3 3

22+ 22+
0 1 1 L L Il L 1 0 1 1 1 1 1 1 1 1

027 6 & 2005 027 6 & 0y ipdey

Time (seconds) Time (seconds)

(a) Default. (b) AC#DC.
Figure 15: (a) CUBIC gets little throughput when competing
with DCTCP. (b) With AC/DC, CUBIC and DCTCP flows
get fair share.

and then reversing the process. The result is shown in Fig-
ure 14. Figure 14a shows CUBIC’s problems converging to

fair allocations. Figures 14b and 14c show DCTCP and AC/DC

performance, respectively. AC/DC tracks DCTCP’s behav-

ior. CUBIC’s drop rate is 0.17% while DCTCP’s and AC#DC’s

is 0%.

The second experiment is also repeated from Judd’s pa-
per [36]. ECN-capable and non-ECN-capable flows do not
coexist well because switches drop non-ECN packets when
the queue length is larger than the marking threshold. Fig-
ure 15a shows the throughput of CUBIC suffers when CU-
BIC (with no ECN) and DCTCP (with ECN) traverse the
same bottleneck link. Figure 15b shows ACZDC alleviates

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0 L ool
0.1 1 10

CUBIC TCP Round Trip Time (milliseconds)
Figure 16: CUBIC experiences high RTT when competing
with DCTCP. AC#DC fixes this issue.

CDF

CUBIC w/o AC/DC —4—
CUBIC w/ AC/DC —>¢—
L ool L Lo

100

this problem because it forces all flows to become ECN-
capable. Figure 16 shows CUBIC’s RTT is extremely high
in the first case because switches drop non-ECN packets (the
loss rate is 0.18%) and thus there is a significant number of
retransmissions. However, AC/DC eliminates this issue and
reduces latency.

The last experiment examines the impact of having mul-
tiple TCP stacks on the same fabric. Five flows with differ-
ent congestion control algorithms (CUBIC, Illinois, High-
Speed, New Reno and Vegas) are started on the dumbbell
topology. This is the same experiment as in Figure 1. Fig-

Max —&— Max —&—
4l Min —6— 4L Min —6—
— Mean —»— — Mean —3—
3 Median —&— a Median —&—
a 3 o 3
() ()
5 5 ZW
o o
= =
1 L
0 A N T S N 0 I T N S N

T I
1 2 3 45 6 7 8 910 1 2 3 45 6 7 8 910
Tests Tests

(a) All DCTCP. (b) 5 different CCs (AC#DC).
Figure 17: AC#DC improves fairness when VMs implement
different CCs. DCTCP performance shown for reference.

~800

-

x
8700 9
2600 209
500 ﬁ 0.8
2400 £
g300 807 CUBIC —6—
gigg 206 DCTCP —&—
; 0 2 5 1 1 AIC/DIC 1 1

15 20 25 30 35 40 45 50
Number of Senders

15 20 25 30 35 40 45 50
Number of Senders

(a) Average throughput. (b) Fairness.
Figure 18: Many to one incast: throughput and fairness.

ure 17a shows what happens if all flows are configured to
use DCTCP and Figure 17b shows when the five different
stacks traverse AC/DC. We can see ACZDC closely tracks
the ideal case of all flows using DCTCP, and AC/DC and
DCTCP provide better fairness than all CUBIC (Figure 1b).

5.2 Macrobenchmarks

In this section we attach all servers to a single switch
and run a variety of workloads to better understand how
well AC/DC tracks DCTCP’s performance. Experiments
are run for 10 minutes. A simple TCP application sends
messages of specified sizes to measure FCTs.

Incast In this section, we evaluate incast scenarios. To scale
the experiment, 17 physical servers are equipped with four
NICs each and one flow is allocated per NIC. In this way,
incast can support up to 47-to-1 fan-in (our switch only has
48 ports). We measure the extent of incast by increasing the
number of concurrent senders to 16, 32, 40 and 47. Fig-
ure 18 shows throughput and fairness results. Both DCTCP
and AC/DC obtain a fairness index greater than 0.99 and
get comparable throughput as CUBIC. Figure 19 shows the
RTT and packet drop rate results. When there are 47 con-
current senders, DCTCP can reduce median RTT by 82%
and AC#DC can reduce by 97%; DCTCP can reduce 99.9th
percentile RTT by 94% and AC/DC can reduce by 98%.
Both DCTCP and AC#DC have 0% packet drop rate. It is
curious that AC/DC’s performance is better than DCTCP
when the number of senders increases (Figure 19a). The
Linux DCTCP code puts a lower bound of 2 packets on
CWND. In incast, we have up to 47 concurrent competing
flows and the network’s MTU size is 9KB. In this case, the
lower bound is too high, so DCTCP’s RTT increases gradu-
ally with the number of senders. This issue was also found

100 ¢

F CUBIC ===
m DCTCP == [k
2 L AC/DC
g0
2 E 9
E I :
| H—L
o [
= L

0.1 =
50th 95th 99th 99.9th

Percentiles

Figure 20: TCP RTT when almost all ports are congested.

in [36]. AC#DC controls RWND (which is in bytes) instead of
CWND (which is in packets) and RWND’s lowest value can be
much smaller than 2*MSS. We verified modifying AC£DC’s
lower bound caused identical behavior.

The second test aims to put pressure on the switch’s dy-
namic buffer allocation scheme, similar to an experiment in
the DCTCP paper [3]. To this end, we aim to congest every
switch port. The 48 NICs are split into 2 groups: group A
and B. Group A has 46 NICs and B has 2 (denoted B; and
Bs). Each of the 46 NICs in A sends and receives 4 concur-
rent flows within A (i.e., NIC i sends to [i+ 1, i4+4] mod 46).
Meanwhile, all of the NICs in A send to By, creating a 46-to-
1 incast. This workload congests 47 out of 48 switch ports.
We measure the RTT between By and By (i.e., RTT of the
traffic traversing the most congested port) and the results are
shown in Figure 20. The average throughputs for CUBIC,
DCTCP, and AC/DC are 214, 214 and 201 Mbps respec-
tively, all with a fairness index greater than 0.98. CUBIC
has an average drop rate of 0.34% but the most congested
port has a drop rate as high as 4%. This is why the 99.9h
percentile RTT for CUBIC is very high. The packet drop
rate for both DCTCP and AC/DC is 0%.

Concurrent stride workload In concurrent stride, 17 servers
are attached to a single switch. Each server i sends a 512MB
flow to servers [i + 1, i + 4] mod 17 in sequential fashion
to emulate background traffic. Simultaneously, each server
i sends 16KB messages every 100 ms to server (i + 8) mod
17. The FCT for small flows (16KB) and background flows
(512MB) are shown in Figure 21. For small flows, DCTCP
and AC/DC reduce the median FCT by 77% and 76% re-
spectively. At the 99.9™ percentile, DCTCP and AC#DC
reduce FCT by 91% and 93%, respectively. For background
flows, DCTCP and AC/DC offer similar completion times.
CUBIC has longer background FCT because its fairness is
not as good as DCTCP and AC/DC.

Shuffle workload In shuffle, each server sends 512MB to
every other server in random order. A sender sends at most
2 flows simultaneously and when a transfer is finished, the
next one is started until all transfers complete. Every server
i also sends a 16 KB message to server (i+ 8) mod 17 every
100 ms. This workload is repeated for 30 runs. The FCT for
each type of flow is shown in Figure 22. For small flows,

[G]
N
o

1
CUBIC CUBIC CcuBIC
45 - DCTCP 18 |- DCTCP @z DCTCP
oA AC/DC —3é— 16 - AC/DC Sosl AC/DC —3é—
e he) =4
€35 £14 | S
o o Q
g 3t 212 g 206
= = ()
E 25 - glO = E
E 27 E8f a 04|
o o o
a 15| o 6 a
O O F~
Fo b i H F ol %0.2 r
0.5 | 2 L &
o M T —— T ——=)} 0 R L
15 20 25 30 35 40 45 50 15 20 25 35 40 45 50 1? 20 25 30& 35 40 45 50

Number of Senders

(a) 50 percentile RTT.

Number of Senders

(b) 99.9™ percentile RTT.

Number of Senders

(c) Packet drop rate.

Figure 19: Many to one incast: RTT and packet drop rate. ACZDC can reduce DCTCP’s RTT by limiting window sizes.

VLN V.
v v

CDF

CUBIC —&—

DCTCP —o—

AC/DC —>¢—
1 1 1 1 1

0 2 4 6 8 10
Mice FCT (milliseconds)

12 14

(a) Mice flow completion times.

CDF

CUBIC —&—

DCTCP —o—

AC/DC —>¢—
1 1

1.5 2 2.5 3
Background FCT (seconds)

3.5 4

(b) Background flow completion times.

Figure 21: CDF of mice and background FCTs in concurrent stride workload.

1 S <
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

CDF

CuBlIC —o—
DCTCP —&—

AC/DC —¢—
0 I I I | I

0 2 4 6 8 10
Mice FCT (milliseconds)

12 14

(a) Mice flow completion times.

CUBIC —O—

DCTCP —&—
AC/DC —¢—

0 I I I I I I I I I I

0 1 2 3 4 5 6 7 8
Background FCT (seconds)

9 10 11

(b) Background flow completion times.

Figure 22: CDF of mice and background FCTs in shuffle workload.

DCTCP and AC#DC reduce median FCT by 72% and 71%
when compared to CUBIC. At the 99.9™" percentile, DCTCP
and AC/DC reduce FCTs by 55% and 73% respectively. For
large flows, CUBIC, DCTCP and AC#DC have almost iden-
tical performance.

Trace-driven workloads Finally, we run trace-driven work-
loads. An application on each server builds a long-lived TCP
connection with every other server. Message sizes are sam-
pled from a trace and sent to a random destination in sequen-
tial fashion. Five concurrent applications on each server are
run to increase network load. Message sizes are sampled

from a web-search [3] and a data-mining workload [2, 25],
whose flow size distribution has a heavier tail. Figure 23
shows a CDF of FCTs for mice flows (smaller than 10KB)
in the web-search and data-mining workloads. In the web-
search workload, DCTCP and AC#DC reduce median FCTs
by 77% and 76%, respectively. At the 99.9™ percentile,
DCTCP and AC#DC reduce FCTs by 50% and 55%, respec-
tively. In the data-mining workload, DCTCP and AC/DC
reduce median FCTs by 72% and 73%, respectively. At the
99.9th percentile, DCTCP and AC/DC reduce FCTs by 36%
and 53% respectively.

CUBIC —&—
DCTCP —&—
IAC/DC ——

0.1 1 10 100
Flow Completion Time (milliseconds)

(a) Web-search workload.

CDF

CUBIC —&—
DCTCP —&—
AC/DC ﬁ(l—
0.1 1 10 100
Flow Completion Time (milliseconds)

(b) Data-mining workload.

Figure 23: CDF of mice (flows < 10KB) FCT in web-search and data-mining workloads.

Evaluation summary The results validate that congestion
control can be accurately implemented in the vSwitch. AC#DC
tracks the performance of an unmodified host DCTCP stack
over a variety of workloads with little computational over-
head. Furthermore, AC/DC provides this functionality over
various host TCP congestion control configurations.

6. RELATED WORK

This section discusses different classes of related work.

Congestion control for DCNs Rather than proposing a new
congestion control algorithm, our work investigates if con-
gestion control can be moved to the vSwitch. Thus, many
of the following schemes are complimentary. DCTCP [3] is
a seminal TCP variant for datacenter networks. Judd [36]
proposed simple yet practical fixes to enable DCTCP in pro-
duction networks. TCP-Bolt [62] is a variant of DCTCP for
PFC-enabled lossless Ethernet. DCQCN [74] is a rate-based
congestion control scheme (built on DCTCP and QCN) to
support RDMA deployments in PFC-enabled lossless net-
works. TIMELY [43] and DX [39] use accurate network
latency as the signal to perform congestion control. TCP
ex Machina [70] uses computer-generated congestion con-
trol rules. PERC [35] proposes proactive congestion control
to improve convergence. ICTCP’s [71] receiver monitors in-
coming TCP flows and modifies RWND to mitigate the im-
pact of incast, but this cannot provide generalized conges-
tion control like AC£DC. Finally, efforts [12, 64] to imple-
ment TCP Offload Engine (TOE) in specialized NICs are not
widely deployed for reasons noted in [44, 66].

Bandwidth allocation Many bandwidth allocation schemes
have been proposed. Gatekeeper [56] and EyeQ [34] abstract
the network as a single switch and provide bandwidth guar-
antees by managing each server’s access link. Oktopus [10]
provides fixed performance guarantees within virtual clus-
ters. SecondNet [28] enables virtual datacenters with static
bandwidth guarantees. Proteus [73] allocates bandwidth for
applications with dynamic demands. Seawall [58] provides
bandwidth proportional to a defined weight by forcing traffic
through congestion-based edge-to-edge tunnels. NetShare [38]
utilizes hierarchical weighted max-min fair sharing to tune
relative bandwidth allocation for services. FairCloud [53]

identifies trade-offs in minimum guarantees, proportionality
and high utilization, and designs schemes over this space.
Silo [33] provides guaranteed bandwidth, delay and burst
allowances through a novel VM placement and admission
algorithm, coupled with a fine-grained packet pacer. As dis-
cussed in §2, AC’DC is largely complimentary to these
schemes because it is a transport-level solution.

Rate limiters SENIC [49] identifies the limitations of NIC
hardware rate limiters (i.e., not scalable) and software rate
limiters (i.e., high CPU overhead) and uses the CPU to en-
queue packets in host memory and the NIC. Silo’s pacer in-
jects void packets into an original packet sequence to achieve
pacing. FasTrack [49] offloads functionality from the server
into the switch for certain flows. AC#DC prevents TCP flows
from sending in the first place and can be used in conjunction
with these schemes.

Low latency DCNs Many schemes have been proposed to
reduce latency in datacenter networks. HULL [4] uses phan-
tom queues to leave bandwidth headroom to support low la-
tency. pFabric [5] is a clean-slate design which utilizes pri-
ority and minimal switch buffering to achieve low latency.
Fastpass [51] uses a centralized arbiter to perform per-packet
level scheduling. QJUMP [26] uses priority queueing and
rate limiting to bound latency. Traffic engineering [1, 55]
and load balancing [2, 24, 30] can also reduce latency. Be-
cause AC/DC works on the transport level, it is largely com-
plimentary to these works.

Performance-enhancing proxies Several schemes improve
end-to-end protocol performance via a middlebox or proxy [7,
8,9, 16, 18]. AC#DC fits into this class of works, but is
unique in providing a mechanism to alter a VM’s TCP con-
gestion control algorithm by modifying the vSwitch.

Virtualized congestion control vCC [15] is a concurrently
designed system that shares AC#DC’s goals and some of its
design details. The paper is complementary in that some
items not addressed in this work are presented, such as a
more detailed analysis of the ECN-coexistence problem, an
exploration of the design space, and a theoretical proof of
virtualized congestion control’s correctness. Our paper pro-
vides an in-depth design and thorough evaluation of a DCTCP-

based virtualized congestion control algorithm on a 10 Gbps
testbed.

7. CONCLUSION

Today’s datacenters host a variety of VMs (virtual ma-
chines) in order to support a diverse set of tenant services.
Datacenter operators typically invest significant resources in
optimizing their network fabric, but they cannot control one
of the most important components of avoiding congestion:
TCP’s congestion control algorithm in the VM. In this paper,
we present a technology that allows administrators to regain
control over arbitrary tenant TCP stacks by enforcing con-
gestion control in the vSwitch. Our scheme, called AC/DC
TCP, requires no changes to VMs or network hardware. Our
approach is scalable, light-weight, flexible and provides a
policing mechanism to deal with non-conforming flows. In
our evaluation the CPU overhead is less than one percent-
age point and our scheme is shown to effectively enforce
an administrator-defined congestion control algorithm over
a variety of tenant TCP stacks.

Acknowledgement

We would like to thank our shepherd Vishal Misra, Jeff Rasley,
Brent Stephens and the anonymous reviewers for their valu-
able feedback. This work is supported in part by National
Science Foundation (grants CNS-1302041, CNS-1330308
and CNS-1345249), IBM Corporation and the Wisconsin In-
stitute on Software-Defined Datacenters of Madison.

References

[1] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat. Hedera: Dynamic Flow Scheduling for Data
Center Networks. In NSDI, 2010.

[2] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan,
K. Chu, A. Fingerhut, F. Matus, R. Pan, N. Yadav,

G. Varghese, et al. CONGA: Distributed Congestion-aware
Load Balancing for Datacenters. In SIGCOMM, 2014.

[3] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan. Data Center
TCP (DCTCP). In SIGCOMM, 2010.

[4] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat,
and M. Yasuda. Less is More: Trading a Little Bandwidth
for Ultra-low Latency in the Data Center. In NSDI, 2012.

[5] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown,

B. Prabhakar, and S. Shenker. pFabric: Minimal
Near-Optimal Datacenter Transport. 2013.

[6] M. Allman, V. Paxson, and E. Blanton. TCP Congestion
Control. RFC 5681, 2009.
http://www.rfc-editor.org/rfc/rfc5681.txt.

[7] H. Balakrishnan, V. Padmanabhan, G. Fairhurst, and
M. Sooriyabandara. TCP Performance Implications of
Network Path Asymmetry. RFC 3449, 2002.

[8] H. Balakrishnan, S. Seshan, E. Amir, and R. H. Katz.
Improving TCP/IP Performance over Wireless Networks. In
MobiCom, 1995.

[9] M. Balakrishnan, T. Marian, K. Birman, H. Weatherspoon,
and E. Vollset. Maelstrom: Transparent Error Correction for
Lambda Networks. In NSDI, 2008.

[10] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron.
Towards Predictable Datacenter Networks. In SIGCOMM,
2011.

[11] S. Bensley, L. Eggert, D. Thaler, P. Balasubramanian, and
G. Judd. Datacenter TCP (DCTCP): TCP Congestion
Control for Datacenters. Internet-Draft
draft-ietf-tcpm-dctcp-01, 2015. http:
/Iwww.ietf.org/internet-drafts/draft-ietf-tcpm-dctcp-01.txt.

[12] Boosting Data Transfer with TCP Offload Engine
Technology. http://www.dell.com/downloads/global/power/
ps3q06-20060132-Broadcom.pdf.

[13] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP
Vegas: New Techniques for Congestion Detection and
Avoidance. In SIGCOMM, 1994.

[14] J. Chu, N. Dukkipati, Y. Cheng, and M. Mathis. Increasing
TCP’s Initial Window. RFC 6928, 2013.
http://www.rfc-editor.org/rfc/rfc6928.txt.

[15] B. Cronkite-Ratcliff, A. Bergman, S. Vargaftik, M. Ravi,

N. McKeown, I. Abraham, and I. Keslassy. Virtualized
Congestion Control. In SIGCOMM, 2016.

[16] P. Davern, N. Nashid, C. J. Sreenan, and A. Zahran.
HTTPEP: A HTTP Performance Enhancing Proxy for
Satellite Systems. International Journal of Next-Generation
Computing, 2011.

[17] J. Dean and L. A. Barroso. The Tail at Scale.
Communications of the ACM, 2013.

[18] G. Dommety and K. Leung. Mobile IP
Vendor/Organization-Specific Extensions. RFC 3115, 2001.

[19] N. Dukkipati and N. McKeown. Why Flow-Completion
Time is the Right Metric for Congestion Control. ACM
SIGCOMM Computer Communication Review, 2006.

[20] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan, N. Cardwell,
Y. Cheng, A. Jain, S. Hao, E. Katz-Bassett, and R. Govindan.
Reducing Web Latency: The Virtue of Gentle Aggression. In
SIGCOMM, 2013.

[21] S. Floyd. HighSpeed TCP for Large Congestion Windows.
RFC 3649, 2003. http://www.rfc-editor.org/rfc/rfc3649.txt.

[22] S. Floyd, T. Henderson, and A. Gurtov. The NewReno
Modification to TCP’s Fast Recovery Algorithm. RFC 3782,
2004. https://tools.ietf.org/html/rfc3782.

[23] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. Tcp
extensions for multipath operation with multiple addresses.
RFC 6824, RFC Editor, January 2013.
http://www.rfc-editor.org/rfc/rfc6824.txt.

[24] S. Ghorbani, B. Godfrey, Y. Ganjali, and A. Firoozshahian.
Micro Load Balancing in Data Centers with DRILL. In
HotNets, 2015.

[25] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. VL2: A
Scalable and Flexible Data Center Network. In SIGCOMM,
20009.

[26] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. M. Watson,
A. W. Moore, S. Hand, and J. Crowcroft. Queues Don’t
Matter When You Can JUMP Them! In NSDI, 2015.

[27] D. Guniguntala, P. E. McKenney, J. Triplett, and J. Walpole.
The Read-Copy-Update Mechanism for Supporting
Real-time Applications on Shared-memory Multiprocessor
Systems with Linux. IBM Systems Journal, 2008.

[28] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu,
and Y. Zhang. SecondNet: A Data Center Network
Virtualization Architecture with Bandwidth Guarantees. In
CoNEXT, 2010.

[29] S. Ha, I. Rhee, and L. Xu. CUBIC: A New TCP-friendly
High-speed TCP Variant. ACM SIGOPS Operating Systems
Review, 2008.

[30] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and
A. Akella. Presto: Edge-based Load Balancing for Fast
Datacenter Networks. In SIGCOMM, 2015.

http://www.rfc-editor.org/rfc/rfc5681.txt
http://www.ietf.org/internet-drafts/draft-ietf-tcpm-dctcp-01.txt
http://www.ietf.org/internet-drafts/draft-ietf-tcpm-dctcp-01.txt
http://www.dell.com/downloads/global/power/ps3q06-20060132-Broadcom.pdf
http://www.dell.com/downloads/global/power/ps3q06-20060132-Broadcom.pdf
http://www.rfc-editor.org/rfc/rfc6928.txt
http://www.rfc-editor.org/rfc/rfc3649.txt
https://tools.ietf.org/html/rfc3782
http://www.rfc-editor.org/rfc/rfc6824.txt

[31] V. Jacobson, B. Braden, and D. Borman. TCP Extensions for
High Performance. RFC 1323, 1992.
http://www.rfc-editor.org/rfc/rfc1323.txt.

[32] R. K. Jain, D.-M. W. Chit, and W. R. Hawe. A Quantitative
Measure of Fairness and Discrimination for Resource
Allocation in Shared Computer Systems. Technical Report
DEC-TR-301, Digital Equipment Corporation, 1984.

[33] K. Jang, J. Sherry, H. Ballani, and T. Moncaster. Silo:
Predictable Message Latency in the Cloud. In SIGCOMM,
2015.

[34] V. Jeyakumar, M. Alizadeh, D. Mazieres, B. Prabhakar,

C. Kim, and A. Greenberg. EyeQ: Practical Network
Performance Isolation at the Edge. In NSDI, 2013.

[35] L. Jose, L. Yan, M. Alizadeh, G. Varghese, N. McKeown,
and S. Katti. High Speed Networks Need Proactive
Congestion Control. In HotNets, 2015.

[36] G.Judd. Attaining the Promise and Avoiding the Pitfalls of
TCP in the Datacenter. In NSDI, 2015.

[37] L. Kalampoukas, A. Varma, and K. K. Ramakrishnan.
Explicit Window Adaptation: A Method to Enhance TCP
Performance. IEEE/ACM Transactions on Networking, 2002.

[38] V. T.Lam, S. Radhakrishnan, R. Pan, A. Vahdat, and
G. Varghese. Netshare and Stochastic Netshare: Predictable
Bandwidth Allocation for Data Centers. ACM SIGCOMM
Computer Communication Review, 2012.

[39] C. Lee, C. Park, K. Jang, S. Moon, and D. Han. Accurate
Latency-based Congestion Feedback for Datacenters. In
USENIX Annual Technical Conference, 2015.

[40] LiquidIO Server Adapters .
http://www.cavium.com/LiquidIO_Server_Adapters.html.

[41] S. Liu, T. Bagar, and R. Srikant. TCP-Illinois: A Loss-and
Delay-based Congestion Control Algorithm for High-speed
Networks. Performance Evaluation, 2008.

[42] A.Menon and W. Zwaenepoel. Optimizing TCP Receive
Performance. In USENIX Annual Technical Conference,
2008.

[43] R. Mittal, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi,
A. Vahdat, Y. Wang, D. Wetherall, D. Zats, et al. TIMELY:
RTT-based Congestion Control for the Datacenter. In
SIGCOMM, 2015.

[44] J. C. Mogul. TCP Offload Is a Dumb Idea Whose Time Has
Come. In HotOS, 2003.

[45] J. C. Mogul and R. R. Kompella. Inferring the Network
Latency Requirements of Cloud Tenants. In HorOS, 2015.

[46] M. Moshref, M. Yu, A. Sharma, and R. Govindan. Scalable
Rule Management for Data Centers. In NSDI, 2013.

[47] Netronome FlowNIC.
https://netronome.com/product/flownics/.

[48] Network Benchmarking Utility.
https://github.com/mellanox/sockperf.

[49] R. Niranjan Mysore, G. Porter, and A. Vahdat. FasTrak:
Enabling Express Lanes in Multi-tenant Data Centers. In
CoNEXT, 2013.

[50] Open vSwitch. http://openvswitch.org.

[51] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and
H. Fugal. Fastpass: A Centralized Zero-queue Datacenter
Network. In SIGCOMM, 2014.

[52] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou,

J. Rajahalme, J. Gross, A. Wang, J. Stringer, P. Shelar,
K. Amidon, and M. Casado. The Design and Implementation
of Open vSwitch. In NSDI, 2015.

[53] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy,

S. Ratnasamy, and I. Stoica. FairCloud: Sharing the Network

in Cloud Computing. In SIGCOMM, 2012.

[54] S. Radhakrishnan, Y. Geng, V. Jeyakumar, A. Kabbani,

G. Porter, and A. Vahdat. SENIC: Scalable NIC for End-host
Rate Limiting. In NSDI, 2014.

[55] J. Rasley, B. Stephens, C. Dixon, E. Rozner, W. Felter,

K. Agarwal, J. Carter, and R. Fonseca. Planck:
Millisecond-scale Monitoring and Control for Commodity
Networks. In SIGCOMM, 2014.

[56] H. Rodrigues, J. R. Santos, Y. Turner, P. Soares, and
D. Guedes. Gatekeeper: Supporting Bandwidth Guarantees
for Multi-tenant Datacenter Networks. In WIOV, 2011.

[57] J. Semke, J. Mahdavi, and M. Mathis. Automatic TCP
Buffer Tuning. ACM SIGCOMM Computer Communication
Review, 1998.

[58] A. Shieh, S. Kandula, A. G. Greenberg, C. Kim, and B. Saha.
Sharing the Data Center Network. In NSDI, 2011.

[59] A. Singh,J. Ong, A. Agarwal, G. Anderson, A. Armistead,
R. Bannon, S. Boving, G. Desai, B. Felderman, P. Germano,
et al. Jupiter Rising: A Decade of Clos Topologies and
Centralized Control in Google’s Datacenter Network. In
SIGCOMM, 2015.

[60] SKB in Linux Networking.
http://vger.kernel.org/~davem/skb.html.

[61] N.T. Spring, M. Chesire, M. Berryman, V. Sahasranaman,
T. Anderson, and B. Bershad. Receiver Based Management
of Low Bandwidth Access Links. In INFOCOM, 2000.

[62] B. Stephens, A. L. Cox, A. Singla, J. Carter, C. Dixon, and
W. Felter. Practical DCB for Improved Data Center
Networks. In INFOCOM, 2014.

[63] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A Compound
TCP Approach for High-speed and Long Distance Networks.
In INFOCOM, 2006.

[64] TCP Offload Engine (TOE).
http://www.chelsio.com/nic/tcp-offload-engine/.

[65] TCP Probe. http://www.linuxfoundation.org/collaborate/
workgroups/networking/tcpprobe.

[66] TOE. http://www.linuxfoundation.org/collaborate/
workgroups/networking/toe.

[67] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G.
Andersen, G. R. Ganger, G. A. Gibson, and B. Mueller. Safe
and Effective Fine-grained TCP Retransmissions for
Datacenter Communication. In SIGCOMM, 2009.

[68] A. Venkataramani, R. Kokku, and M. Dahlin. TCP Nice: A
Mechanism for Background Transfers. SIGOPS Oper. Syst.
Rev., 2002.

[69] G. Wang and T. E. Ng. The Impact of Virtualization on
Network Performance of Amazon EC2 Data Center. In
INFOCOM, 2010.

[70] K. Winstein and H. Balakrishnan. TCP ex Machina:
Computer-generated Congestion Control. In SIGCOMM,
2013.

[71] H. Wu, Z. Feng, C. Guo, and Y. Zhang. ICTCP: Incast
Congestion Control for TCP in Data Center Networks. In
CoNEXT, 2010.

[72] H. Wu, J. Ju, G. Lu, C. Guo, Y. Xiong, and Y. Zhang. Tuning
ECN for Data Center Networks. In CoNEXT, 2012.

[73] D. Xie, N. Ding, Y. C. Hu, and R. Kompella. The Only
Constant is Change: Incorporating Time-varying Network
Reservations in Data Centers. In SIGCOMM, 2012.

[74] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn,

Y. Liron, J. Padhye, S. Raindel, M. H. Yahia, and M. Zhang.
Congestion Control for Large-Scale RDMA Deployments.
In SIGCOMM, 2015.

http://www.rfc-editor.org/rfc/rfc1323.txt
http://www.cavium.com/LiquidIO_Server_Adapters.html
https://netronome.com/product/flownics/
https://github.com/mellanox/sockperf
http://openvswitch.org
http://vger.kernel.org/~davem/skb.html
http://www.chelsio.com/nic/tcp-offload-engine/
http://www.linuxfoundation.org/collaborate/workgroups/networking/tcpprobe
http://www.linuxfoundation.org/collaborate/workgroups/networking/tcpprobe
http://www.linuxfoundation.org/collaborate/workgroups/networking/toe
http://www.linuxfoundation.org/collaborate/workgroups/networking/toe

	Introduction
	Background and Motivation
	Datacenter Transport
	Benefits of AC69DC
	Tenant-Level Bandwidth Allocation

	Design
	Obtaining Congestion Control State
	Implementing DCTCP
	Enforcing Congestion Control
	Per-flow Differentiation

	Implementation
	Results
	Microbenchmarks
	Macrobenchmarks

	Related Work
	Conclusion

