
RPT: Re-architecting Loss Protection for Content-Aware Networks

Dongsu Han, Ashok Anand†, Aditya Akella†, Srinivasan Seshan
Carnegie Mellon University †University of Wisconsin-Madison

Abstract
We revisit the design of redundancy-based loss protec-
tion schemes in light of recent advances in content-aware
networking. Content-aware networks minimizes the over-
head of redundancy, if the redundancy is introduced in a
way that the network can understand. With this insight,
we propose a new loss protection scheme called redun-
dant packet transmission (RPT). Using redundant video
streaming as an example, we show that our approach, un-
like FEC in traditional networks, provides low latency
with high robustness and is insensitive to parameter se-
lection. We tackle practical issues such as minimizing
the impact on other traffic and the network. We show
that RPT provides a simple and general mechanism for
application-specific control and flow prioritization.

1 Introduction
A variety of current and future Internet applications re-
quire time critical or low latency communication. Exam-
ple applications include delay-sensitive live/interactive
video streams, online games, and video-based calls (e.g.,
Apple’s FaceTime), all of which send real-time data. Stud-
ies of real-time systems [36, 48] suggest that the maxi-
mum tolerable one-way delay is around 150ms for real-
time interaction. Within a data center, many soft real-time
applications that interact with users require low latency
communication [13]. Certain classes of inter-datacenter
transfers, such as mirroring financial data, also require
real-time communication [17].

The central challenge in supporting such delay-
sensitive real-time applications is protecting them from
network loss. One set of conventional approaches—
acknowledgment-based retransmission protocols—are
not appropriate for real-time communication as retrans-
missions triggered by timeouts can take several RTTs and
violate applications’ timing constraints [44, 51]. Another
set of approaches—redundancy-based schemes such as
Forward Error Correction (FEC)—suffer from a funda-
mental tension between robustness and the bandwidth
overhead [20, 25], making them either difficult to tune or
inefficient in practice.

These techniques have been tuned to provide the best
performance tradeoffs possible in traditional networks.
In contrast, the focus of our paper is to show that bet-

ter protection against congestion losses may be possible
in content-aware networks. We use the term content-
aware networks to refer to the variety of architectural
proposals [14, 32, 37, 42] and devices [2, 4, 10, 35] that
cache data and remove duplicates to alleviate congestion
(i.e., they perform content-aware processing of packets).
Content-aware processing is seeing ever-growing adop-
tion in a variety of settings, including mobile and cellular
networks [11], data centers [35], cloud computing [9],
and enterprise networks [4]. The most popular of such
content-aware network devices are the WAN optimizers
[5, 8, 10] that are typically placed at branch and main of-
fices or between data-centers to reduce the traffic between
them. Market reports indicate that the market for such
devices is growing rapidly [4].

Our core assumption is that content-aware network de-
vices will be widely deployed across a variety of links in
future networks. Given this setting, we ask: (i) How do
we re-architect loss protection for delay sensitive appli-
cations operating in this new context? (ii) Does content-
awareness help simplify or further complicate the issues
that existing loss protection schemes face? And, why?

We show that taking content-awareness into account
challenges the conventional wisdom on the trade-offs of
redundancy in protecting against losses in time-critical
and delay-sensitive applications. In particular, we show
that it is now possible to use redundancy in a simple yet
clever fashion to ensure robustness against congestion
losses while imposing little or no impact on the network
or on other existing applications. Equally importantly, we
show that it is now far easier to integrate loss protection
with other design constraints such as adhering to tight
delay bounds.

We believe that the duplicate suppression actions in
content-aware frameworks provide a tremendous opportu-
nity to use redundancy-based protection schemes. How-
ever, redundancy must be introduced in the right way to
ensure: (a) the network can eliminate it optimally to pro-
vide the desired efficiency and (b) the impact on other
applications can be controlled.

We describe Redundant Transmission (RT) – a loss pro-
tection scheme that intelligently sends multiple copies of
the same data. The basic idea of RT is to expose the redun-
dancy directly to the underlying content-aware network.

The simplest form of RT is to send multiple copies of the
same packet. When packets are not lost, the duplicate
transmissions in RT are compressed by the underlying
network and add little overhead. In contrast, when the
network is congested, the loss of a packet prevents the
compression of a subsequent transmission. This ensures
that the receiver still gets at least one decompressed copy
of the original data. In some situations, the fact that packet
losses do not directly translate to less bandwidth use may
raise the concern that RT streams obtain an unfair share
of the network. However, existing congestion control
schemes, with some critical adjustments to accommodate
RT behavior, can address this concern.

In essence, RT signals the network the relative impor-
tance of packet by transmitting multiple copies. RT re-
quires almost no tuning; this stands in stark contrast with
the difficulty of fine-tuning FEC-based approaches for
traditional networks. Finally, RT decouples redundancy
from delay and easily accommodates application timing
constraints; in comparison, FEC schemes today closely
tie delay guarantees with redundancy encoding since the
receiver cannot reconstruct lost packets until the batch is
complete. In effect, RT on content-aware networks can ef-
fectively support a variety of time-critical applications far
better than existing approaches for traditional networks.

To illustrate the benefits of RT concretely, we use as an
example RPT, a simple variant of RT for real-time video
in a redundancy elimination network. Our evaluation
of RPT, using a combination of real-world experiments,
network measurements and simulations, shows that RPT
decreases the data loss rate by orders of magnitude more
than FEC schemes applicable to live communications. As
a result, it achieves better video quality than FEC for a
given bandwidth budget, or uses up to 20% less bandwidth
than FEC schemes to deliver the same video quality.

We make the following contributions in this paper:
1. We highlight the need to reconsider the design of

loss protection for content-aware networks. We show that
network content-awareness enables vastly simpler and
more effective approaches to loss protection (§3).

2. We describe a redundancy scheme, RT, that can
provide a high degree of robustness at low overhead, and
require minimal tuning (§3 and §4).

3. Through extensive experiments and simulations, we
find that RT can improve the robustness of real time media
applications with strict timing constraints (§6).

In the remaining sections, we review related work (§2),
discuss realistic deployment examples as well as general
implementation of RT on other content-aware networks
(§5), and finally conclude in §7.

2 Current Loss Recovery Schemes
Packet losses are often inevitable on the Internet, espe-
cially across heavily-loaded links, such as cross-country

or trans-continental links. Many prior works use timeout-
based retransmission to recover lost data [18, 27, 44, 49,
51] on traditional networks. However, retransmission
causes large delays [51] which are often difficult to hide.
Also, the performance depends on correct timeout esti-
mation [44] which is often non-trivial [18, 44]. Because
of these intrinsic limitations, more sophisticated enhance-
ments such as selective retransmission [27, 49], play-out
buffering [49], and modification to codecs [51] are often
required to augment retransmission based loss recovery.

Another option is redundancy-based recovery, with
FEC being an example framework that is widely used
today. While coding provides resilience, the use of FEC
is constraining in many ways in practice: (1) In FEC, the
receiver cannot recover lost packets until the batch is com-
plete. This limits the size of the batch for delay-sensitive
applications. For example, at most 5 packets are typically
batched in video chat applications such as Skype [56]. (2)
Small batch size makes FEC more susceptible to bursty
loss. For example, adding a single coded FEC packet for
every five original data packets is not enough to recover
from two consecutive lost packets. Therefore, in prac-
tice, the amount of redundancy used is high (e.g., 20%
to 50% [20, 25, 56]), which is much higher than the un-
derlying packet loss rate. (3) Furthermore, FEC needs
to adapt to changing network conditions [19, 57], which
makes parameter tuning even more difficult. Many stud-
ies [29, 57] have shown that fine tuning FEC parameters
within various environments is non-trivial.

More sophisticated redundancy-based recovery
schemes such as fountain codes [21], rateless coding with
feedback [30], and hybrid ARQ [43] introduce redun-
dancy incrementally. However, fountain codes, rateless
coding have been mostly used for bulk data transfer or
non-real-time streaming. Hybrid ARQ has been mostly
used in local wireless networks where the round-trip time
is much smaller compared to real-time delay constraints.
When the round-trip time is comparable to real-time
delay constraints, incremental redundancy schemes
degenerate to FEC. Many other sophisticated schemes
such as multi-description coding [50] also use FEC to
scale the video quality proportional to the bandwidth.
While these schemes relax some of the above limitations
of FEC, the fundamental limitation of small batch size is
inherent to delay-sensitive applications.

3 Redundant Packet Transmission
We now describe the design of Redundant Packet Trans-
mission (RPT), a simple variant of RT that sends fully
redundant packets for delivering interactive video streams.
We envision a scenario in which real-time video traffic
and other traffic coexist, with no more than 50% of the
traffic on a particular link being interactive, real-time traf-
fic. We picked this scenario because it is representative

2

Switching

Fabric

Outgoing

interfaces

RE

Encode

RE cache

Incoming

interfaces

Virtual Output

Queues
RE

cache

RE

Decode

A’ A’ A

Decompressed packet

Compressed packet

Packets

Figure 1: Redundant Packet Transmission in a redun-
dancy elimination router.

of forecasts of future network traffic patterns [3].
To simplify exposition, throughout this section, we

assume that the RPT flows travel through a network with
hop-by-hop Redundancy Elimination (RE) enabled [14].
Later, in §5, we explore RT in content-aware networks
of various other forms. As stated earlier, we assume that
packet losses happen only due to congestion.

We start by providing background on RE. We then
describe our basic idea, followed by a description of key
benefits and some comments on our approach.

3.1 Redundancy Elimination Background
In Anand et al’s [14] design, RE is deployed across indi-
vidual ISP links. An upstream router remembers packets
sent over the link in a cache (each cache holds a few tens
of seconds’ worth of data) and compares new packets
against cached packets. It encodes new packets on the fly
by replacing redundant content (if found) with pointers
to the cache. The immediate downstream router main-
tains an identical packet cache, and decodes the encoded
packet. RE is applied in a hop-by-hop fashion.

RE encoding and decoding are deployed on the line
cards of the routers as shown in Figure 1. Decoding
happens on the input interface before the virtual output
queue, and encoding happens on the output interface.
The router’s buffers (virtual output queues) contain fully
decoded packets.

3.2 Basic Idea
As explained earlier, the basic idea of redundant packet
transmission (RPT) is to send multiple copies of the same
packet. If at least one copy of the packet avoids network
loss, the data is received by the receiver. In current net-
work designs, transmitting duplicate packets would incur
large overhead. For example, if two duplicates of ev-
ery original packet are sent, the overhead is 200% and a
1Mbps stream of data would only contain 0.33Mbps of
original data. However, in networks with RE, duplicate
copies of packets are encoded into small packets, and this
overhead would be significantly reduced.

Figure 1 illustrates how RPT works with redundancy
elimination. From the input link, three duplicate packets

0.00

0.10

0.20

0.30

0.40

0.50

1E-7 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1E+0 1E+1

Naive FEC(20,k)
FEC(10,k) FEC(100,k)
RPT(r) FEC(200,k)

O
v
e
rh

e
a
d

 p
e
r

1
M

b
p

s
S

tr
e
a
m

(M
b

p
s)

Data lossrate(%)

RPT(3) RPT(2)

FEC(20,16) FEC(10,8)

FEC(100,90)

FEC(10,7)

FEC(10,9)

FEC(20,14)

FEC(10,6)

FEC(10,5)

RPT(4)

Figure 2: RPT and FEC under 2% random loss.

are received. The first packet is the original packet A, and
the other two packets A’, are encoded packets which have
been “compressed” to small packets by the previous hop
RE encoder. The compressed packet contains a reference
(14 bytes in our implementation) used by the RE decoder
of the next hop. At the incoming interface, the packets
are fully decoded, generating 3 copies of packet A. They
are then queued at the appropriate output queue. The
figure illustrates a router that uses virtual output queu-
ing. When congestion occurs, packets are dropped at the
virtual output queue. Only packets that survive the loss
will go through to the RE encoder on the output interface.
When multiple packets survive the network loss, the first
packet will be sent as decompressed, but the subsequent
redundant packets will again be encoded to small packets
by the RE encoder.

In this manner, multiple copies of packets provide ro-
bustness to loss and RE in the network reduces bandwidth
overhead of additional copies.

3.3 Key Features
Next, we discuss three practically important properties
of RPT: high degree of robustness with low bandwidth
overhead, ease of use and flexibility for application devel-
opers, and flow prioritization in the network.

3.3.1 Low Overhead and High Robustness

As discussed in [14], the packet caches in the RE encoder
and decoder are typically designed to hold all packets
sent within the last tens of seconds. This is much longer
than the timescale in which redundant packets are sent
(∼60ms). Thus, all redundant packets sent by the applica-
tion will be encoded with respect to the original packet.
The extra bandwidth cost of each redundant packet is only
the size of the encoded packet (43 bytes in our imple-
mentation1.) The overhead of an extra redundant packet,
therefore, is less than 3% for 1,500 byte packets, which is
7 to 17 times smaller than the typical FEC overhead for a
Skype video call [20, 25].

To compare RPT with FEC, we model RPT and FEC
under a 2% uniform random packet loss and analytically

1Our implementation does not encode IP and transport layer headers.

3

derive the data loss of a 1Mbps RPT and FEC streams in
an RE network. Figure 2 shows the resulting overhead
and data loss rate. All flows operate on a fixed budget
but splits its bandwidth between original data and redun-
dancy. The overhead (y-axis) is defined as the amount of
redundancy in the stream, and the data loss (x-axis) as the
percentage of data that cannot be recovered. RPT(r) de-
notes redundant streaming that sends r duplicate packets.
FEC flows with various parameters are shown for compar-
ison. FEC(n,k) denotes that k original packets are coded
in to n packets. For FEC, we use a systematic coding ap-
proach (e.g. Reed-Solomon) that sends k original packets
followed by n−k redundant packets. While both schemes
introduce redundancy, only the redundancy introduced by
RPT gets minimized by the network unlike FEC which
does not introduce redundancy in a way that the network
understands; thus FEC over RE networks is identical in
performance to FEC over traditional networks.

FEC schemes, especially with a small group size (n), in-
cur large overheads, and are much less effective in loss re-
covery. For example, FEC(10,8), which adds 0.2 Mbps of
redundancy, has similar data loss rates as RPT(2), which
only adds 0.03Mbps of redundancy. FEC with group size
(n=200) performs similar to RPT. However, it takes 2.4
seconds to transmit 200 1,500 byte packets at 1Mbps.
This violates timing constraints of real-time communica-
tions because a packet loss may only be recovered 2.4
seconds later in the worst case. Thus, in practice, RPT
provides high robustness against packet loss at low over-
head.

3.3.2 Ease of Use and Control

Application developers can easily tailor RPT to fit their
needs. Three unique aspects of RPT help achieve this
property:

1) Detailed parameter tuning is not necessary.
2) RPT allows per-packet redundancy control.
3) Delay and redundancy are decoupled.

Ease of parameter selection: With FEC, the sender has
to carefully split its bandwidth between original and re-
dundant data in order to maximize the video quality. If
the amount of redundancy is larger than the amount of
network loss, the stream tolerates loss. However, this
comes at the cost of quality because less bandwidth is
used for real content. If the amount of redundancy is too
low, the effect of loss shows up in the stream and the
quality degrades. This trade-off is clear in FEC(10,k)’s
performance in Figure 2. Determining the optimal pa-
rameters for FEC is difficult and adapting it to changing
network conditions is even more so [29].

A unique aspect of RPT is that even though the actual
redundancy at the sender is high, the network effectively
reduces its cost. Therefore, the sender primarily has to
ensure that the amount of redundancy (r) is high enough to

tolerate the loss and worry much less about its cost, which
makes RPT simple and easy to use. We show in §6.3 that
only small amount of redundancy (r = 3) is good enough
for a wide range of loss rates (1% to 8%), and a sub-
optimal overshoot (i.e. unnecessary, extra redundancy)
has very little impact on actual video quality.

Packet-by-packet redundancy control: RPT intro-
duces redundancy for each packet as opposed to groups of
packets, enabling packet-by-packet control of the extent
of redundancy. More important packets, e.g., those corre-
sponding to I-frames, could simply be sent more repeat-
edly than others to increase robustness. In essence, RPT
enables fine-grained unequal error protection (UEP) [33].
Thus, RPT is simple to adapt to application-specific needs
and data priorities.

Each encoded packet can be viewed as an implicit sig-
nal to the network. Importance of the data is encoded in
the number of encoded packets, r−1. When an original
packet gets lost, routers try to resend the original packet
when the signal arrives. As such the network tries up to r
times until one original copy of the packet goes through.

Decoupling of delay and redundancy: Unlike FEC,
RPT separates the redundancy decision from delay. FEC
schemes closely tie timing with the encoding since the
receiver cannot reconstruct lost packets until the batch is
complete. In contrast, RPT accommodates timing con-
straints more easily. For example, sending 3 redundant
packets spaced apart by 5 ms is essentially asking every
router to retry up to 3 times every 5 ms to deliver the orig-
inal packet. This mechanism lends itself to application
specific control to meet timing constraints. We further
discuss the issues in controlling delay in §3.4.

3.3.3 Flow Prioritization

A unique property of RPT-enabled traffic is that it gets
preferential treatment over other traffic under lossy con-
ditions. RPT flows do not readily give up bandwidth as
quickly as non-RPT flows. This is because for RPT flows
packet losses do not directly translate into less bandwidth
use due to “deflation” of redundant packets; subsequent
redundant packets cause retransmission of the original
packet when the original packet is lost. Therefore, RPT
flows are effectively prioritized in congested environments.
As a result, RPT could get more share at the bottleneck
link. We believe that this is a desirable property for pro-
viding stronger guarantees about the delivery rate of data,
and analyze this effect in §6. However, this preferential
treatment may not be always desirable. In case where
fair bandwidth-sharing is desired, RPT is flexible enough
to be used with existing congestion control mechanisms
while retraining its core benefits. In §4, we provide an
alternative solution that retains other two benefits of RPT
except flow prioritization.

4

…

…

Original packet
Redundant packet

kSequence

Number

… …

k-d, …, k-(r-1)d, k-rd (k+1)-d, …, (k+1)-(r-1)d, (k+1)-rd

(k+1) (k+2)

d: delay, r: replication factor

(a) Sequence of packets sent by RPT(r)

k+2 kk-1 k-3

k

…

k-2 k-4

(k+1) (k+3)(k+2)

k k-2 k+1 k-1

(k+4) (k+5)

…

(b) Sequence of packets sent by RPT(3) with d=2

Figure 3: Sequence of packets sent by RPT

3.4 Scheduling Redundant Packets
We now discuss detailed packet sequencing, i.e. how
RPT interleaves redundant packets with original packets.
Each original packet is transmitted without any delay,
but we use two parameters to control the transmission of
redundant packets: redundancy (r) and delay (d).

Figure 3(a) shows the packet sequence of an RPT(r)
flow. Original packets are sent without any delay, and
r−1 redundant packets are sent compressed in between
two adjacent original packets. Thus, compared to a non-
RPT flow of the same bitrate, r times as many packets are
sent by a RPT(r) flow.

The delay parameter (d) specifies the number of origi-
nal packets between two redundant packets that encode
the same data. The first redundant packet of sequence
number n is sent after the original packet of sequence
number (n+d). If the loss is temporally bursty, having
a large interval between two redundant packets will help.
However, extra delay incurs extra latency in recovering
from a loss. So, delay (d) can be adjusted to meet the
timing requirements of applications.

Figure 3(b) shows an example with r = 3 and d = 2.
Three copies of packet k is sent, each spaced apart by two
original packet transmissions. In §6.3, we evaluate RPT’s
sensitivity to parameter selection.

3.5 Comments on RT/RPT
Is this link-layer retransmission? Conceptually, RT is
similar to hop-by-hop reliability or link-layer retrans-
mission. However, RT fits better with the end-to-end
argument-based design of the Internet by giving end-
points an elegant way to control the retransmission behav-
ior inside the network. In contrast, hop-by-hop reliability
schemes make it hard for applications to control the delay
or to signify the relative importance of data. Similarly,
in a naive hop-by-hop retransmission scheme, packets
are treated equally and can be delayed longer than the
application-specific limit. RT exploits network’s content-
awareness and provides a signaling mechanism on top of
such networks to achieve robustness against packet loss.
Why not make video codecs resilient? In the specific
context of video, prior works have proposed making

video codecs more resilient to packet loss. Examples
include layered video coding [46], H.264 SVC, various
loss concealment techniques [55] and codecs such as
ChitChat [56]. However, greater loss resilience does not
come for free in these designs; these designs typically
have lower compression rate than existing schemes or
incorporate redundancy (FEC) in order to reconstruct the
video with arbitrary loss patterns. Also they are often
more computationally complex than existing approaches,
which makes them difficult to support on all devices [55].

Our scheme is agnostic to the choice of video codec
and the loss concealment schemes used. Of course, the
exact video quality gains may differ based on the loss
rates, loss patterns and codec used.
How does RT compare to more sophisticated cod-
ing? Many sophisticated video coding schemes, such
as UEP [33], priority encoding transmission [12], and
multiple description coding [23, 50], typically use FEC
(or Reed-Solomon codes) as a building block to achieve
graceful degradation of video quality. Similarly, we be-
lieve that RT can be used as a building block to enable
more sophisticated schemes. For example, one can send
more important blocks of bits within a stream multiple
times. Furthermore, since RE networks also eliminate
sub-packet level redundancy, a partially redundant packet
may also be used. We leave details of such techniques
as future work. In this work instead, we focus on under-
standing the core properties of RT by comparing a basic
form of RT with the most basic use of FEC.
What about wireless errors? We do not yet know if
RT/RPT can be extended to protect against categories of
losses other than those due to congestion, e.g., partial
packet errors due to interference and fading. We do note
that there a variety of schemes that aim to provide ro-
bust performance in such situations, some with a focus
on video (e.g., the schemes in [38, 39, 53] for wireless
links). However, RT/RPT’s explicit focus on congestion
losses means that our approach is complementary to such
schemes. In our technical report [31], we discuss how RT
can happily coexist with such schemes.

4 RPT with Congestion Control
As explained earlier, RPT flows are effectively prioritized
in congested environments2. However, in some environ-
ments, fair bandwidth sharing may be more desirable. In
such cases, the sending rate should adapt to the network
conditions to achieve a “fair-share”. To meet this goal,
we apply TCP friendly rate control [28] (TFRC) to RPT
flows. However, this raises surprisingly subtle problems
regarding the transmission rate and loss event rate es-
timation that are germane to TFRC. We describe these
challenges and our modifications to TFRC below.

2We further verify this later in §6.4.

5

Packet transmission: In TFRC for RPT, we calculate
the byte transmission rate from the equation just as the
original TFRC. Note that RPT(r) must send an original
packet and r−1 duplicates. To match the byte sending
rate, we adjust the length of the packet so that equal num-
ber of bytes are sent by TFRC RPT as the original TFRC
in calculating the throughput. Thus, given a computed
send rate, TFRC RPT(r) sends r times as many packets.
Note that each packet, original or duplicate, carries an
individual sequence number and a timestamp for TFRC’s
rate calculation purposes.
Loss event rate estimation: In the original TFRC, the
sending rate is calculated given the loss event rate p,
where loss event rate is defined as the inverse of the aver-
age number of packets sent between two loss events. A
loss event is a collection of packet drops (or congestion
signals) within a single RTT-length period.

Ideally, we would want TFRC RPT(r) to have the same
loss event rate as the original TFRC, as that would also
make TFRC RPT obtain a TCP friendly fair share of
bandwidth. However, the observed loss event rate for
RPT depends on the underlying packet loss pattern. For
ease of exposition, we look at the two extremes of loss
patterns: one that is purely random and the other that is
strictly temporally correlated.

Purely random packet drops may occur in a link of a
very high degree of multiplexing. On the other hand, in a
strictly temporal loss pattern, losses occur during specific
intervals. One might see such a loss pattern when cross
traffic fills up a router queue at certain intervals. In reality,
the two patterns appear inter-mixed depending on source
traffic sending patterns and the degree of multiplexing.

Next, we discuss how the two loss patterns impact loss
event rate estimation and the transmission rate:
• Uniform random packet loss: In this setting, TFRC

RPT(r) behaves in a TCP friendly manner without any
adjustment to loss estimation. This is because the num-
ber of packets sent between two loss events does not
change even though the packet sending rates change.

• Temporal packet loss: In this setting, packets are lost
at specific times. During the time between loss, TFRC
RPT(r) sends r times as many packets. Thus, the ob-
served loss event rate for TFRC RPT(r) is only 1

r of that
of the original TFRC. Therefore, TFRC RPT would
send more traffic.

Adjusting the loss event rate: As stated earlier, in prac-
tice, the two extreme patterns appear inter-mixed. We
therefore want to choose an adjustment factor α so that
when the loss event rate is adjusted to α times the mea-
sured loss event rate p, TFRC RPT(r) is TCP friendly. As
seen in the two extreme cases, α has values 1 for uniform
random losses and r for temporal losses, respectively.
So, in practice, α should be between 1 and r to achieve
exact TCP-friendliness. A larger value of α makes the

WAN
optimizer

WAN
optimizer
 “Virtual wire”

RE
endpoint

RE
endpoint

Cross traffic

Video flows
Branch Branch

Figure 4: Typical Deployment of WAN optimizers

TFRC-RPT react more aggressively to congestion events,
and smaller value less aggressive than a TCP flow. This
means, even in the worst case, α can be r times off from
the value which achieves exact TCP-friendliness. In this
case, a TFRC-RPT flow would have performance similar
to
√

r many TFRC flows because the TCP-friendly rate is
inversely proportional to

√
p. Therefore, even an incor-

rect value of α would still make TFRC RPT friendly to
a group of TCP connections and still react to congestion
events. In practice, we find in §6 that with TFRC-RPT(3),
α = 1.5 closely approximates the bandwidth share of a
single TCP flow under wide range of loss rates and realis-
tic loss patterns.

As such, RT is flexible enough to allow users to adjust
the degree of reactivity to congestion events while being
highly robust. Regular RPT does not react to conges-
tion events, and can be used to prioritize important flows.
TFRC RPT reacts to congestion events and the reaction
degree can be controlled by the parameter α .

5 RPT in Various Networks
So far, we have explored RPT on hop-by-hop RE net-
works as a special case of redundant packet transmission.
Here, we look at other deployment scenarios for content-
aware devices as well as other content-aware designs.
Corporate networks: WAN optimization is the most
popular form of RE deployment in the real world. In a
typical deployment, WAN optimizers are placed at branch
and main offices or between data-centers to reduce the
traffic between them. Example deployments include 58+
customers of Riverbed [10] and Cisco’s worldwide de-
ployment to its 200+ offices [8]. While we envision RPT
being used in future networks where content-aware de-
vices are widely deployed, RPT can be deployed immedi-
ately in such settings.

As shown in Figure 4, these sites have low bandwidth
connections using leased line or VPN-enabled “virtual”
wires. ISPs offering VPN services typically provide band-
width and data delivery rate (or packet loss) guarantees as
part of their SLA [1, 6]. In practice, their loss rate is often
negligible because ISPs provision for bandwidth [24]. 3

Thus, the use of VPN and WAN optimizers effectively
creates reliable RE “tunnels” on which RPT can operate.
Important, real-time data can be sent with redundancy,

3Sprint’s MPLS VPN [6] had a packet loss rate of 0.00% within the
continental US from Mar 2011 to Feb 2012.

6

RPT(3) FEC(6,5)

Overhead 9% 22%
Data loss rate 8.0 x 10−6 1.9 x 10−3

Table 1: Comparison of FEC and RPT over CCN
and compete with other traffic when entering this tunnel.
Packets will be lost when the total demand exceeds the
capacity of the tunnel, but RPT flows will have protection
against such loss. We evaluate this scenario in §6.2.

An alternative is to use traditional QoS schemes such
as priority queuing. However, this typically involves de-
ploying extra functionalities including dynamic resource
allocation and admission control. For businesses not will-
ing to maintain such an infrastructure, using RPT on and
existing RE-enabled VPN would be an excellent option
for delivering important, time-sensitive data.
Partial deployment: Not all routers in a network have
to be content-aware to use RPT. The requirement for
“RPT-safety” is that RE is deployed across bandwidth-
constrained links 4, and non-RE links are well provisioned.
This is because non-RE links end up carrying several
duplicate packets. When such links are of much higher
capacity, RPT causes no harm. Otherwise, it impacts
network utilization and harms other traffic. In §6.2, we
explore both cases through examples, and show how the
network utilization and the other traffic on the network are
impacted when RPT is used in an “unsafe” environment.

To ensure safe operation of RPT, one can detect the
presence of RE on bandwidth-constrained links, and use
RPT only when it would not harm other traffic. In this
section, we outline two possible approaches for this, but
leave details as a future work. One approach is to use end-
point based measurement: for example, Pathneck [34]
allows detection of bottlenecks based on available band-
width. It sends traceroute packets in between load pack-
ets and infers (multiple) bottleneck location(s) from the
time gap between returned ICMP packets. Similar to
this, we can send two separate packet trains: one with
no redundancy and the other with redundancy r but with
the same bitrate. If all bandwidth constrained links are
RE-enabled and RPT is safe to use on other links, the
packet gap would not inflate on previously detected bot-
tlenecks and the redundant packet trains would not report
different bottleneck links. Another way is to use systems,
such as iPlane [45] and I-path [47], which expose path
attributes (e.g. available bandwidth) to end-hosts. These
systems can easily provide additional information such as
RE-functionality for end-hosts to check for RPT safety.
RPT over CCN: RPT also can be integrated with a broad
class of content-aware networks, including CCN [37] and
SmartRE [15]. In our technical report [31], we explore
discuss how RPT can work atop SmartRE and wireless
networks. Here, we focus on applying RPT to CCN.

4This matches the common deployment scenario for RE [14, 54].

Quality Excellent Good Fair Poor Bad

PSNR (dB) > 37 31 ∼ 37 25 ∼ 31 20 ∼ 25 < 20

Table 2: User perception versus PSNR

In CCN, data consumers send “Interest” packets, and
the network responds with at most one “Data” packet
for each Interest. Inside the network, each router caches
content and eliminates duplicate transfers of the same
content over any link. CCN is designed to operate on top
of unreliable packet delivery service, and thus Interest
and Data packets may be lost [37].

We now compare RPT and FEC in CCN. Suppose
real-time data is generated continuously, say k packets
every 100 ms, and RTT is large. In an FEC-equivalent
scheme for CCN, the content publisher would encode k
data packets and add (n− k) coded data packets, where
n > k. The data consumer would then generate n Interest
packets for loss protection. The receiver will be able to
fully decode the data when more than k Interest and Data
packets go through. However, up to n Interest/Data pairs
will go through the network when there is no loss. In
contrast, RPT does not code data packets, but generates
redundant Interest packets. This obviously provides ro-
bustness against Interest packet loss. Moreover, when a
Data packet is lost, subsequent redundant Interest packet
will re-initiate the Data transfer. Since Interest packets are
small compared to Data and duplicate Interests do not re-
sult in duplicate transfers of the Data, the bandwidth cost
of redundancy is minimal. In RPT, at most k Data packets
will be transferred instead of n in the FEC scheme.

To demonstrate the benefit more concretely, we take
the Web page example from CCN and compare RPT and
FEC over CCN. In the CCN-over-jumbo-UDP protocol
case [37], a client generates three Interest packets (325
bytes) and receives five 1500-byte packets (6873 bytes)
to fetch a Web page [37]. To compare RPT and FEC, we
assume in RPT a redundancy parameter of 3 is used and
in FEC the server adds one packet to the original data.
Table 1 shows the overhead and data loss rate of each
scheme at the underlying loss rate 2%. The data loss rates
is the amount of data that could not be recovered. Even
though the overhead of RPT is only 41% of that of FEC,
it’s data loss rate is 240 times better. To achieve equal or
greater level of robustness than RPT(r = 3), FEC has to
introduce 11 times the overhead of RPT(r = 3).

6 Evaluation
In this section, we answer four specific questions through
extensive evaluation:
(i) Does RPT deliver better video quality? How well
does it work in practice?

In §6.2, we show that RPT provides high robustness
and low bandwidth overhead, which translate to higher
quality for video applications.

7

(ii) Is RPT sensitive to its parameter setting, or does
it require fine tuning of parameters?

In §6.3, we show that, unlike FEC, RPT is easy to use
since careful parameter tuning is not necessary, and delay
can be independently controlled with the delay parameter.
(iii) How do RT flows affect other flows and the overall
network behavior?

In §6.4, we demonstrate that RT flows are effectively
prioritized over non-RT flows on congested links and may
occupy more bandwidth than their fair-share.
(iv) Can we make RT flows adapt to network condi-
tions and be TCP-friendly?

We show in §6.5 that RT can also be made TCP-
friendly, while retaining the key benefits.

6.1 Evaluation Framework
We use a combination of real-world experiments, network
measurements and simulations. We implemented an RE
encoder and decoder using Click [41], and created a router
similar to that of Figure 1. Using this implementation, we
create a hop-by-hop RE network in our lab as well as in
Emulab. These serve as our evaluation framework.

We use implementation-based evaluation to show the
overall end-to-end performance of RPT, and simulations
to unravel the details and observe how it interacts with
other cross traffic. To obtain realistic packet traces and
loss patterns from highly multiplexed networks, we per-
formed active measurements to collect real-world Internet
packet traces. We also created background traffic and
simulated RPT and FEC flows in a hop-by-hop RE net-
work using the ns-2 simulator. These video flow packet
traces are then fed into evalid video performance evalua-
tion tool [40] to obtain the received video sequence with
loss. For video, we used the football video sequence in
CIF format, taken from a well-known library [7]. We
used H.264 encoding with 30 frames per second. I-frames
were inserted every second and only I- and P-frames were
used to model live streams.
RE implementation: We implemented the Max-Match
algorithm described in [14]. We further modified it to
only store non-redundant packets in the packet cache.
Therefore, sending redundant packets does not interfere
with other cached content. We use a small cache of 4MB.
The implementation of the encoder encodes a 1500 byte
fully redundant packet to a 43 byte packet5. We also
implemented RE in ns-2.
Evaluation metric: We use the standard Peak-to-Signal-
to-Noise Ratio (PSNR) [52] as the metric for the video
quality. PSNR is defined using a logarithmic unit of
dB, and therefore a small difference in PSNR results in
visually noticeable difference in the video. The MPEG
committee reportedly uses a threshold of PSNR = 0.5dB

5We do not compress network and transport layer headers. Thus, the
packet may be compressed even further in practice.

to test the significance of the quality improvement [52].
Typical values for PSNR for encoded video are between
30 and 50 dB. Table 2 maps the PSNR value to a user
perceived video quality [40].

6.2 End-to-end Video Performance
In this section, we evaluate the end-to-end performance
of RPT and examine key characteristics.
Experimental setting: First, we use our testbed based on
our hop-by-hop RE implementation, and create a stream-
ing application that uses redundant packet transmission.
We create a topology where an RE router in the middle
connects two networks, one at 100Mbps and the other
at 10Mbps. To create loss, we generate traffic from the
well-connected network to the 10Mbps bottleneck link.

We generate a 1Mbps UDP video stream and long-
running TCP flows as background traffic. We adjust the
background traffic load to create a 2% loss on the video
flow. We then compare the video quality achieved by RPT,
Naive, and FEC that use the same amount of bandwidth.
We use RPT that has 6% overhead (r = 3,d = 2), and
FEC(10,9) with 10% overhead, which closely match in
latency constraints with comparable overhead. Naive uses
UDP without any protection.

Figure 5 shows the sending rate and the received data
rate after the loss. The RPT and FEC senders respectively
use about 6% and 10% of their bandwidth towards redun-
dancy, while the Naive sender fully uses 1Mbps to send
original data. The sending rates of the three senders are
the same, within a small margin of error (1%). The Naive
receiver loses 2% of the data and receives 0.98Mbps be-
cause of the loss. The FEC receiver only recovers about
66% of the lost data due to the bursty loss pattern. On the
other hand, the RPT receiver receives virtually all origi-
nal data sent. Note that only the amount of redundancy
has slightly decreased. This is because when an original
packet is lost, a subsequent redundant packet is naturally
expanded inside the network.

As a result, the RPT flow gives much higher video
quality. Figure 6 shows a snapshot of the video for RPT
and Naive flows. Table 3 shows the video quality of an
encoded video and the received video. The encoded video
column shows the quality of video generated at the sender
before packet loss. When RPT and FEC are used, the
encoded video quality is slightly lower because of the
bandwidth used towards redundancy. However, because
the RPT flow is highly robust against loss, it provides
the best video streaming quality (1.8 dB better than
FEC and almost 6dB better than Naive).

RE-enabled Corporate VPN of §5 is the most com-
mon deployment scenario of RT in today’s networks. To
demonstrate the feasibility of this scenario, we set up
a network of four routers in Emulab [26] and created
an RE-enabled VPN tunnel that isolates the traffic be-

8

0.8 0.85 0.9 0.95 1

FEC receiver

FEC sender

RPT receiver

RPT sender

Naive receiver

Naive sender Original Data

Redundancy

0

Bandwidth use (Mbps)

0

Figure 5: Bandwidth use (a) RPT flow (b) Naive flow

Figure 6: Snapshot of the video

Encoded Received

RPT 37.3 dB 37.1 dB
FEC 36.9 dB 35.3 dB
Naive 37.5 dB 31.4 dB

Table 3: Average video quality
(PSNR)

0

2

4

6

8

10

12

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

Encodedvideo RPT
FEC NaïveUDP
Packet LossRate

Av
er
ag
e
PS
N
R
(d
B)

VideoSendingRate(Mbps)

PacketLoss
Rate

(%
)

Figure 7: Video quality and loss rate for real traces

tween two remote offices similar to that of Figure 4. The
physical links between two remote offices have 100Mbps
capacity, and carries traffic from other customers. We
generate cross traffic over the physical links that carries
the VPN traffic so that the physical links experience con-
gestive loss. We allocate 5Mbps of bandwidth to the
VPN-enabled “virtual” wire, which is emulated using the
priority queuing discipline from the Linux kernel’s traffic
control module. We introduced a 1Mbps video traffic and
5 TCP connections between the two remote offices, and
compare RPT(3) and FEC(10,9) whose bandwidth over-
head best matches to that of RPT(3), while adhering to the
latency constraint. The video stream experiences a loss
rate of around 2.7% and the tunnel’s link utilization was
nearly 100% in both cases. The resulting PSNR of the
RT flow and FEC were 37.1dB and 34.1dB respectively.
This result shows that RT also works well on the most
common form of today’s content-aware networks.
Real traces: To study the performance of RPT in a real-
istic wide-area setting, we collected a real-world packet
trace. We generated UDP packets from a university in
Korea to a wired host connected to a residential ISP in
Pittsburgh, PA. The sending rate was varied from 1Mbps
to 10Mbps, each run lasting at least 30 seconds. The
round-trip-time was around 250ms, which indicates that
retransmissions would violate the timing constraint of an
interactive stream.

Assuming that the packet loss rates do not change sig-
nificantly with RPT6, we apply the loss pattern obtained
from the measurement to an RPT flow, an FEC flow and
a Naive UDP flow. For RPT, we use a redundancy pa-
rameter of r = 3 and a delay parameter d = 2. For FEC,
we choose the parameters so that the overhead matches

6We later verify this and see how RPT affects the loss rate in §6.4.

closest to that of RPT, while the additional latency in-
curred by FEC at the receiver does not exceed 150ms,
which results in different parameters for different sending
rates. Figure 7 shows the video quality for each scheme.
The solid line shows the packet loss rate. The Encoded
video bar shows the ideal PSNR without any loss when
all the bandwidth is used towards sending original data,
presented as a reference. As the sending rate increases, the
quality of the encoded video increases. However, the loss
rate from Korea to U.S. was 3.5% at 1Mbps but increased
to 9.8% at 10Mbps as the sending rate increases. Because
of the high loss rate, the naive UDP sender performs
poorly (PSNR well under 30dB). FEC achieves better
performance than naive, but much worse than RPT espe-
cially under high loss rates. In contrast, RPT gives the
best performance, closely following the quality of the
encoded video until the loss rate is about 8%. Even
at the higher loss rates, the impact on quality is much
less than the FEC scheme. This is because RPT gives
much better protection against loss than FEC at similar
overhead. 7

6.3 Parameter Selection and Sensitivity
In this section, we provide an in-depth performance
evaluation of RPT. In particular, we compare RPT and
FEC’s parameter sensitivity using simulations that pro-
duce packet loss patterns of highly multiplexed networks
with realistic cross traffic.
Simulated RE Network: We use the ns-2 simulator to
create a realistic loss pattern by generating a mix of HTTP
and long-running TCP cross traffic. We use a dumbbell
topology with the RE-enabled bottleneck link capacity
set to 100Mbps, and simulate a hop-by-hop RE network
and RPT flows. We generate 100 long-running TCP flows
and 100 HTTP requests per second. We used the pack-
mime [22] module to generate representative HTTP traffic
patterns. We also generate ten video flows each having

7Large drop in PSNR at 8 Mbps is an artifact of the video’s resolution
being too small compared to its encoding rate and a particular pattern of
bursty data loss. When the video compression gets nearly lossless, even
a small data loss causes PSNR to drop sharply. In addition, two original
packets that are close together in sequence were lost by coincidence in
8Mbps RPT. This had a more detrimental effect on the PSNR value
because the lost data belonged to the same video frame. The actual data
loss rate of the 8Mbps RPT flow was 0.165%, which is less than 0.174%
of the 9Mbps RPT flow.

9

30

31

32

33

34

35

36

37

38 Encodedvideoat sender
Receivedvideo

Av
er
ag
e
PS
N
R
of
th
e
Vi
de
o
(d
B)

Figure 8: RPT’s performance is much less sensitive to
its parameter setting.

Data Loss Rate (%)

0

0.1

0.2

0.3

0.4

1E-04 1E-03 1E-02 1E-01 1E+00 1E+01

Naive
FEC(10,k)
FEC(10,k) random
FEC(100,k)
FEC(100,k) random
RPT(r)
RPT(r) random

O
v
e
rh

e
a
d

 p
e
r

1
M

b
p

s
 (

M
b

p
s
)

RPT(4)

FEC(10,9)

FEC(10,6)

FEC(10,8)

FEC(10,7)

RPT(2)
RPT(3) Naive

FEC(100,k)

Figure 9: Percent data loss rate and overhead: RPT
greatly outperforms FEC with small group size.

1Mbps budget regardless of the loss protection scheme it
uses. The results presented are averages of ten runs with
each simulating five minutes of traffic. We first look at the
final video quality seen by the end receiver under different
parameter settings, and then analyze the underlying loss
rate and overhead.
How do RPT flows and FEC flows perform with dif-
ferent redundancy parameters? For RPT, we vary the
redundancy parameter r from 2 to 5, while fixing the delay
parameter d to 2. For FEC, we use a group size n = 10
to meet the latency constraints and vary the number of
original data packets k from 5 to 9.

Figure 8 shows the quality of the video seen by the re-
ceiver compared to the encoded quality at the sender. The
result shows that RPT performs better than FEC’s best,
and its performance is stable across different param-
eter settings. In contrast, FEC’s performance is highly
sensitive to the parameter selection. Therefore, with FEC,
the sender has to carefully tune the parameter to balance
the amount of redundancy and encoding rate.

Figure 9 shows the underlying data loss rate and over-
head of the video flows. The x-axis shows the data loss
rate in log-scale, and the y-axis shows the amount of
overhead. All video flows experience ∼2% packet loss.
For comparison, the performance of RPT and two FEC
families (n=10, 100) under uniform random loss (dotted
lines) are also shown. RPT(4)’s data loss rate is several
orders of magnitude lower than the loss rate of FEC(10,9)
whose overhead is similar. RPT(4) even performs better
than FECs with large group size, such as FEC(100,91),
whose latency exceeds the real-time constraint. FEC(10,7)
achieve similar data loss rate to RPT(3) but has 6 times the

22

24

26

28

30

32

34

36

38

40

Naïve RPT(2) RPT(3) RPT(4)

A
v

e
ra

g
e

 P
S

N
R

(d
B

)

Encoded video 1% random loss 2% random loss

4% random loss 6% random loss 8% random loss

Figure 10: Video quality under 1 to 8% loss. RPT(3)
steadily delivers high quality even under high loss.

0.0001

0.001

0.01

0.1

1

delay=0 delay=1 delay=2

Uniform Random

Burst+

Burst++

D
a

ta
 L

o
ss

 R
a

te
 (

%
)

Figure 11: Bursty loss increases the data loss espe-
cially when the delay parameter is small.

overhead, which translated to 2dB difference in PSNR.
The gap between the uniform loss and actual loss lines

in Figure 9 represents the effect of bursty loss perfor-
mance. FEC(10,k) and RPT show a relatively large gap
between the two lines. Analyzing the underlying loss pat-
tern, we observe that within a group of 10 packets, losses
of 2 to 4 packets appear more frequently in the actual loss
pattern. This shows that the underlying traffic is bursty.
On the other hand, loss bursts of more than 5 occur less
frequently in the actual pattern because TCP congestion
control eventually kicks in.

We now show how the parameter should be set in RPT.
How should we choose parameters in RPT? To answer
this question, we study how loss rate and burstiness of loss
affect the performance of RPT. First, we use the random
loss pattern and vary the packet loss rate from 1% to 8%.
For RPT, we vary the redundancy parameter from 2 to 4,
but fix the delay parameter at 2. For each loss rate, the
average PSNR of a naive sender and an RPT sender is
shown in Figure 10. It shows that video quality of RPT(3)
is virtually immune to a wide range of packet losses; the
average PSNR for RPT(3) under 8% loss only decreased
by 0.25dB compared to the zero-loss case. We, therefore,
use r = 3 in the rest of our evaluation.

Second, we look at the role of the delay parameter
under bursty loss. For reference, we generate a 2% ran-
dom loss, which on average has 1 lost packet every 50
packets. We then create bursty loss patterns by reducing
the number of packets between losses by up to 15 and
35, while keeping the average loss rate the same. The
three cases are named as Uniform random, Burst+,
and Burst++ respectively. Figure 11 shows the data
loss rate of RPT with different delay parameters under
the three loss conditions. An increase in burstiness nega-
tively impacts the data loss rate, but as delay is increased

10

FEC(10,6) FEC(100,92) RPT(3)

No sender buffering 240ms 2400ms 60ms
Sender buffering 180ms 1300ms -

Table 4: Maximum one-way delay of RT and FEC

the negative impact is decreased. In general, a large de-
lay parameter gives more protection against bursty loss,
but incurs additional latency. We use d = 2 and r = 3
for RPT because of its superior performance in wide
range of loss conditions.
How much latency is caused by RPT and FEC flows?
A loss might be recovered by subsequent redundant pack-
ets; here we quantify the delay in this. In RPT(r) with
delay d, the receiver buffer must hold d · r packets. So
the delay in RPT is d · r · intv, where intv is the interval
between packets. The RPT sender needs no additional
buffering, as it transmits the packet as soon as a packet
is generated from the encoder. In FEC, two alternatives
exist where one does sender buffering to pace packets
evenly and the other doesn’t but further delays the trans-
mission of redundant coded packets [31]. Table 4 shows
the delay caused by RPT and FEC for 1Mbps RPT(3)
with d = 2 and FEC streams that exhibit similar data loss
rate from Figure 9. We see that RPT gives a significantly
lower delay than FEC schemes of similar strength in
loss protection, and FEC(100,k) is not suitable for delay-
sensitive communication.
How do RPT and FEC flows perform under extreme
load? One might think that in a highly congested link
with a high fraction of RPT traffic, RPT flows would con-
stantly overflow the buffer and the performance would
drop. To create such a scenario with increased traffic
load, we vary the fraction of video traffic in the link from
10% to 90%, while keeping the number of background
TCP connections and bottleneck bandwidth the same. De-
tailed evaluation is provided in [31]. In summary, we
find that RPT flows achieve close-to-ideal video quality,
and better quality compared to the best FEC scheme
in all cases (10% to 80%) except for one very extreme
case (90%) with very heavy cross traffic creating loss rate
> 10%. The extreme case we portray in our experiment
is unlikely to occur in practice for two reasons: 1) The
loss rates in practice are likely to be much lower. 2) Even
the aggressive estimate suggests that no more than 15%
of traffic in future will be real-time in nature [3].

6.4 Impact of RPT on the Network
We now examine the effect of RPT flows on other cross
traffic and the network. For this evaluation, we use the
same simulation setup and topology described in §6.3.
How do other TCP flows perform? We look at the im-
pact on two different types of TCP flows: long-running
TCP flows and HTTP-like short TCP flows.

To evaluate the impact on long-running TCP, we send

0 20 40 60 80 100

Non-RPT

RPT(2)

RPT(3)

RPT(4)

RPT(5)

Non-RPT

RPT(2)

RPT(3)

RPT(4)

RPT(5)

Non-RPT

RPT(2)

RPT(3)

RPT(4)

RPT(5)

Bottlenecklinkbandwidthusage(Mbit/sec)

50%

UDPGoodput
UDPRedundancy
TCPDuplicateTX
TCPGoodput

Fractional bandwidthof video traffic at
bottlenecklink

90%
70%

Figure 12: Breakdown of bottleneck link utilization:
RPT flows do not impact the link utilization. RPT
flows are prioritized over competing TCP flows.

100 long-running TCP flows and a varying number of
video flows to vary the fraction of video traffic on the
bottleneck link (from 10 to 90%). We also vary the re-
dundancy parameter from 0 (Non-RPT) to 5. We use a
small router buffer size of 2·B·RT T√

100
[16] to maximize the

negative impact.
Figure 12 shows the bottleneck link traffic decompo-

sition in four categories8: UDP goodput, UDP redun-
dancy, TCP duplicate, TCP goodput. UDP goodput is
the bandwidth occupied by the original packet and the
UDP redundancy represents the bandwidth occupied by
the compressed packets. TCP goodput represents packets
contributing to application throughput, and TCP duplicate
Tx shows the amount of duplicate TCP packets received.

We observe that 1) the bandwidth utilization is not
affected by RPT, and 2) RPT flows are effectively pri-
oritized over non-RPT TCP flows. In all cases the bot-
tleneck bandwidth utilization was over 97.5%; TCP fills
up the bottleneck even if the router queue is occupied by
many decompressed redundant packets. TCP throughput,
on the other hand, is impacted by the RPT flow espe-
cially when the network is highly congested; e.g. in the
90% video traffic case (bottom-most bars), TCP good-
put (white region) decreases when RPT is used. This
is because when RPT and non-RPT cross traffic com-
petes, even though they experience the same underlying
packet loss rates, for RPT flows packet loss do not directly
translate into throughput loss. With redundant transmis-
sions, the network recovers the loss through subsequent
uncompressed redundant packets, effectively prioritizing
the RPT flows.

To see the impact on HTTP-type short flows, we look
at how RT changes the response time of short flows under

8Only a subset of results (video traffic occupying 50% to 90% of
bottleneck) shown for brevity, but all cases confirm the same results.

11

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500

 0 5000 10000 15000 20000

C
D

F

HTTP Response Time (ms)

Size of HTTP Response (bytes)

w/ 90 Non-RPT flows
w/ 90 RPT(5) flows

HTTP Response Size

Figure 13: Response time and size for short HTTP
flows (long flows omitted for clarity).

0

0.05

0.1

0.15

0.2

0.25

Non-RPT RPT(2) RPT(3) RPT(4) RPT(5)

10% 30%
50% 70%
90%

Pa
ck
et
Lo
ss
Ra
te
of

vi
de
o
flo
w
s

Fractionof
videotraffic
overall traffic

Figure 14: Impact on loss rate due to RPT flows.
the setup described in §6.3. Figure 13 shows the CDFs of
the size of the response messages, and the response times.
To highlight the difference, we only show response times
when 90% of the traffic is video and RPT(5) is used, but
the trend is visible across all cases.

The response time for short flows decreases in the
presence of RPT flows. Since redundant packets in the
queue are compressed when they are sent out, the ser-
vice rate of the queue increases with RT. Therefore the
queuing delay is reduced, which results in a decrease in
the response time. However, for larger flows (tail end of
the figure) the response time actually increases, as they
behave more like long-running TCP flows, which obtain
less throughput under congestion (Figure 12).
How does network behavior change with RPT flows?
There are subtle changes in loss rate and queuing delay.
Loss rate: Figure 14 shows the packet loss rate of UDP
video flows at the bottleneck router with varying amount
of RPT traffic. When the fraction of video traffic is
moderate, adding more redundancy has little impact
on the underlying packet loss of the video flow. This is
because while redundant packets increase the load, they
also increase the service rate of the link. However, we
observe that when RPT flows dominate the bottleneck
link, the underlying loss rate for video flows goes up as re-
dundancy increases. The underlying reason for increased
loss is that under congestion RPT flows compete with
each other for bandwidth when most of the traffic is from
RPT flows. However, in §6.3, we saw that even under
such extreme conditions RPT performs better than FEC.
Queuing Delay: Figure 15 shows the average queuing
delay with varying redundancy parameters and varying
number of RPT flows. Redundant packets decrease
queuing delay. This is because redundant packets appear
as decompressed at the router queue, but are sent out com-

5
10
15
20
25

A
v
e
ra

g
e
 Q

u
e
u

in
g

D

e
la

y
 (

m
s)

10% 30%
50% 70%
90%

Fractionof
videotraffic
over all traffic

Figure 15: Queuing delay is reduced with RPT flows.

0 2 4 6 8 10 12 14

RPT on non-RE link

RPT

FEC

Naïve Original Data

Redundancy

TCP background traffic

Bandwidth use (Mbps)

T
r
a

ff
ic

 o
n

 R
E

-l
in

k

Figure 16: No Harm: Bandwidth use on a non-RE
link in the no harm case.

pressed at the bottleneck link. Therefore, as the number of
redundant packets increase, service rate becomes faster.
What’s the impact of partial content-awareness? In
§5, we noted that RT may cause harm in partially content-
aware networks and should be used only after detecting
RT-safety. Here, demonstrate both the no-harm and the
harm case, and quantify the impact using our experimen-
tal testbed, which has a 10Mbps and a 100Mbps RE link.

To demonstrate no-harm, we disabled the RE encoder
on the non-bottleneck 100Mbps links of our testbed. We
then generated an RPT flow and TCP background flows
through this 100Mbps link and the 10Mbps RE-enabled
link. Figure 16 shows the traffic on both links. The RPT
flow occupying 1Mbps on an RE-enabled bottleneck link
introduces almost 2Mbps of overhead (redundancy) on
the non-RE 100Mbps link. However, this causes no harm
since the 100Mbps link is not bandwidth constrained.

To demonstrate harm, we reduced the capacity of the
non-RE link to 15Mbps, and introduced four 1Mbps video
flows and a TCP flow. Table 5 compares bandwidth use
on the 10Mbps RE link when the video flows are sent
with and without redundancy. When there’s no redun-
dancy (Non-RPT), the link utilization of the 10Mbps link
is 97%. When RPT(3) is used, the 4Mbps video flows
occupy 11.2Mbps on the non-RE link. This shifts the
bottleneck to be the 15Mbps non-RE link, which forces
the 10Mbps RE-link and the network to be under-utilized
at 76%. This verifies that in a partial deployment setting,
detecting RT-safety is important as discussed in §5.

6.5 TCP-Friendly RPT
RPT flows do not give up bandwidth as easily under con-
gestion. In §4, we discussed an alternative that makes RPT
flows achieve fair bandwidth sharing using TCP-friendly
rate control. In particular, we showed that incorporat-
ing TFRC requires careful adjustment of loss event rate,
and explained how it should be done in two distinct loss

12

Non-RPT RPT(3)

TCP traffic (Mbps) 5.7 3.6
Video traffic (Mbps) 4.0 4.0
Total (Utilization) 9.7 (97%) 7.6 (76%)

Table 5: Harm: Bandwidth use on a RE-link.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4

TFRC RPT(3)/TCP RENO
TFRC RPT(3)/TCP SACK
TFRC/TCP RENO
TFRC/TCP SACK

N
o
rm

a
liz

e
d

T
h

ro
u

g
h

p
u

t
o
f

T
FR

C

Packet Loss Rate (%)

Figure 17: TFRC RPT under random loss.

patterns: Uniform random and Temporal packet loss.
Is TFRC RPT TCP-friendly? We first evaluate our
scheme under the two extreme loss patterns created artifi-
cially, and evaluate it under a more realistic loss pattern.

Uniform random loss: In this setting, TFRC RPT be-
haves in a TCP friendly manner without any adjustment
in the loss estimation. Figure 17 shows the normalized
throughput of TFRC and TFRC RPT(3) with respect to
TCP Sack and Reno under 1% to 4% random loss. TFRC
RPT(3) performs slightly better than TFRC because mul-
tiple packet losses within an RTT are counted as one
loss event, and therefore the loss event rate for RPT(3) is
slightly lower than that of normal TFRC.

Temporal packet loss: Here, we adjust the loss event
rate of TFRC RPT(r) to be r times the observed loss event
rate. To validate TCP-friendliness, we evaluated the per-
formance of TFRC RPT(3) and TFRC under the same
temporal loss pattern. To create such a pattern, we gen-
erated the same cross traffic, but artificially modified the
router’s queue so that redundant packets do not increase
the queue length. Indeed, the performance difference of
the two was less than 3% with the adjusted loss event rate.

Realistic environment: The two cases appear in an
inter-mixed way in practice. As discussed in §3, an adjust-
ment factor between 1 and r is sufficient for TCP friend-
liness. To create realistic loss patterns, we ran TFRC
with competing TCP flows. The same dumbbell topol-
ogy with 1 Gbps bottleneck link capacity is used. We
vary the number of competing TCP flows from 200 to
2000. Each flow’s RTT is randomly selected between
40ms and 200ms. Among the TCP flows, five of them
are set to have the same RTT as the TFRC flows. We
compare the relative throughput of TFRC flows to the av-
erage throughput of TCP flows. Our result shows TFRC
RPT(3)’s performance reasonably matches that of TCP
when α = 1.5 across various loss rates. Figure 18 shows
the normalized TFRC RPT(3)’s performance with respect
to TCP Reno and TCP Sack. The result show that TFRC
RPT is TCP friendly.

0

0.2

0.4

0.6

0.8

1

1.2

200 400 600 800 1000 1200 1400 1600 1800 2000

TFRC RPT(3)/TCP RENO

TFRC/TCP RENO

TFRC RPT(3)/TCP SACK

TFRC/TCP SACK

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

o
f

T
FR

C

Number of competingTCP flows

Figure 18: TFRC RPT exhibit TCP friendliness.

29
30
31
32
33
34
35
36
37
38
39
40
41

2.0Mbps 1.1Mbps 864Kbps 673Kbps 562Kbps

TFRC TFRC RPT(3) TFRC FEC

A
v
e
ra

g
e

P
S
N

R
(d

B
)

Throughput of TFRC RPT(3)

Figure 19: Video quality comparison.

Video quality: We created video streams using TFRC
and TFRC RPT; in either case, we output video according
to the TFRC’s or TFRC RPT’s sending rate.9 We com-
pare the video quality of normal TFRC, normal TFRC
with FEC, and TFRC RPT under the same cross traffic.
We vary the cross traffic to create TFRC flows whose
throughputs range from 562Kbps to 2.0Mbps. For TFRC
with FEC, we choose the parameter which gives the best
PSNR with delay under 150ms. Figure 19 shows the
video quality achieved by the TFRC flows. We see that
TFRC RPT gives the best video quality in all cases.

7 Conclusion
This paper explores issues arising from the confluence
of two trends – growing importance and volume of real-
time traffic, and the growing adoption of content-aware
networks. We examine a key problem at this intersec-
tion, namely that of protecting real-time traffic from data
losses in content-aware networks. We show that adding
redundancy in a way that network understands reduces
the cost and increases the benefits of loss protection quite
significantly. We refer to our candidate loss protection ap-
proach as redundant transmission (RT). Using Redundant
Packet Transmission (RPT) in redundancy-elimination
networks [14] as an example, we highlight various fea-
tures of RT and establish that is a promising candidate
to use in several practical content-aware networking sce-
narios. We show that RT decreases the data loss rate by
orders-of-magnitude more than typical FEC schemes ap-
plicable in live video communications, and delivers higher
quality video than FEC using the same bandwidth budget.
RT provides fine-grained control to signal the importance
of data and satisfies tight delay constraints. Yet, it is easy
to use as its performance is much less sensitive to param-
eter selection. We show that constant bitrate RT flows

9For more details, refer to our technical report [31].

13

are prioritized over non-RT flows, but can share band-
width fairly by incorporating TCP friendly rate control
into RPT. We also show that RT provides an efficient and
cost-effective loss protection mechanism in other general
content-aware networks.

Acknowledgments
We thank our shepherd Xiaowei Yang and anonymous
reviewers for their feedback. This research was supported
in part by the National Science Foundation under awards
CNS-1040757, CNS-0905134, CNS-0905277 and CNS-
1040801.

References
[1] AT&T Businees Service Guide - AT&T VPN Service. http:

//new.serviceguide.att.com/portals/sgportal.
portal?_nfpb=true&_pageLabel=avpn_page, 2011.

[2] Cisco Wide Area Application Services (WAAS) Software. http://www.
cisco.com/en/US/prod/collateral/contnetw/ps5680/
ps6870/prod_white_paper0900aecd8051d5b2.html, 2009.

[3] Cisco visual networking index: Forecast and methodology, 20092014.
http://www.cisco.com/, 2010.

[4] Magic Quadrant for WAN Optimization Controllers. http:
//www.gartner.com/technology/media-products/
reprints/riverbed/article1/article1.html, 2010.

[5] Juniper Networks Datasheet. http://www.juniper.net/us/en/
local/pdf/datasheets/1000113-en.pdf, 2009.

[6] Sprint Network Performance. https://www.sprint.net/sla_
performance.php?network=pip, 2012.

[7] YUV CIF reference videos. http://www.tkn.tu-berlin.de/
research/evalvid/cif.html, 2010.

[8] Cisco Internal WAAS Implementation. http://blogs.cisco.com/
ciscoit/cisco_internal_waas_implementation/, 2010.

[9] Riverbed Cloud Products. http://www.riverbed.com/us/
products/cloud_products/cloud_steelhead.php, 2011.

[10] Riverbed Customer Stories. http://www.riverbed.com/us/
customers/index.php?filter=bandwidth, 2011.

[11] Riverbed Steelhead Mobile. http://www.riverbed.com/us/
products/steelhead_appliance/steelhead_mobile/,
2011.

[12] A. Albanese, J. Blöer, J. Edmonds, M. Luby, and M. Sudan. Priority encod-
ing transmission. IEEE Transactions on Information Theory, 42, 1994.

[13] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar,
S. Sengupta, and M. Sridharan. Data center TCP (DCTCP). In Proc. ACM
SIGCOMM, 2010.

[14] A. Anand, A. Gupta, A. Akella, S. Seshan, and S. Shenker. Packet caches
on routers: the implications of universal redundant traffic elimination. In
Proc. ACM SIGCOMM, 2008.

[15] A. Anand, V. Sekar, and A. Akella. SmartRE: an architecture for coordi-
nated network-wide redundancy elimination. In Proc. ACM SIGCOMM,
2009.

[16] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing router buffers. In
Proc. ACM SIGCOMM, 2004.

[17] M. Balakrishnan, T. Marian, K. Birman, H. Weatherspoon, and E. Vollset.
Maelstrom: transparent error correction for lambda networks. In Proc.
USENIX NSDI, 2008.

[18] A. C. Begen and Y. Altunbasak. Redundancy-controllable adaptive retrans-
mission timeout estimation for packet video. In Proc. ACM NOSSDAV,
2006.

[19] J.-C. Bolot, S. Fosse-Parisis, and D. Towsley. Adaptive FEC-based error
control for internet telephony. In Proc. IEEE INFOCOM, 1999.

[20] O. Boyaci, A. Forte, and H. Schulzrinne. Performance of video-chat appli-
cations under congestion. In Proc. IEEE ISM, Dec. 2009.

[21] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital fountain
approach to reliable distribution of bulk data. In Proc. ACM SIGCOMM,
1998.

[22] J. Cao, W. Cleveland, Y. Gao, K. Jeffay, F. Smith, and M. Weigle. Stochas-
tic models for generating synthetic HTTP source traffic. In Proc. IEEE
INFOCOM, volume 3, 2004.

[23] P. A. Chou, H. J. Wang, and V. N. Padmanabhan. Layered multiple descrip-
tion coding. In Proc. Packet Video Workshop, 2003.

[24] Cisco. Deploying guaranteed-bandwith services with mpls.
http://www.cisco.com/warp/public/cc/pd/iosw/
prodlit/gurtb_wp.pdf, 2012.

[25] L. De Cicco, S. Mascolo, and V. Palmisano. Skype video responsiveness to
bandwidth variations. In Proc. ACM NOSSDAV, 2008.

[26] Emulab. Emulab. http://www.emulab.net/.
[27] N. Feamster and H. Balakrishnan. Packet loss recovery for streaming video.

In Proc. International Packet Video Workshop, 2002.
[28] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-based conges-

tion control for unicast applications. In Proc. ACM SIGCOMM, 2000.
[29] P. Frossard and O. Verscheure. Joint source/FEC rate selection for quality-

optimal MPEG-2 video delivery. IEEE Transactions on Image Processing,
10(12), Dec. 2001.

[30] A. Hagedorn, S. Agarwal, D. Starobinski, and A. Trachtenberg. Rateless
coding with feedback. In Proc. IEEE INFOCOM, 2009.

[31] D. Han, A. Anand, A. Akella, and S. Seshan. RPT: Re-architecting loss pro-
tection for content-aware networks. Technical Report TR-11-117, Carnegie
Mellon Univ., 2011.

[32] D. Han, A. Anand, F. Dogar, B. Li, H. Lim, M. Machado, A. Mukundan,
W. Wu, A. Akella, D. Andersen, J. Byers, S. Seshan, and P. Steenkiste. XIA:
An architecture for an evolvable and trustworthy Internet. In Proc. USENIX
NSDI, Apr. 2012.

[33] U. Horn, K. Stuhlmller, E. E. Herzogenrath, M. Link, and B. Girod. Ro-
bust internet video transmission based on scalable coding and unequal error
protection. Signal Processing: Image Communication, 1999.

[34] N. Hu, L. E. Li, and Z. M. Mao. Locating Internet bottlenecks: Algorithms,
measurements, and implications. In Proc. ACM SIGCOMM, 2004.

[35] Infineta. Velocity Dedupe Engine. http://www.infineta.com/
technology/reduce, 2011.

[36] ITU-T. Recommendation G.114 one-way transmission time.
[37] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and

R. L. Braynard. Networking named content. In Proc. ACM CoNEXT, 2009.
[38] S. Jakubczak and D. Katabi. A cross-layer design for scalable mobile video.

In Proc. ACM MobiCom, 2011.
[39] K. Jamieson and H. Balakrishnan. PPR: Partial packet recovery for wireless

networks. In Proc. ACM SIGCOMM, Aug. 2007.
[40] J. Klaue, B. Rathke, and A. Wolisz. EvalVid - a framework for video trans-

mission and quality evaluation. In Proc. Performance TOOLS, 2003.
[41] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The click

modular router. ACM TOCS, 2000.
[42] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,

S. Shenker, and I. Stoica. A Data-Oriented (and Beyond) Network Archi-
tecture. Aug. 2007.

[43] H. Liu and M. El Zarki. Performance of H.263 video transmission over
wireless channels using hybrid ARQ. IEEE JSAC, 15(9), Dec. 1997.

[44] D. Loguinov and H. Radha. On retransmission schemes for real-time
streaming in the Internet. In Proc. IEEE INFOCOM, 2001.

[45] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. E. Anderson, A. Kr-
ishnamurthy, and A. Venkataramani. iPlane: An information plane for dis-
tributed services. In Proc. 7th USENIX OSDI, Nov. 2006.

[46] S. McCanne, M. Vetterli, and V. Jacobson. Low-complexity video coding
for receiver-driven layered multicast. IEEE JSAC, 15(6), 1997.

[47] K. Nakauchi and K. Kobayashi. An explicit router feedback framework for
high bandwidth-delay product networks. Comput. Netw., 51, May 2007.

[48] L. Pantel and L. C. Wolf. On the impact of delay on real-time multiplayer
games. In Proc. NOSSDAV, 2002.

[49] C. Papadopoulos. Retransmission-based error control for continuous media
applications. In Proc. NOSSDAV, 1996.

[50] R. Puri and K. Ramchandran. Multiple description source coding using
forward error correction codes. In Proc. Asilomar conference on signals,
systems, and computers, 1999.

[51] I. Rhee. Error control techniques for interactive low-bit rate video transmis-
sion over the internet. In Proc. ACM SIGCOMM, 1998.

[52] D. Salomon. Data Compression; the Complete Reference. Springer, 2007.
[53] S. Sen, N. K. Madabhushi, and S. Banerjee. Scalable wifi media delivery

through adaptive broadcasts. In Proc. USENIX NSDI, 2010.
[54] N. T. Spring and D. Wetherall. A protocol-independent technique for elim-

inating redundant network traffic. In Proc. ACM SIGCOMM, 2000.
[55] A. Suissa, J. Mellor, F. Lohier, and P. Garda. A novel video packet loss

concealment algorithm & real time implementation. In Proc. DASIP, 2008.
[56] J. Wang and D. Katabi. ChitChat: Making video chat robust to packet loss.

Technical Report MIT-CSAIL-TR-2010-031, MIT, July 2010.
[57] X. Zhu, R. Pan, N. Dukkipati, V. Subramanian, and F. Bonomi. Layered In-

ternet video engineering (LIVE): Network-assisted bandwidth sharing and
transient loss protection for scalable video streaming. In Proc. IEEE INFO-
COM, 2010.

14

http://new.serviceguide.att.com/portals/sgportal.portal?_nfpb=true&_pageLabel=avpn_page
http://new.serviceguide.att.com/portals/sgportal.portal?_nfpb=true&_pageLabel=avpn_page
http://new.serviceguide.att.com/portals/sgportal.portal?_nfpb=true&_pageLabel=avpn_page
http://www.cisco.com/en/US/prod/collateral/contnetw/ps5680/ps6870/prod_white_paper0900aecd8051d5b2.html
http://www.cisco.com/en/US/prod/collateral/contnetw/ps5680/ps6870/prod_white_paper0900aecd8051d5b2.html
http://www.cisco.com/en/US/prod/collateral/contnetw/ps5680/ps6870/prod_white_paper0900aecd8051d5b2.html
http://www.cisco.com/
http://www.gartner.com/technology/media-products/reprints/riverbed/article1/article1.html
http://www.gartner.com/technology/media-products/reprints/riverbed/article1/article1.html
http://www.gartner.com/technology/media-products/reprints/riverbed/article1/article1.html
http://www.juniper.net/us/en/local/pdf/datasheets/1000113-en.pdf
http://www.juniper.net/us/en/local/pdf/datasheets/1000113-en.pdf
https://www.sprint.net/sla_performance.php?network=pip
https://www.sprint.net/sla_performance.php?network=pip
http://www.tkn.tu-berlin.de/research/evalvid/cif.html
http://www.tkn.tu-berlin.de/research/evalvid/cif.html
http://blogs.cisco.com/ciscoit/cisco_internal_waas_implementation/
http://blogs.cisco.com/ciscoit/cisco_internal_waas_implementation/
http://www.riverbed.com/us/products/cloud_products/cloud_steelhead.php
http://www.riverbed.com/us/products/cloud_products/cloud_steelhead.php
http://www.riverbed.com/us/customers/index.php?filter=bandwidth
http://www.riverbed.com/us/customers/index.php?filter=bandwidth
http://www.riverbed.com/us/products/steelhead_appliance/steelhead_mobile/
http://www.riverbed.com/us/products/steelhead_appliance/steelhead_mobile/
http://www.cisco.com/warp/public/cc/pd/iosw/prodlit/gurtb_wp.pdf
http://www.cisco.com/warp/public/cc/pd/iosw/prodlit/gurtb_wp.pdf
http://www.emulab.net/
http://www.infineta.com/technology/reduce
http://www.infineta.com/technology/reduce

	Introduction
	Current Loss Recovery Schemes
	Redundant Packet Transmission
	Redundancy Elimination Background
	Basic Idea
	Key Features
	Low Overhead and High Robustness
	Ease of Use and Control
	Flow Prioritization

	Scheduling Redundant Packets
	Comments on RT/RPT

	RPT with Congestion Control
	RPT in Various Networks
	Evaluation
	Evaluation Framework
	End-to-end Video Performance
	Parameter Selection and Sensitivity
	Impact of RPT on the Network
	TCP-Friendly RPT

	Conclusion

