
On the Treeness of Internet Latency and Bandwidth
Venugopalan Ramasubramanian

∗
Dahlia Malkhi

†
Fabian Kuhn

‡
Mahesh Balakrishnan

§

Archit Gupta
]

and Aditya Akella
[

ABSTRACT
Existing empirical studies of Internet structure and path properties
indicate that the Internet is tree-like. This work quantifies the de-
gree to which at least two important Internet measures—latency
and bandwidth—approximate tree metrics. We evaluate our ability
to model end-to-end measures using tree embeddings by actually
building tree representations. In addition to being simple and in-
tuitive models, these trees provide a range of commonly-required
functionality beyond serving as an analytical tool.

The contributions of our study are twofold. First, we investigate
the ability to portray the inherent hierarchical structure of the Inter-
net using the most pure and compact topology, trees. Second, we
evaluate the ability of our compact representation to facilitate many
natural tasks, such as the selection of servers with short latency or
high bandwidth from a client. Experiments show that these tasks
can be done with high degree of success and modest overhead.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—Network topology, Internet

General Terms
Algorithms, Design, Experimentation, Measurement, Performance

Keywords
Sequoia, Internet topology, tree embedding, latency, bandwidth

1. INTRODUCTION
Understanding the fundamental structure and properties of large

and complex networks such as the Internet can be a daunting task.
The internal structure of the Internet is intentionally hidden from
its users, providing full, seamless end-to-end connectivity. Fur-
thermore, internal routing decisions are affected by complex and
dynamic policies and rules that are hard to predict and model.

∗Venugopalan Ramasubramanian: Microsoft Research Silicon Val-
ley, Mountain View, CA 94043 rama@microsoft.com
†Dahlia Malkhi: Microsoft Research Silicon Valley, Mountain
View, CA 94043 dalia@microsoft.com
‡Fabian Kuhn: MIT CSAIL, Cambridge, MA 02139
fkuhn@csail.mit.edu§Mahesh Balakrishnan: Microsoft Research Silicon Valley, Moun-
tain View, CA 94043 maheshba@microsoft.com
]Archit Gupta: Data Domain Inc., Santa Clara, CA 95054
agupta@datadomain.com
[Aditya Akella: University of Wisconsin-Madison, Madison, WI
53706 akella@cs.wisc.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS/Performance’09, June 15–19, 2009, Seattle, WA, USA.
Copyright 2009 ACM 978-1-60558-511-6/09/06 ...$5.00.

Previous work has looked at various features of the Internet graph,
and proposed theoretical models to describe its evolvement. Falout-
sos et al. [10] discovered that Internet router connectivity obeys a
scale-free distribution governed by a simple power law. Barabási
and Albert [4] then developed an evolutionary model of preferen-
tial attachment, which can be used for generating topologies with
power-law degree distributions.

A fundamental property that stems from these works is the in-
herent tree-like structure of the Internet. Indeed, it was observed
before that the core of the Internet is built essentially in layers [38,
40]. At the core, we find a densely connected set of high degree
routers. Since these routers are powerful computers interconnected
with high-bandwidth links, at a coarse grain, they look like a single
root node. Dangling from the core are other routers whose inter-
connectivity is fairly sparse. At the endpoints, home users and
businesses connect locally to ISP gateways. Consequently, the net-
work is inherently hierarchical in structure. These trends are even
more pronounced when considering the metric of available band-
widths. For any graph structure, it is well known that the metric
of bottleneck-edge along shortest paths forms a hierarchically sep-
arated tree.

That said, it should be noted that the Internet is in no way a pure
tree. Direct peering interconnects are common between ASs, and
routes often do not optimize end-to-end latency or bandwidth. This
often results in triangle inequality violations [44], and a fortiori,
treeness violations. Nevertheless, our study ascertains that a skele-
ton tree prevails and dominates end-to-end measures to a certain
degree of accuracy.

In addition to the above observations, we can rigorously quantify
the treeness of Internet measures such as latency and bandwidth.
We empirically study end-to-end measures from three datasets, us-
ing a rigorous measure of treeness we introduced in [1]. The mea-
sure, called 4PC-ε, gives a value in the range [0..1], where at one
end (0) is a perfect tree metric, and at the other (1) an arbitrary
metric space. Our evaluation of these real-life measurements re-
veal encouraging closeness to tree metrics. More than 80% of node
quadruplets we test exhibit an 4PC-ε value of .4 or less. For a san-
ity comparison, note that a random graph, a Euclidean space, and a
scattering of nodes on a sphere all have more than 30% quadruplets
with 4PC-ε of .5 or higher.

Our interest goes much further than merely describing this phe-
nomenon. Luckily, there is a strong provable relationship between
the 4PC-ε measure of a metric and the ability to embed it in a
tree [1]. By embedding, we refer to the mapping of nodes onto
leaves of a virtual tree, whose inner nodes are virtual points and
whose edge weights are carefully selected so as to represent origi-
nal graph measurements. We take advantage of these results and
produce in this work methods for approximate tree embedding.
Note that we do not attempt to discover actual gateways and routers,
but rather strive to build a “virtual” model through light-weight,
end-to-end mechanisms.

Our construction techniques are an important part of our contri-
bution. They are rooted in a perfect tree-metric procedure, which
starts with a full set of measurements of pairs of endpoints from
a tree metric space and constructs a tree that perfectly represents

� �
��

≤ =

d(B,C) ≥ d(A,B) = d(A,C)

d(A,B) ≥ d(A,D) = d(B,D)

d(C,B) ≥ d(C,D) = d(B,D)

A B DC

Figure 1: Four-Points Condition: For any four nodes and the three
sums of distinct pairs of distances between them, the highest sum is
equal to the second highest iff the nodes and distances are embeddable
in a tree.

Figure 2: Tree Showing an Ultra-Metric: Hosts B and C with a com-
mon ancestor to A have the same distance to A. Similarly for A and B
with respect to D.

them [5]. Our tree construction protocols include several substan-
tial modifications to that procedure. First, we work with non-pure
tree metrics, and accordingly, develop strategies to reduce the (in-
evitable) distortion error of the embedding. Second, we heuristi-
cally reduce the number of end-to-end measurements required for
the construction in order to accommodate partial measurements and
reduce measurement overhead. Third, we employ some tree bal-
ancing rules in order to enhance the efficiency of services that are
implemented on our trees, e.g., closest node selection and distance
labeling. Fourth, we found it to be highly beneficial to maintain a
small number of trees, tuned in different ways, and pick the best one
as needed. These techniques adapt fundamental techniques from
graph theory for practical deployment.

The outcome of the above is an elegant and unified method for
representing both latency and bandwidth as trees. We built a sys-
tem called Sequoia that takes as input a set of pairwise end-to-end
network measurements, and quickly embeds them into a collec-
tion of trees. Sequoia trees provide a strikingly intuitive topologi-
cal decomposition of the Internet, and facilitate a host of services
including distance approximation, closest neighbor selection, and
topologically-aware clustering, which can be readily implemented
through easily-decentralized, light-weight mechanisms.

This paper presents a comprehensive evaluation of Sequoia over
three datasets. It demonstrates that Sequoia is resilient to violation
of the triangle inequality condition in network measures, tolerates
non-availability of some measurements, and shows good scalability
with increasing number of hosts.

The rest of the paper has the following organization: Section 2
provides some background about tree metrics and makes a case for
embedding network measures on trees. Section 3 then describes
the Sequoia system in detail while Section 4 evaluates Sequoia.
Finally, we discuss suitable applications and related work in Sec-
tions 5 and 6 and conclude in Section 7.

2. BACKGROUND AND INTUITION
The key intuition behind this work is that Internet path measures

such as bandwidth and latency are approximate tree metrics. In
this section, we provide some background about tree metrics and
present intuitive and analytical arguments to back up this intuition.

2.1 Tree metrics
Consider a set D of pair-wise measurements of some network

path measure, say latency or bandwidth, between a set V of net-
worked hosts. This set of measures D is a tree metric if there
exists a tree T with non-negative weights such that V ⊆ T and

dV (u, v) = dT (u, v) for all u, v ∈ V , where d(u, v) and dT (u, v)
represent the pair-wise path property. In other words, a set of mea-
sures is a tree metric if it can be derived from distances on a tree,
that is, it can be embedded on a tree. Note that in the above defi-
nition, the tree T may have additional nodes not present in the set
V .

There is a convenient condition called the Four Points Condition
(4PC) to verify whether a set of measures is a tree metric. The four-
points condition states that for any four hosts w, x, y, and z ordered
such that d(w, x) + d(y, z) ≤ d(w, y) + d(x, z) ≤ d(w, z) +
d(x, y), d(w, y)+ d(x, z) = d(w, z)+ d(x, y). A set of measures
is a tree metric if and only if every set of four hosts satisfies the
4PC. Figure 1 illustrates the four points condition graphically.

Another form of tree metric that is useful for modeling network
path measures is the ultra metric. An ultra metric embeds network
hosts into a hierarchically separated tree, where distance between
a pair of nodes depends on the closest common ancestor of the
nodes. That is, all pairs of hosts with the same closest common
ancestor have the same distance. Note that, once again, the tree
might include additional hosts not present in the set of measures.
An ultra metric is a stricter form of tree metric in that every ultra
metric is a tree metric while the converse is not always true.

Similar to tree metrics, there is a convenient condition to verify
whether a set of measures is an ultra metric. This condition, called
the Three Points Condition (3PC), states that for any three hosts x,
y, and z ordered such that d(y, z) ≤ d(x, z) ≤ d(x, y), d(x, y) =
d(x, z). A set of measures is an ultra metric if and only if every set
of three hosts satisfies the 3PC. Figure 2 illustrates an ultra metric
and the three points condition graphically.

Note that the above definition of the three point condition ap-
plies to measures such as latency where smaller values are more
desirable than larger values. The corresponding 3PC for bandwidth
would state the converse, that is, in any triplet, the two smaller
bandwidths are equal.

2.2 Bandwidth and latency as tree metrics
We first argue why tree metric is a fitting representation for band-

width. We do this by presenting two hypothetical network models
in which bandwidth measures turn out to be exact tree metrics.
Best-bandwidth networks: Consider a network of hosts connected
by routers and gateways where the path used to route packets be-
tween two hosts is the best-bandwidth path, that is, the path with
the highest bottleneck bandwidth, where the bottleneck bandwidth
of a path is the minimum of the bandwidths of each link in the path.

We can trivially show that the set of bandwidths between the
end hosts in the above network is an ultra metric. Assume, for

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

C
D
F

(
%
)

4PC-Epsilon

UC-PlanetLab Latency
HP-PlanetLab Bandwidth
Cornell-King Latency
Distance on a Sphere

Figure 3: CDF of 4PC-εs: The 4PC-εs are mostly small indicating that
the datasets closely resemble tree metrics, whereas latencies between
nodes distributed on the surface of a sphere have much bigger 4PC-εs.

instance, that there is a set of hosts, x, y, and z with d(y, z) ≥
d(x, z) ≥ d(x, y) that violate the 3PC for bandwidth; that is,
d(x, z) 6= d(x, y). Then the path x → z → y would have a
higher bandwidth than the current path, indicating that the network
is not using the best-bandwidth paths—a contradiction.
Edge-bandwidth networks: Consider a network of hosts con-
nected by routers and gateways where the last-mile access links
have lower bandwidths than the links at the inner core. That is, the
bottleneck bandwidth between two end hosts only depends on the
bandwidths of the access links connecting the two end hosts to the
network and is totally independent of what routing policies are used
for finding the paths. Then, this is a special case of best-bandwidth
networks (all routes from A to B have the best bottleneck band-
width since the bottleneck occurs at the access link), and 3PC holds
a fortiori here.

The Internet, of course, does not always satisfy the above mod-
els. In fact, the first scenario of best-bandwidth networks may arise
only in rare instances: for example, when a CDN such as Akamai
uses the best-provisioned paths in an overlay network1. The sec-
ond scenario, where the path bandwidth depends on the last-mile,
access links, is more common. Hu et al. [16] report that, in the
Wide-Area Internet, 60% of paths between random end hosts have
the bottleneck in the first or second hop. This property is even
more prevalent in broadband networks as shown by a recent mea-
surement study by Dischinger et al. [9].

If these simple models hold globally we could model bandwidth
in trivial ways—for example, by just keeping track of the band-
width of the access link. In practice, however, networks only sat-
isfy them approximately, motivating the need for more sophisti-
cated models explored in this paper.

A different intuition is required to understand the treeness of end-
to-end latency, which depends on all the components in the path.
Here, it is useful to look at the graph structure of the network. The
hierarchical organization of the Internet, with different tiers of ISPs
(Tier 1, Tier 2, etc.), is well known and has been empirically veri-
fied by several studies [38, 40]. These studies show that routers at
the core are densely connected—as Tier 1 ISPs have many peering
relationships with each other. Whereas, routers in the edge net-
1Akamai have their own proprietary detour routing service called
SureRoute [46]. However, we are not aware if the routes are opti-
mized for bandwidth.

works can be picturized as dangling away from the core since ISPs
in other tiers mostly have hierarchical, provider-consumer relation-
ships between them. The result is a jelly-fish-like structure [40],
where most Internet routes start at the edge, go up the hierarchy, tra-
verse the core, and descend down, leading to a phenomenon known
as valley-free routing [38].

In practice, the evident hierarchical organization of Internet routers
does not translate to a strict tree since the peering relationships be-
tween ISPs are quite complicated; the core has many short cuts,
peer-to-peer relationships exist even outside the core, and so on.
Further, a variety of sub-optimal routing policies contributes to the
violation of symmetry and the triangle inequality condition, requi-
site properties of a tree (or any) metric.

Hence, we performed an empirical study to quantify how close
Internet measures actually are to tree metrics, which we present
next.

2.3 Analysis of the tree-ness of the Internet
We quantify the fit of a set of measures to a tree metric by mea-

suring how well it satisfies the four points condition. We use a
parameter called the 4PC-ε originally introduced in [1] to quan-
tify the deviations from 4PC. The 4PC-ε for a set of four nodes
w, x, y, and z ordered such that d(w, x) + d(y, z) ≤ d(w, y) +
d(x, z) ≤ d(w, z) + d(x, y) is the one that satisfies the equation
d(w, z)+d(x, y) = d(w, y)+d(x, z)+2ε·min{d(w, x), d(y, z)}.
The paper [1] provides more intuition about this definition.

The distribution of 4PC-εs show how close a network measure
is to a tree metric. The 4PC-εs are zero for a perfect tree metric
and at most one for an arbitrary metric. When the distances violate
the triangle inequality condition, the 4PC-ε can even be larger than
one.

We compute the distributions of 4PC-εs for three realworld datasets:
1) a UC-PlanetLab Latency dataset of round-trip times between
PlanetLab nodes measured at University of Cincinnati [53], 2) a
Cornell-King Latency dataset of latencies measured between DNS
servers using the King technique [14] at Cornell University [47],
and 3) a HP-PlanetLab Bandwidth dataset of available bandwidth
measurements between PlanetLab nodes collected at HP Labs [51]
using the pathChirp tool [33]. Table 1 summarizes the details about
these datasets.

Figure 3 shows the CDF 4PC-εs for each dataset. The 4PC-
ε values are sometime greater than one because the datasets have
many violations of the triangle inequality condition, roughly 15 to
40 % of the triplets as shown in Table 1. We restrict the x-axis
between zero and one for clarity. Overall, the 4PC-εs are small,
over 80% of values are less than 0.2 for UC-Planetlab and HP-
PlanetLan datasets and less than 0.4 for the Cornell-King dataset.
The tail, however, is quite heavy, especially for the Cornell-King
dataset. We found that the larger 4PC-ε values mostly come from
triangle inequality violations.

To put these numbers in perspective, we also show the distribu-
tion of 4PC-εs for a metric of latencies on the surface of the earth
(approximated as a sphere), as would be the case if the latencies
between Internet hosts were based on their geographical distance.
This curve in Figure 3 was computed by sampling the shortest geo-
graphic distances between 1000 random points on the surface of a
sphere. Not surprisingly, the distribution of 4PC-εs for geographic
routing shows much less resemblance to a tree metric than latencies
on the Internet.

2.4 Assumptions
Overall, the above intuition and analysis indicates that approx-

imating Internet path measures as tree metrics is a promising ap-

proach. Certainly, this approach makes a few assumptions about the
path measures. Similar to prior coordinates-based approaches [7, 8,
27] for modeling latency, this approach also assumes that the net-
work measure is a metric. The metric assumption implies at least
two properties: 1) the measures are symmetric and 2) the trian-
gle inequality holds. However, these properties do not always hold
in the Internet. Policy-based routing (such as hot potato and cold
potato) that does not select shortest or bandwidth-optimal paths and
transient overheads such as queuing delay lead to violations of sym-
metry and the triangle inequality condition.

Our approach, described in the next section, does not currently
address asymmetric network measures. However, it is resilient to
triangle inequality violations and works well in their presence as
will be evident from our evaluation.

Finally, we are aware that the term bandwidth often refers to re-
lated yet different measures: capacity, the theoretical maximum
bandwidth of a path in the absence of cross traffic, available band-
width, the actual unused bandwidth at a given instant, and the bulk-
transfer throughput achievable by a TCP connection [30]. The in-
tuition provided above as well as our approach and techniques de-
scribed below apply well to any of these bandwidth measures. The
dataset we use to evaluate our approach, however, measured avail-
able bandwidth.

3. SEQUOIA
We next present Sequoia, a system that applies the above insights

for embedding network measures such as latency and bandwidth
into trees. Sequoia strives to minimize distortion of end-to-end
measures despite the fact that Internet latency and bandwidth are
not perfect tree metrics. Part of the effort is dedicated towards pro-
viding network-aware functionalities such as path quality estima-
tion, server selection, and hierarchical clustering to applications.
The rest of this section provides an overview of Sequoia, details its
design, and describes how it supports the above functionalities.

3.1 Overview
Sequoia constructs “virtual” prediction trees for a system of net-

worked hosts through end-to-end measurements. The prediction
tree for a set of networked end hosts looks as follows: The end
hosts form the leaf nodes and are connected via a network of vir-
tual inner nodes. The links in this virtual topology have weights
that model a network measure, that is, latency or bandwidth.

The inner nodes are virtual in the sense that they are introduced
purely for modeling purposes and are not expected to have any real-
world associations. The tree topology also does not imply that the
end hosts organize into a tree-based distributed system; the virtual
trees could merely be an abstraction in the memory of a few or all
hosts in the system.

Sequoia designates an end host as a lever R for each virtual tree;
the lever could be any of the end hosts or a specially provisioned,
landmark server. The lever acts as a reference for the tree; that is,
link weights are assigned such that the tree path from the lever to
an end host has the same distance as the real Internet path between
the lever and the end host. Other distances on the tree might distort
original end-to-end measures; our construction aims to minimize
such distortion. Figure 4 illustrates a virtual tree for three end hosts
and a lever.

Besides the benefit of obtaining a compact representation of the
given network, prediction trees provide a variety of useful func-
tions.

Distance labels The prediction tree provides a convenient way to
label participating hosts so that the distance between every

pair is encoded in their labels. Each host has a distance label
that encodes the path of the host to the lever and the corre-
sponding link weights. Two hosts can then infer their tree
distance (which in turn, estimates their true distance in the
original metric). Note that this computation need not refer to
other parts of the tree. For example, in Figure 4, hosts A and
B have the distance label s,t and C the label t. Two nodes,
say A and C, can estimate their distance by computing the
path A,s,t,C from their distance labels.

Closest node discovery A participating end-host can use the pre-
diction tree to discover a closest or best-provisioned peer
node by merely looking at its immediate vicinity in the tree.
For example, in Figure 4, host A can find its closest peer host
B through a localized search. Alternatively, an external end-
host can use the tree to guide its search to find the best server.
Such a search can start at the lever and direct itself in the tree
along the path from the lever to the chosen server at the leaf.

Topological decomposition The prediction tree itself provides a
topologically-aware hierarchical clustering of hosts. For ex-
ample, in Figure 4, hosts A and B being closer to each other
than host C form a lower-level cluster.

3.2 Design
Given a full set of measurements of pairs of endpoints from a

tree metric space, the mathematical procedure for reconstructing a
tree that perfectly represents them is well understood [5]. With that
procedure, if we start with a tree metric, we get a zero-distortion
prediction tree. Sequoia’s algorithms for constructing prediction
trees are based on components of this perfect reconstruction, but
differ in substantial ways. We first explain the principles of a per-
fect tree metric embedding.

The algorithm starts with a fixed lever R and adds nodes to form
a tree one by one. A host’s position in the tree is determined by
the lever and one other node called the anchor. A host, say B,
tries to maintain exact distances to the lever R and its anchor A; it
preserves the three distances d(A, R), d(B, R), and d(A, B), by
introducing a virtual node s in the existing tree path between A
and R. Note that computing the distances from s to R, A, and B
while preserving the real distances is straight forward (for instance,
d(s, R) = 0.5 · (d(A, R) + d(B, R)− d(A, B))).

In order to preserve zero-distortion for tree metrics, the anchor
needs to satisfy the following condition: maximize the distance
d(s,R) on the tree [5]. This distance d(s, R) = 0.5 · (d(A, R) +
d(B, R) − d(A, B)) is called the Gromov product and will be de-
noted as (A|B)R in the rest of the paper. This basic join algorithm
is illustrated in Figure 6.

While this algorithm works perfectly for a pure tree metric, for
approximate tree metrics this algorithm has the following problem.
Every time a node B is added to the tree, the anchor point s is
positioned so as to preserve the joiner’s distances to the lever and to
its anchor. However, distances to all other nodes may be distorted.
That distortion may be further intensified for a new node C that
uses B as its anchor. Generally, distortion between a pair of nodes
will depend on the number of anchor points along the path between
them. In order to guarantee lowest worst-case distortion, one needs
to form a particular joining order of the nodes so as to carefully
choose the anchor points [1]. The theoretical bounds given in [1]
were a good starting point for our algorithm, on which we further
refine in a variety of ways described below.

R

A B C

3

10

80

20

2
s

t

R: Lever

A,B,C: End Hosts

s,t: Inner Nodes

R

A

B C

Figure 4: Prediction Tree: An example prediction tree between three
end hosts and a lever. The link weights model path qualities such as
latency.

Figure 5: Anchor Tree: An example anchor tree corresponding to
the prediction tree in Figure 4.

3.2.1 Anchor tree
Even though the above algorithm provides an elegant construc-

tion for prediction trees, it does not help in shaping the structure of
the tree. Consequently, the resulting prediction tree may not have a
nice balanced structure. For instance, if we start with distances on
a linear chain of hosts, then the resulting prediction tree will also
be a chain. This has profound impact on the scalability of our ap-
proach because the cost of basic primitives such as distance labels
and server selection depends on the tree structure.

We propose an alternative, scalable abstraction called the anchor
tree. An anchor tree is simply a tree showing anchor relationships
of end hosts in the prediction tree. Figure 5 shows an example
anchor tree for the prediction tree in Figure 4. Unlike the predic-
tion tree, an anchor tree provides more opportunities to shape its
structure. When choosing anchor points some priority could be
given to ensure that the resulting anchor tree will have a reasonably
balanced shape. Even in the adverse case where the distances are
induced by a linear chain, we can construct a well-balanced anchor
tree.

The anchor tree and its corresponding prediction tree are equivalent—
the former is just a more scalable representation of the latter. It
provides the exact same distance estimates as the prediction tree
although computing distance is a bit more tedious. Just as in a
prediction tree, the path from an end host to the lever serves as
the distance label in an anchor tree. Two end hosts can estimate
the distance between them based on their distance labels. A sim-
ple distance computation algorithm is to construct a prediction tree
(in memory) based on the anchor relationships encoded in the two
distance labels and then use the prediction tree to estimate the dis-
tance.

A reasonably balanced anchor tree provides the following advan-
tages: First, it provides short distance labels that scales logarithmi-
cally with system size. Second, the paths from the lever to hosts
are also short enabling efficient searches for best servers. Finally,
unlike the prediction tree, an anchor tree is composed only of real
hosts and can be directly used to construct a distributed system.

3.2.2 Best host discovery
The anchor tree representation also helps to reduce measurement

overhead during the construction of prediction trees. Note that, the
tree construction algorithm outlined earlier involved the key step of
finding an anchor that maximizes the Gromov product. This step
might involve searching through all hosts in the system and mea-

suring their distance to the joining host, an O(N) probing effort.
Sequoia instead uses the anchor tree to prune this search space

and find a suitable anchor with fewer measurements. We first out-
line a general search algorithm on the anchor tree for finding a host
that meets a general search criterion with respect to a target host
B. The search starts with the lever as the candidate host. It looks
at all the hosts within a certain search_depth D from the lever and
measures their distance to the target host. The best host from this
set is chosen as the new candidate and the search is repeated until
no progress can be made. Finally, the search returns the best host in
the path from the lever to the last candidate. This search algorithm
is illustrated in Figure 7.

The search criterion in the above algorithm can be set according
to requirements. A simple criterion based on smallest latency or
largest bandwidth enables server selection. Tree construction re-
quires the more complex criterion of maximum Gromov product.
This criterion can reduced as maximum d(A, R)−d(A, B), where
B is the joining node because the third term in the Gromov product,
d(B, R) is a constant during the anchor search.

The above search algorithm is a heuristic and is not guaranteed to
find the correct anchor or the closest or the best-provisioned server.
It is a practical trade-off to keep measurement cost low albeit, as
shown in Section 4, an effective one. The number of measurements
required by the search algorithm is also not bounded although we
expect it to scale logarithmically on average if we bound the num-
ber of hosts a node can anchor.

3.3 Practical issues
In this section, we discuss how Sequoia handles other major

practical issues.

3.3.1 Bandwidth representation
The previous discussion primarily talked about building predic-

tion and anchor trees for a distance (latency) measure. There are
two choices for representing bandwidth on a prediction tree. The
first is to use prediction trees as a black-box for modeling any ap-
proximate tree metric and represent bandwidth by treating it as
a distance metric. The second is to build a bandwidth-specific
prediction tree where the prediction tree will resemble an ultra-
metric tree, similar to Figure 2. One well-known way to build a
bandwidth-specific prediction tree is to build a maximum- weighted
spanning tree (MST) between the hosts using bandwidths as link
weights and then define the distance between two hosts in the MST
as the weight of the smallest weighted-link in the path [5].

Figure 6: ConstructTree Algorithm: Basic prediction tree construc-
tion algorithm that preserves tree metrics for a set V of hosts.

Figure 7: SearchTree Algorithm: Basic search algorithm to find a
candidate host meeting some search criterion with respect to a target
host B using the anchor tree.

1: return tree T := constructTree(V \ {R}, R);
2:
3: function ConstructTree(V,R):
4:4: if |V | > 1 then
5: choose next host B ∈ V
6: choose anchor A that maximizes (A|B)R

7: add virtual node s between A and R at distance (A|B)R

from R;
8: add node B at distance (A|R)B from s
9: T := constructTree(V \ {B}, R);

10: fi;
11: return T;
12: end ConstructTree

1: return candidate C := SearchTree(R, B);
2:
3: function SearchTree(C, B):
4:4: S := all hosts at depth D from C in the anchor tree;
5: C′ := best host S that meets the search criterion;
6: if C 6= C′ then
7: C := SearchTree(C′, B);
8: fi;
9: return C;

10: end SearchTree

Sequoia chooses the first, black-box approach. We found it to
have better accuracy than the second approach and easier to unify
the methodology for representing latency and bandwidth. However,
bandwidth has converse semantics compared to latency—higher is
better as opposed to smaller is better for latency. Hence, Sequoia
reverses the order of bandwidth measures by subtracting each mea-
sure from a high constant before tree construction and subtracting
predicted values from the same constant before providing it to the
application. Note that, the choice of this constant does not affect
the outcome of the prediction in any way. It just needs to be high
enough to avoid negative values in the prediction tree.

3.3.2 Multiple trees
It turns out that the accuracy of the prediction tree depends on

the choice of the lever and its location in the network. It is possible
that the chosen lever is not well-suited to demarcate the relative
positions of some hosts in the network, or the lever may not be able
to measure its distance to some hosts. To mitigate the impact of
bad levers and network problems, Sequoia uses multiple prediction
trees referenced at distinct levers. Choosing the median distances
estimated from the trees then helps in removing the outliers and
improving the accuracy of prediction and server selection.

3.3.3 Triangle inequality violations
It is crucial for Sequoia to be resilient to triangle inequality vi-

olations. First, observe that violations of triangle inequality has
a simple effect on Sequoia’s prediction trees; they produce nega-
tive weights on the links. This is because the Gromov product can
be negative if the triangle inequality does not hold. Negative link
weights are not particularly a problem for computing distances on
trees since trees are acyclic (there are no negative-weight cycles).
Nevertheless, they might make a few distance estimates to come
out negative.

Sequoia corrects the above aberration and avoids negative link
weights by fixing the triangle inequality. It adds a large constant
to each measured value before building the prediction tree and sub-
tracts it back before presenting estimated distances to applications.
Adding a large constant (similar to bandwidth representation) does
not change the accuracy of prediction tree in any way. It simply
results in the Gromov product being higher by that constant and
consequently avoids any negative link weights.

3.3.4 Non-availability of measurements
Network measurements sometimes fail; a few hosts may not re-

spond to measurement probes, or firewalls and intermediate gate-

ways may block the probes. We designed Sequoia to use mea-
surements opportunistically wherever possible and to be resilient to
measurement failures whenever it occurs. Sequoia simply ignores
unavailable measurements; it sets the Gromov product to negative
infinity if one of the component measurements is not available. In
the case that a host cannot measure itself to a lever, Sequoia uses
the other prediction trees referenced at different levers.

3.3.5 Changing measures
Finally, latency and bandwidth are dynamic measures and change

with time. At a high-level, Internet measures change at two funda-
mentally different time scales. Inherent properties of a path, such
as the minimum latency and maximum capacity, change only when
the path alters. Measurement studies show that Internet paths are
typically stable for long periods (hours) and consequently provide
ample window to adjust the models to these changes [24, 28, 43].
On the other hand, instantaneous latency and bandwidth depend
on unpredictable traffic patterns making it expensive to constantly
adapt to their changes.

Sequoia adapts to dynamic changes through periodic adjustments.
Instead of modifying the prediction trees to reflect each change, it
maintains a sliding window of trees constructed at different times.
Periodically, it constructs a new tree based on the oldest predic-
tion tree (at the same lever) but with new, updated measurements.
Naturally, the periodicity of tree construction determines how well
Sequoia can adjust to changes. Similar to other systems [24, 25],
we think it is practical to reconstruct trees every few hours rather
than minutes and capture the inherent properties of Internet paths
well, rather than instantaneous values.

3.4 Architecture
Sequoia is conducive to be deployed in many ways. In this sec-

tion, we make a few remarks about the choices for Sequoia’s archi-
tecture.

Centralized service: Sequoia could be a centralized Web service
like iPlane [25], exporting a query interface to external clients.
Clients could query Sequoia to estimate a network property to a
targeted host or choose the best server from a set of target hosts. Se-
quoia in turn could take advantage of opportunistic measurements
reported by the clients or explicitly instruct clients to perform mea-
surements to target hosts. This architecture might require addi-
tional effort to keep the central servers responsive and available.

Partially centralized system: A better architecture for Sequoia is
to keep the participating hosts actively informed about their current

Dataset Measure Technique Hosts Measurements 4 <> Violations
UC-PlanetLab Latency Ping 125 15625 15 %
Cornell-King Latency King [14] 2500 3123750 22 %
HP-PlanetLab Bandwidth pathChirp [33] 396 65077 40 %

Table 1: Summary of Datasets

“coordinates”, that is, distance labels. A centralized server lever-
ages measurements observed by the hosts, builds prediction (and
anchor) trees efficiently, computes the distance labels, and informs
the hosts. Hosts, in turn, can use the distance labels to perform
latency/bandwidth prediction and server selection independently
without consulting the centralized server.

Fully decentralized system: Finally, Sequoia could be a distributed
system with no centralized server. The anchor trees provide a con-
venient distributed organization for such a deployment. A host
could maintain neighbor relationships with other hosts on its path
to the lever. The SeachTree algorithm in Figure 7 can be converted
into a network protocol for finding the anchors and best servers
through the above neighbor relationships (similar to peer-to-peer
systems such as Gnutella [50]). Levers would serve as bootstrap
hosts that new hosts can contact to join Sequoia with lever failures
compensated by other levers in the system. Finally, if anchor hosts
fail then their parents in the anchor tree can take over their role
naturally.

4. EVALUATION
We next present an evaluation of Sequoia. First, we measure how

accurately Sequoia represents the underlying datasets. Second, we
examine Sequoia’s practical benefits for selecting the closest and
best-provisioned server. Finally, we discuss a few structural prop-
erties of Sequoia trees and highlight their topological correlations
with the real world.

The evaluation is driven by the three real-world datasets (UC-
PlanetLab, Cornell-King, and HP-PlanetLab) mentioned in Sec-
tion 2. Table 1 summarizes the properties of these datasets. The
datasets represent different network properties (two latency and one
available bandwidth) measured on geographically spread-out hosts
in the wide-area Internet (two between PlanetLab [48] hosts and
one, Cornell-King, between infrastructure (DNS) servers). They
are also of widely-different scales (125, 396, and 2500 hosts) and
sometimes highly incomplete (only 40% of measurements in HP-
PlanetLab). Finally, none of them is a strict metric as the datasets
have a significant amount of triangle inequality violations (up to
40% in HP-PlanetLab).

Our evaluations were performed on an implementation of Se-
quoia’s tree construction algorithms in C#. We construct different
numbers of Sequoia trees with randomly chosen levers for each
dataset and keep track and report the number of measurements re-
quired to construct the trees. All numbers reported in this section
are based on the ConstructTree and SearchTree algorithms, which
use selected, partial measurements from the datasets.

4.1 Accuracy of tree embedding
We first examine the accuracy of using Sequoia to model net-

work latency and bandwidth. We measure accuracy as a distribu-
tion of the relative error: the ratio of the absolute difference be-
tween the predicted value from Sequoia trees and the true value
from the dataset, over the true value, that is, abs(tree_value −
graph_value)/graph_value 2. In the presence of multiple Se-

2Keong Lua et al. [23] argue for the need to employ other measures
such as relative-rank loss to assess utility of a network positioning

quoia trees, the predicted tree value was taken as the median of the
values estimated from all the trees.

We validate the accuracy of Sequoia using Vivaldi [8], the well-
known coordinates-based approach to model network latencies, as
a benchmark. We used the Vivaldi simulator [49] built at Harvard
University to embed the datasets into a three-dimensional coordi-
nate system (2 Euclidean coordinates + height). For Vivaldi, we set
the number of neighbors to include all hosts for the two complete
datasets and 50% of hosts for the third, incomplete dataset, and the
number of iterations to match the size of the dataset so that both
Vivaldi and Sequoia would use a similar number of measurements
in the best case3.

Figure 8 shows the CDF of relative errors for Sequoia in refer-
ence to Vivaldi for the two latency datasets: UC-PlanetLab (Fig-
ure 8(a)) and Cornell-King (Figure 8(b)).

For both latency datasets, Sequoia’s accuracy is comparable to
Vivaldi. Of course, Sequoia’s accuracy depends on the number of
trees used and, in general, improves with more trees. The number
of trees required to achieve a satisfactory level of accuracy depends
on the size of the dataset; Sequoia 5 does well for the UC-PlanetLab
dataset while Sequoia 15 works for the Cornell-King dataset. Fur-
thermore, the presence of triangle inequality violations do not seem
to deter the effectiveness of Sequoia (or Vivaldi). Finally, Sequoia
and Vivaldi tend to have a heavy tail of high errors. In practice, the
heavy-tail does not affect the usefulness of either systems as most
applications can tolerate the occasional errors. In theory, fortu-
nately, treating network properties as approximate tree metrics pro-
vides a good handle in characterizing the worst-case performance
of tree embedding algorithms as shown in [1].

For the bandwidth dataset (Figure 8(c)), Sequoia is clearly able
to provide a reasonably accurate representation while Vivaldi fails.
The inability of Vivaldi to model bandwidth is not surprising as
Vivaldi was not designed to model bandwidth in the first place;
bandwidth measurements cannot be intuitively tied to a coordinate
space with Euclidean distances whereas it fits well into tree met-
rics as explained in Section 2. Sequoia’s accuracy for bandwidth,
however, seems to be lesser than for latency. Despite reduced accu-
racy, Sequoia can still make practically useful bandwidth estimates
as shown in the next section.

4.2 Accuracy of server selection
Next, we demonstrate some practical benefits of Sequoia by show-

ing how well it enables selection of closest and best-provisioned
(highest bandwidth) hosts.

A target host trying to find the best server can be both an existing
participant of the system or an external entity. In the former case,
if the system employs Sequoia, the target is already part of the Se-
quoia trees; it can then find the best server through the tree search

system from the point of view of applications. In this work, we
stick with more traditional measures such as relative and absolute
error, which are more commonly used in the evaluation of related
systems [8, 11, 27].
3In general, Vivaldi can provide reasonable accuracy for embed-
ding latency with a much smaller number of measurements. Our
intention here is to show that embedding Internet latency into trees
has the same level of accuracy as a state-of-the-art coordinate sys-
tem. The fact that our approach can also embed bandwidth accu-
rately while Vivaldi cannot makes the two systems incomparable.

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2

C
D

F
 (

%
)

Relative Error

Sequoia 1
Sequoia 5

Sequoia 15
Vivaldi

(a) UC-PlanetLab Latency

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2

C
D

F
 (

%
)

Relative Error

Sequoia 5
Sequoia 10
Sequoia 15

Vivaldi

(b) Cornell-King Latency

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2

C
D

F
 (

%
)

Relative Error

Sequoia 5
Sequoia 10
Sequoia 15

Vivaldi

(c) HP-PlanetLab Bandwidth

Figure 8: Relative Embedding Error: Sequoia and Vivaldi have comparable accuracy in embedding latency. For bandwidth, Sequoia shows
reasonable accuracy whereas Vivaldi fails.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

C
D

F
 (

%
)

Error (ms)

Sequoia 5
Sequoia 10
Sequoia 15

(a) UC-PlanetLab Latency

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

C
D

F
 (

%
)

Error (ms)

Sequoia 5
Sequoia 10
Sequoia 15

(b) Cornell-King Latency

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2

C
D

F
 (

%
)

Relative Error

Sequoia 5
Sequoia 10
Sequoia 15

(c) HP-PlanetLab Bandwidth

Figure 9: Error in Server Selection: Sequoia finds closest and best-provisioned servers within reasonable error most of the time.

algorithm described in Section 3 without requiring additional mea-
surements. In the latter case, where the target is an external entity,
it might need to perform active measurements to guide its search.
This results in a trade-off between the number of measurements
performed and the quality of the best server found.

Here we show that with Sequoia, an external target can find a
good quality server with a modest overhead. We show this through
simulations where we set each host in the dataset to be an external
entity seeking to find the closest or the best-provisioned server for
one of the latency or bandwidth datasets respectively. The Sequoia
trees built for the remainder of the dataset were then used to find
the best server. The search algorithm on the Sequoia trees was
restricted to only search at depth zero at each step, that is, as the
anchor tree is descended from the lever only the children of each
candidate are used to guide the search. At the end, we chose the
best host out of the respective candidates found by each tree as the
selected server.

Figure 9 presents the results for closest and best-provisioned
server selection. It plots the quality of server selection as the er-
ror in the latency or bandwidth of the best host found by Sequoia
versus the network measure to the best server in the dataset. We
plot the absolute error for closest-server selection and the relative
error for best-provisioned-server selection since bandwidth tends to
have orders of magnitude variation.

Figure 9 shows that server selection through Sequoia works well
in practice. Using a reasonable number of trees (5 for the UC-
PlanetLab and HP-PlanetLab datasets and 15 for the Cornell-King
dataset), Sequoia finds a closest server within 10 ms about 80%
of the time and a best-provisioned server with less than 50% error
80% of the time. This quality of selection of the best-provisioned
host is adequate in practice. Server bandwidths vary in orders of
magnitude and the challenge often is in selecting a 10 Mbps server
over a 1 Mbps server, which is within the ability of Sequoia.

4.3 Cost-benefit analysis
A natural inquiry next is to understand the trade off between ac-

curacy and measurement overhead.
We first show the distribution of the number of measurements

used for finding the anchors while each new host tried to join the
trees. We plot a distribution because the number of measurements
varies for each host. We plot the measurement overhead for differ-
ent datasets as a CDF in Figure 10. Since each dataset has a differ-
ent number of hosts, we plot the measurements as a fraction of the
total number of hosts measured when a new host joins (x-axis).

Figure 10 shows that tree construction only consumes a small
fraction of the measurements. Moreover, the curves are fairly steep
indicating that most hosts use a similar number of measurements.
Occasionally, however, a host might perform a large number of
measurements (as shown by the tail). The most important obser-
vation is that the fraction of measurements required decreases with
the number of hosts in the datasets; it is much lower (about 5%
median) for the largest dataset (Cornell-King) compared to (about
20% median) the smallest dataset (UC-PlanetLab). The average
number of measurements per host are 39 for UC-PlanetLab, 76 for
HP-PlanetLab, and 149 for Cornell-King. This trend indicates that
the measurement overhead scales sub-linearly with the number of
hosts. In general, we expect the scaling to be logarithmic since the
search is typically a walk down the tree.

Another crucial parameter that affects the tradeoff between ac-
curacy and overhead is the number of trees. Figure 11 captures this
tradeoff empirically by comparing the accuracy of server selection
and the corresponding measurement overhead for different number
of trees. In this figure, the accuracy is shown as the percentage of
times a close or well provisioned server was selected within an er-
ror threshold. We picked 10ms as the error threshold for latency
and 50% relative error for bandwidth.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
D

F
 (

%
)

% Hosts Measured

UC-PlanetLab Latency
Cornell-King Latency

HP-PlanetLab Bandwidth

Performance Overhead
(percentile under (number of hosts
error threshold) measured)

Trees 5 10 15 5 10 15
UC-PlanetLab 84 92 99 35 59 79
HP-PlanetLab 84 89 91 60 87 115
Cornell-King 86 95 97 79 176 238

Figure 10: CDF of Measurements Performed for Tree Construction:
Tree construction requires measurements to a small fraction of hosts
and the amount of measurements scales sub-linearly with the number
of hosts.

Figure 11: Cost-Performance Tradeoff for Server Selection: Using
more trees gives better accuracy but also increases measurement over-
head. Accuracy here is shown as the percentile under an error thresh-
old of 10ms for latency and 50% for bandwidth.

The accuracy of server selection—and correspondingly the cost—
increases as more number of trees are used. The increase, however,
is not linear but shows a tapering effect. There is “diminishing re-
turns” for accuracy, and some measurements may be duplicate, and
hence reused, when additional trees are included in the search. This
tradeoff is clearly illustrated in the case of Cornell-King dataset:
the percentile of servers selected within 10ms of the closest server
increases from 86 for 5 trees, to 95 for 10 trees, and 97 for 15 trees
while the corresponding measurement cost increases from 79 for 5
trees, to 176 for 10 trees, and 238 for 15 trees. An application can
pick the right number of trees according to its requirements.

4.4 Topological properties
Finally, we discuss the properties of the tree topology that Se-

quoia constructs. We first show the path lengths of each host to the
lever in the anchor tree; recall that this path represents the distance
label associated with each host. Short path lengths are desirable
as they reduce the memory footprint for storing distance labels of
hosts.

Figure 12 shows the distribution of the host-lever path lengths in
the anchor trees for each dataset. As expected, the path lengths are
variable since Sequoia’s tree-construction algorithms don’t guaran-
tee a perfectly-balanced tree. Yet, they are typically small and show
low variance. For instance, in the largest Cornell-King dataset of
2500 hosts, the label lengths are all under 16 with the mode of the
distribution being a reasonable 9 per tree. Even though these num-
bers are much higher than the typical number of coordinates in Vi-
valdi or GNP, they are still small enough for the memory capacities
of modern systems.

While we presented aggregate statistics so far, the trees that Se-
quoia constructs also provide surprising revelations. Figure 13 shows
a portion of the Sequoia tree constructed for the UC-PlanetLab la-
tency dataset. At a high level, we found that the Sequoia tree was
able to isolate hosts in different continents in the world into well-
defined regions in the tree (sub-trees). This figure shows the Euro-
pean portion. The hosts are shaded by countries for clarity.

The Sequoia tree isolates hosts in different regions of Europe
into well-defined clusters. For instance, there is a cluster at the
top-right consisting of hosts in UK and Ireland (ie) and another
at at the bottom-left with hosts in Poland (pl) and Germany (de).
Hosts in larger regions, Spain (es) and Portugal (pt) and Norway
(no), Sweden (se), and Finland (fi) are also well separated. The

clustering is not perfectly geographic, however; a couple of UK
nodes seem to be wrongly clustered.

We believe that this result strongly supports our intuition for
treating network properties as tree metrics. It indicates that the
Internet is largely hierarchical, more hierarchical in some regions
(Europe) than others (USA), and the observed latencies follow the
hierarchy. This result also opens Sequoia to be valuable for a wider-
class of applications that benefit from building topology-aware over-
lays or hierarchical distributed systems.

4.5 Summary
Overall, the evaluation substantiates three key contributions of

Sequoia. First, Sequoia provides the ability to construct an intu-
itive model for bandwidth using a small set of measurements and
enable practical applications to perform effective bandwidth-based
server selection. Second, Sequoia extends the same intuition to
model latency while providing the same ease-of-use and accuracy
as a state-of-the-art, coordinates-based latency model. Finally, Se-
quoia’s tree models are well-correlated with the Internet topology,
making it a promising tool to build topology-aware systems. These
observations were drawn using datasets with the usual inconsisten-
cies and vagaries representative of the real world.

5. APPLICATIONS
Sequoia promises unique abilities to networked systems. In this

section, we discuss how Sequoia could benefit different network
applications.
Server selection: Several applications often have the need to select
a “best” host from a set of other hosts based on some quality cri-
terion such as distance, bandwidth, load, or a combination of such
criteria. Typical scenarios where this need arises include: a) peer-
to-peer structured DHTs such as Chord [37] and Pastry [34], which
try to connect peers with other closer peers as neighbors, b) peer-
to-peer file sharing services and content distribution networks such
as BitTorrent, in which, a peer host likes to download torrents from
another closer, well-provisioned peer, and c) clients of online video
streaming services that like to enrich their experience by connect-
ing to a closer server with high bandwidth. We already showed how
Sequoia enables selection of closest and best-provisioned hosts.

Constraint satisfaction: A few applications require host selection
based on more complex constraints compared to the simple crite-

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20

H
is

to
gr

am

Label Length

UC-PlanetLab Latency
Cornell-King Latency

HP-PlanetLab Bandwidth
s

s s

uk s uk s

s uk
s uk

uk s

s s

uk uk uk s

ie ie

s be
s s

s fr pt s

es s

uk es

s uk
s nl

s s

ch s ch s

s hu

it s

il il

s s

no s s ch
s s

de s de de
s de

de s

s de

de s

de s

s de
s s

pl s de de

pl s

pl pl

se s

fi se

Figure 12: Distribution of Lengths of Distance Labels: The distance
labels computed based on the path to the lever are typically small and
scales sub-linearly with the number of hosts.

Figure 13: Prediction Tree for PlanetLab Hosts in Europe: The pre-
diction tree seem to separate hosts in different countries in Europe
into well-defined regions.

rion above. For instance, Voice-over-IP (VoIP) services, such as
Skype, often try to locate an intermediate relay node with good
quality paths to two end hosts, while online gaming systems with
multiple players, such as XBox LIVE, benefit from a well-placed
coordination server with good paths to all the client hosts.

Locating a server with good connections to multiple target hosts
often requires extensive search among the set of hosts in the system.
Sequoia can serve as an efficient data structure for resolving such
constraint satisfaction queries. For instance, the common ancestor
in the distance labels of the target hosts might be a good starting
point for doing such searches.

Hierarchical organization: Finally, several distributed systems
build a topology-aware hierarchy between the participating hosts:
Examples include application-level multicast and video streaming
protocols such as End System Multicast [6] and Bayeux [45], dis-
tributed network monitoring systems such as Astrolabe [32] and
SDIMS [42], peer-to-peer overlays such as Meridian [41] and Coral
[13]. Sequoia provides an inherent, topology-aware hierarchy for
such distributed systems.

6. RELATED WORK
Efforts for representing Internet path measures broadly fall into

two categories: 1) approaches that fit end-to-end measurements to
abstract models and 2) approaches that construct detailed topology
maps by probing routers and gateways in the core.

6.1 End-to-end approaches
IDMaps [11] pioneered the approach of distance approximation

based on end-to-end measurements. Hosts in IDMaps measure
their latency to a few well-placed “tracer” nodes and use triangu-
lation to approximately estimate the latency to other hosts without
direct measurements.

GNP [27] then introduced the popular technique of embedding
distances into a low-dimensional coordinate system. In GNP, hosts
measure their latency to well-placed servers called landmarks and
then compute best-fit coordinates for themselves, representing In-
ternet latency as Euclidean distances. ICS [22], Virtual Landmarks
[39], and BBS [35] are similar to GNP but vary in their techniques
to compute the coordinates. While, Lighthouses [29], PIC [7], and
PCoord [21] compute coordinates in a fully decentralized manner,
obviating the necessity of centralized landmark servers.

Vivaldi [8] is another fully decentralized coordinates-based net-
work positioning system that embeds latency into a non-Euclidean

space. It introduces an extended coordinate scheme with a “height”
element that distorts the usual definition of Euclidean distance but
provides more accurate embedding. Similarly, Lee et al. [20] intro-
duce another extended, non-Euclidean coordinate scheme to model
Internet latency. Shavitt and Tankel [36] observe that hyperbolic
spaces are more suitable than Euclidean space to model Internet
latency and propose a system to embed latency into a hyperbolic
poincaré disk. In other related work, Key et al. [17] explore the
idea of embedding latency into a non-metric space that retains sym-
metry but accommodates triangle inequality violations, and Mao et
al. [26] embed latency in a non-metric space that supports both
asymmetry and triangle inequality violations.

Sequoia is similar to the above systems in creating models of In-
ternet path measures based on end-to-end measurements. It embeds
latency and bandwidth onto trees assuming that these measures are
approximate tree metrics. It is comparable to coordinates-based ap-
proaches in terms of ease of use by providing distance labels similar
to coordinates, which can be used to locally estimate distances. It
can also be easily decentralized although we have not explored a
decentralized architecture in this paper. It assumes symmetry of
distance values but can accommodate triangle inequality violations
to some extent through the use of multiple trees.

Sequoia trumps prior work in its unique ability to model band-
width in addition to latency with the same approach. This ability
enables Sequoia to support a richer set of criteria for server selec-
tion. Moreover, Sequoia’s approach is intuitive and matches with
the topological properties of the Internet as presented in Section 2
and confirmed in Figure 13.

In addition to the above related work on approximate distance
estimation, a few systems have been proposed for latency-based
server selection. Meridian [41] organizes hosts into an overlay net-
work and performs a multi-hop search, exponentially reducing the
set of closest-host candidates at each hop. Tiers [3] implements
a similar multi-hop protocol in a hierarchically organized system.
At a high-level, Sequoia’s SearchTree algorithm to narrow down
best-host candidates on its anchor trees is also similar. In other
work, Beaconing [18] proposes a simpler approach where a set of
hosts called “beacons” track their distances to all hosts in the sys-
tem and use this information to find hosts closest to a target, while
Oasis [12] finds closest hosts geographically, that is, finds the phys-
ically closest host, using off-the-shelf techniques for estimating the
geographic position of Internet hosts.

6.2 Topology-aware approaches
In contrast to the above end-to-end approaches, iPlane [25] and

its more recent variant, iPlane Nano [24], have taken up the effort
to measure the core of the Internet. They probe a large number
of known routers and gateways (available in public sources such
as Route Views [52]) with a wide-range of tools that can measure
or estimate inter-link latency, loss-rate, and bandwidth using Plan-
etLab hosts as vantage points. Through extensive measurements
and clever inference mechanisms, they build a topological map that
serves as a useful information service for the Internet. In iPlane
Nano, they compress the total size of the map to a size small enough
to distribute to the end hosts and facilitate a decentralized deploy-
ment. The final compressed map is a a graph connecting routers
(more accurately, PoPs) with annotations to represent link proper-
ties (capacity, latency, and loss rate) and routing policies.

Clearly, such a detailed model of the Internet would serve well
for the purposes of distance estimation and server selection. How-
ever, the cost of measuring the internals of the entire Internet is
high and needs to be adequately amortized across multiple applica-
tions. This deters a deployment of iPlane in small-to-medium-sized
systems and hidden parts of the Internet (such as an enterprise net-
work).

The goals of Sequoia are different, namely, to study and model
the extent of treeness in Internet measures. This investigation adds
to the understanding of the structural properties of the Internet and,
in that process, presents a promising low-cost alternative based on
end-to-end measurements for helping network services make in-
formed decisions, especially when a complete structural map of
the Internet is unavailable or expensive to construct.

6.3 Other related work
Sequoia’s underlying theoretical principle has a close connec-

tion to the previously mentioned work by Shavitt and Tankel [36],
which embeds Internet latency onto hyperbolic spaces. Hyperbolic
spaces also define an approximate tree metric but with an additive
approximation factor called the curvature. Our 4PC-ε parameter
is somewhat similar to the curvature of a hyperbolic space. How-
ever, it gives a multiplicative value in a pre-determined range [0..1],
which indicates how close a space is to a tree metric, whereas cur-
vature gives an absolute additive term which bears no such insight
(e.g., how close is a hyperbolic space whose curvature is 3?). More
importantly, we directly produce tree embeddings, whereas Shavitt
and Tankel map into a (hyperbolic) coordinate space.

Lebhar et al. [19] introduce another parameterized notion called
inframetric, which captures the degree of triangle inequality viola-
tions in the Internet using a parameter ρ that indicates how close a
set of measurements is to being a strict metric (and to an ultra met-
ric). In this respect, ρ resembles our 4PC-ε parameter. Our study
may be seen as complementary, as many 4PC violations stem from
triangle inequality violations.

Finally, a large body of theoretical work exists on the topic of
embedding a metric space into a tree. These works [2, 15, 31],
including ours [1], provide lower bounds on the accuracy of tree
embeddings and provide algorithms with proven upper bounds for
constructing tree models.

7. CONCLUSIONS
This paper presented an empirical study of the treeness of Inter-

net end-to-end measures such as latency and bandwidth. We per-
formed this study by directly embedding network measurements
into virtual trees. One of our key contributions is the tree con-
struction technique to perform approximate tree embeddings of net-
work measures taking into account practical constraints such as un-

availability of measurements, triangle inequality violations, and the
need to scale.

In that process, we introduced a unified approach for model-
ing bandwidth and latency. Our tree models represent latency and
bandwidth with good accuracy and enable the selection of low la-
tency or high bandwidth servers with high fidelity, while roughly
capturing the relative positions of hosts in the Internet. This paper
quantified the treeness of Internet latency and bandwidth, presented
the design and implementation of a system to represent them con-
cisely, and evaluated its benefits.

Acknowledgments
We thank our shepherd, Jia Wang, and reviewers for their insightful
comments and feedback.

8. REFERENCES
[1] I. Abraham, M. Balakrishnan, F. Kuhn, D. Malkhi,

V. Ramasubramanian, and K. Talwar. Reconstructing Approximate
Tree Metrics. In Proc. of Symposium on Principles of Distributed
Computing (PODC), Portland, OR, Aug. 2007.

[2] I. Abraham, Y. Bartal, and O. Neiman. Embedding Metrics into
Ultrametrics and Graphs into Spanning Trees with Constant Average
Distortion. In Proc. of ACM-SIAM Symposium on Discrete
Algorithms (SODA), New Orleans, LA, Jan. 2007.

[3] S. Banerjee, C. Kommareddy, and B. Bhattacharjee. Scalable peer
finding on the Internet. In Proc. of the Global Internet Symposium,
Taipei, Taiwan, Nov. 2002.

[4] A. Barabasi and R. Albert. Emergence of Scaling in Random
Networks. Science, 8:509–512, Oct. 1999.

[5] P. Buneman. A Note on Metric Properties of Trees. Journal of
Combinatorial Theory, 17:48–50, 1974.

[6] Y.-H. Chu, S. G. Rao, S. Seshan, and H. Zhang. A Case for End
System Multicast. In Proc. of Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Santa Clara, CA,
June 2000.

[7] M. Costa, M. Castro, A. Rowstron, and P. Key. PIC: Practical
Internet Coordinates for Distance Estimation. In Proc. of
International Conference on Distributed Computing Systems
(ICDCS), Tokyo, Japan, Mar. 2004.

[8] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A
Decentralized Network Coordinate System. In Proc. of ACM
SIGCOMM Conference, Portland, OR, Aug. 2004.

[9] M. Dischinger, A. Haeberlen, K. P. Gummadi, and S. Saroiu.
Characeterizing Residential Broadband Networks. In Proc. of
SIGCOMM Internet Measurement Conference (IMC), San Diego,
CA, Oct. 2007.

[10] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On Power-Law
Relationships of the Internet Topology. In Proc. of ACM SIGCOMM
Conference, Cambridge, MA, Aug. 1999.

[11] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang.
IDMaps: A Global Internet Host Distance Estimation Service.
IEEE/ACM Transactions on Networking, 9(5):525–540, 2001.

[12] M. Freedman, K. Laskhminarayanan, and D. Mazières. OASIS:
Anycast for Any Service. In Proc. of USENIX Symposium on
Networked Systems Design and Implementation (NSDI), San Jose,
CA, May 2006.

[13] M. Freedman and D. Mazières. Sloppy Hashing and Self-Organizing
Clusters. In Proc. of International Workshop on Peer-to-Peer Systems
(IPTPS), Berkeley, CA, Feb. 2003.

[14] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King: Estimating
Latency between Arbitrary Internet End Hosts. In Proc. of
SIGCOMM Internet Measurement Workshop (IMW), Marseille,
France, Nov. 2002.

[15] A. Gupta. Steiner Points in Tree Metrics don’t (Really) Help. In
Proc. of ACM-SIAM Symposium on Discrete Algorithms (SODA),
Washington, DC, Jan. 2001.

[16] N. Hu, L. E. Li, Z. M. Mao, P. Steenkiste, and J. Wang. A
Measurement Study of Internet Bottlenecks. In Proc. of INFOCOM

Conference, Miami, FL, Mar. 2005.
[17] P. Key, L. Massoulie, and D.-C. Tomozei. Non-Metric Coordinates

for Predicting Network Proximity. In Proc. of the IEEE INFOCOM
Conference, Phoenix, AZ, Apr. 2008.

[18] C. Kommareddy, N. Shankar, and B. Bhattacharjee. Finding Close
Friends on the Internet. In Proc. of IEEE International Conference on
Network Protocols (ICNP), Nov. 2001.

[19] E. Lebhar, P. Fraigniaud, and L. Viennot. The Inframetric Model for
the Internet. In Proc. of IEEE INFOCOM Conference, Apr. 2008.

[20] S. Lee, Z.-L. Zhang, S. Sahu, and D. Saha. On Suitability of
Euclidean Embedding of Internet Hosts. In Proc. of the International
Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS), Saint Malo, France, June 2006.

[21] L. Lehman and S. Lerman. PCoord: Network Position Estimation
Using Peer-to-Peer Measurements. In Proc. of IEEE International
Symposium on Network Computing and Applications (NCA), Aug.
2004.

[22] H. Lim, J. Hou, and C.-H. Choi. Constructing Internet Coordinate
System based on Delay Measurement. In Proc. of ACM SIGCOMM
Internet Measurement Conference (IMC), Miami, FL, Oct. 2003.

[23] E. K. Lua, T. Griffin, M. Pias, H. Zheng, and J. Crowcroft. On the
Accuracy of Embeddings for Internet Coordinate Systems. In Proc.
of ACM SIGCOMM Conference on Internet Measurement, Berkeley,
CA, USA, Oct. 2005.

[24] H. V. Madhyastha, E. K. Bassett, T. Anderson, A. Krishnamurthy,
and A. Venkataramani. iPlane Nano: Path Prediction for Peer-to-Peer
Applications. In Proc. of the Usenix Conference on Networked
Systems Design and Implementation (NSDI), Apr. 2009.

[25] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson,
A. Krishnamurthy, and A. Venkataramani. iPlane: An Information
Plane for Distributed Services. In Proc. of the Usenix Conference on
Operating Systems Design and Implementation (OSDI), Nov. 2006.

[26] Y. Mao and L. K. Saul. Modeling Distances in Large-Scale Networks
by Matrix Factorization. In Proc. of ACM SIGCOMM Conference on
Internet Measurement (IMC), Taormina, Sicily, Italy, Oct. 2004.

[27] E. Ng and H. Zhang. Predicting Internet Network Distance with
Coordinates-based Approaches. In Proc. of the INFOCOM
Conference, New York, NY, June 2002.

[28] V. Paxson. End-to-End Routing Behavior in the Internet. IEEE/ACM
Transactions on Networking, 5(5):601–615, Oct 1997.

[29] M. Pias, J. Crowcroft, S. Wilbur, S. Bhatti, and T. Harris. Lighthouses
for Scalable Distributed Location. In Proc. of International Workshop
on Peer-to-Peer Systems (IPTPS), Berkeley, CA, Feb. 2003.

[30] R. Prasad, M. Murray, C. Dovloris, and kc Claffy. Lower Bounds on
the Distortion of Embedding Finite Metric Spaces in Graphs.
Discrete & Computational Geometry, 19, 1998.

[31] Y. Rabinovich and R. Raz. Lower Bounds on the Distortion of
Embedding Finite Metric Spaces in Graphs. Discrete &
Computational Geometry, 19, 1998.

[32] R. v. Renesse, K. P. Birman, and W. Vogels. Astrolabe: A Robust and
Scalable Technology for Distributed System Monitoring,
Management, and Data Mining. ACM Transactions on Computer
Systems, 21(2):164–206, 2003.

[33] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cottrell.
pathChirp: Efficient Avalable Bandwidth Estimation for Network
Paths. In Proc. of Passive and Active Measurement Workshop, San
Diego, CA, Apr. 2003.

[34] A. Rowstorn and P. Druschel. Pastry: Scalable, Decentralized Object
Location and Routing for Large-scale Peer-to-Peer Systems. In Proc.
of IFIP/ACM International Conference on Distributed Systems
Platforms, Heidelberg, Germany, Nov. 2001.

[35] Y. Shavitt and T. Tankel. Big-bang Simulation for Embedding
Network Distances in Euclidean Space. IEEE/ACM Transactions on
Networking, 12(6):993–1006, 2004.

[36] Y. Shavitt and T. Tankel. Hyperbolic Embedding of Internet Graph
for Distance Estimation and Overlay Construction. IEEE/ACM
Transactions on Networking, 16(1):25–36, 2008.

[37] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan.
Chord: A Scalable Peer-to-peer Lookup Service for Internet
Applications. In Proc. of ACM SIGCOMM, San Diego, CA, Aug.
2001.

[38] L. Subramanian, S. Agarwal, J. Rexford, and R. Katz. Characterzing
the Internet Hierarchy from Multiple Vantage Points. In Proc. of the
Infocom Conference, New York, NY, June 2002.

[39] L. Tang and M. Crovella. Virtual landmarks for the internet. In Proc.
of ACM SIGCOMM Internet Measurement Conference (IMC), Oct.
2003.

[40] L. Tauro, C. Palmer, G. Siganos, and M. Faloutsos. A Simple
Conceptual Model for the Internet Topology. In Proc. of Global
Telecommunications Conference (GLOBECOM), San Antonio, TX,
Nov. 2001.

[41] B. Wong, A. Slivkins, and E. G. Sirer. Meridian: A Lightweight
Network Location Service without Virtual Coordinates. In Proc. of
ACM SIGCOMM Conference, Philadelphia, PA, Aug. 2005.

[42] P. Yalagandula and M. Dahlin. A Scalable Distributed Information
Management System. In Proc. of ACM SIGCOMM Conference,
Porland, OR, Aug. 2004.

[43] Y. Zhang and N. Duffield. On the Constancy of Internet Path
Properties. In Proc. of ACM SIGCOMM Workshop on Internet
Measurement, San Francisco, CA, Nov. 2001.

[44] H. Zheng, E. K. Lua, M. Pias, and T. Griffin. Internet routing policies
and round-trip-times. In Proceedings of the Passive Active
Measurement, pages 236–250, 2005.

[45] S. Zhuang, B. Zhao, A. Joseph, R. Katz, and J. Kubiatowicz. Bayeux:
An Architecture for Scalabe and Fault-Tolerant Wide-Area Data
Dissemination. In Proc. of Workshop on Network and Operating
Systems Support for Digital Audio and Video (NOSSDAV), Port
Jefferson, NY, June 2001.

[46] Akamai SureRoute. http://www.akamai.com/dl/
feature_sheets/fs_edgesuite_sureroute.pdf.

[47] Meridian: A Lighweight Approach to Network Positioning.
http://www.cs.cornell.edu/People/egs/meridian.

[48] PlanetLab: An Open Platform for Developing, Deploying, and
Accessing Planetary-Scale Services.
http://www.planet-lab.org.

[49] Network Coordinate Research at Harvard.
http://www.eecs.harvard.edu/~syrah/nc/, 2006.

[50] The Gnutella 0.4 Protocol Specification.
http://dss.clip2.com/GnutellaProtocol0.4.pdf, 2000.

[51] S3: Scalable Sensing Service.
http://networking.hpl.hp.com/s-cube.

[52] University of Oregon Route Views Project.
http://www.routeviews.org.

[53] All-Sites-Pings for PlanetLab.
http://ping.ececs.uc.edu/ping/, 2006.

