
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

Genesis: Synthesizing Forwarding
Tables in Multi-tenant Networks

Kausik Subramanian Loris D’Antoni Aditya Akella

University of Wisconsin-Madison, USA

{sskausik08, loris, akella}@cs.wisc.edu

Abstract

Operators in multi-tenant cloud datacenters require support for
diverse and complex end-to-end policies, such as, reachability,
middlebox traversals, isolation, traffic engineering, and network
resource management. We present GENESIS, a datacenter network
management system which allows policies to be specified in a
declarative manner without explicitly programming the network
data plane. GENESIS tackles the problem of enforcing policies by
synthesizing switch forwarding tables. It uses the formal foundations
of constraint solving in combination with fast off-the-shelf SMT
solvers. To improve synthesis performance, GENESIS incorporates
a novel search strategy that uses regular expressions to specify
properties that leverage the structure of datacenter networks, and a
divide-and-conquer synthesis procedure which exploits the structure
of policy relationships. We have prototyped GENESIS, and conducted
experiments with a variety of workloads on real-world topologies to
demonstrate its performance.

Categories and Subject Descriptors C.2.3 [Network Operations]:
Network management; I.2.2 [Automatic Programming]: Program
synthesis; D.2.4 [Software/Program Verification]: Formal methods

Keywords Network management, Software-defined networks,
SMT

1. Introduction

Many enterprises are increasingly migrating their on-premise IT
infrastructure to cloud datacenters. In such environments, the dif-
ferent enterprises (tenants) share different resources, such as, the
compute machines that run their applications and network infrastruc-
ture used for communication among these applications. Operators
of such multi-tenant datacenters thus have to deal with a multitude
of machines communicating with each other (flows) over a network
that is composed of many tens to hundreds of routers or switches
(devices) [14]. With growing diversity of enterprise applications and
the need for security and compliance, these pathways of communi-
cation through the datacenter network are subject to increasingly
complex network-based policies.

Consider a tenant in such a datacenter. She may desire basic
communication among her applications (reachability) along shortest
paths based on certain metrics. In addition, she may wish that traffic

attempting to reach some of her applications is examined by a
set of “middleboxes” (traversal) for auditing and access control.
For strong security or Quality-of-Service considerations, a tenant
may additionally desire that a subset of her flows does not share
any infrastructure with others’ flows (isolation). In parallel, cloud
operators must meet key operational policies. For instance, they
often need to optimize network performance objectives (traffic
engineering), e.g., minimizing the maximum load imposed by all
tenants on network links, and deal with resource constraints such as
link capacity bounds and switch table sizes. Also, since datacenter
networks are highly prone to link/switch failures [15], operators
need to gracefully transition the old (pre-failure) data plane to
a policy-compliant one (post-failure) in a rapid and/or efficient
manner.

Today, configuring network devices to enforce these complex
policies in aggregate is manual, ad-hoc, and error-prone. This
can lead to misconfigurations and violations of tenant service-
level agreements, which can have severe performance and security
impacts.

With software-defined networking (SDN), operators can program
networks in a more intuitive manner. In SDN, a general-purpose
centralized controller machine (control plane) controls end-to-end
communication pathways by managing network forwarding rules on
a collection of programmable switches (data plane). Using a global
view of the current network topology, the controller can program
forwarding rules on switches based on application requirements.
Unfortunately, many existing SDN programming languages [13, 23]
present too narrow a view: operators would ideally want to specify
and realize policies network-wide, whereas these languages focus
on programming individual switch behaviors. Other recent works on
network-wide policy enforcement [5, 18, 27, 28, 31, 32] go beyond
the single-switch model, but they target specific types of policies
and are not easily extensible to different kinds of policies. Notably,
NetKAT is among the most expressive and can be used to encode
certain network-wide policies like regular paths and programs on
virtual topologies, however, it cannot be used to express policies
based on hyperproperties [10] (where one class’s path is dependent
on the other) like isolated paths or traffic engineering. Furthermore,
for many types of policies, generating a data plane that enforces
them is a computationally hard problem, requiring the design of
efficient custom heuristics per policy type.

In this paper, we seek a general approach that allows a variety of
rich policies to be specified as the input, with the output being
the corresponding set of switch forwarding rules such that the
complexities of correctly realizing the policies in the data plane
are hidden from operators. This is an important step toward intent-
based networking [2], where operators specify what they want the
network to do instead of worrying about how the network must be
configured. We argue that data plane synthesis can help realize this
vision in the multi-tenant datacenter context.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

POPL’17, January 15–21, 2017, Paris, France
ACM. 978-1-4503-4660-3/17/01...$15.00
http://dx.doi.org/10.1145/3009837.3009845

572

We present GENESIS, a framework for declaratively specifying
and enforcing complex policies such as, isolation, middlebox traver-
sals, network optimization objectives, and failure resilience. To
tackle the high complexity of enforcing some of these policies (e.g.,
enforcing isolation is NP-complete), GENESIS encodes the problem
of enforcing policies as a constraint solving problem and leverages
recent advances in fast Satisfiability Modulo Theories (SMT) solvers
to efficiently search for a solution to the constraints. The solution
is then translated into switch forwarding rules. GENESIS uses two
intuitive relations that concisely capture the semantics of custom
network forwarding behaviors. These help express a variety of both
path-based and global policies desired in a datacenter. Interestingly,
complex global policies (specifically, policy-compliant failure re-
silience) can be realized within this framework without requiring
additional encoding (of specific failure scenarios) by just cleverly
transforming path-based policies. By leveraging the formal guaran-
tees of constraint solving, GENESIS eliminates the room for error in
the enforcement of complex policies.

Further, we present two novel techniques that leverage domain-
specific properties to speed up GENESIS’s synthesis. First, GENESIS

allows the network operator to write restricted forms of regular
expressions, called tactics, that blacklist paths based on certain
patterns that are not desired in a datacenter network (e.g., paths
that alternate between topology tiers). These tactics are used to
discard several constraints, acting as a search strategy for the
solver. Tactics can speed up the synthesis procedure by 1.5− 400×
(median speedup: 1.6×, average speedup: 22×). Second, we develop
a divide-and-conquer synthesis procedure that opportunistically
leverages the dependency relationships among isolation policies
to improve synthesis performance. The procedure partitions the
input policies into components such that GENESIS can synthesize
these components separately and faster than the complete problem.
Divide-and-conquer synthesis can halve the synthesis time for 40%
of synthetic isolation workloads.

Contributions. Our contributions are the following.

• An extensible declarative framework for describing complex poli-
cies like isolation, waypoints (§4), traffic engineering (§5), and
failure resiliency (§5.3.1) and a modular SMT-based algorithm
for enforcing such policies;
• A tactic-based synthesis algorithm, which leverages datacenter

network structure to blacklist undesirable path patterns (§6);
• A divide-and-conquer procedure for speeding up synthesis by

leveraging the structure of policy interactions (§7);
• An implementation of GENESIS and an evaluation on different

policy workloads, topologies and multi-tenancy settings (§8).

2. Preliminaries and Policies Supported

We describe the type of policies desired in multi-tenant data centers
that GENESIS supports. We use Figure 1 as a running example. In
our setting, an “operator” manages a multi-tenant datacenter like
an enterprise network or a private datacenter. The operator speci-
fies “operator policies” which reflect important global objectives
pertaining to how she wishes to manage her overall infrastructure.
A tenant is an entity (e.g., an enterprise or a department thereof)
that has offloaded its IT infrastructure to the datacenter. Each tenant
controls a number of host machines in the datacenter running some
of its applications, and specifies path-based policies (as opposed to
operator’s global policies). Tenant policies define whether paths can
exist among its hosts, and if so, what additional properties the paths
must satisfy for security, performance or access control reasons.
Given the policies, the cloud operator solves the VM placement
problem separately. The resulting tenant VM locations, along with
the policies to apply on paths between locations are then provided as
input to Genesis. Tenants are unaware of the physical topology and

Figure 1: GENESIS in a multi-tenant datacenter setting of a network
containing several VMs and middleboxes. The network operator translates
the tenant specifications and network resource policies to GENESIS policies
and GENESIS synthesizes switch forwarding rules which are installed by the
SDN controller.

cannot program physical switches directly, maintaining the virtual
network abstraction.

Figure 1 shows several tenants who differ in the nature of policies
they wish to realize; we also show the operator policies. The policies
supported by GENESIS are described below. Notice that these reflect
and, in some cases, extend policies that today’s enterprises and
datacenter operators realize in their networks [14].

Tenant Policy: Reachability. This enables network communication
between specific pairs of tenant’s virtual instances (VMs), applica-
tions, or hosts. In our example, one tenant has defined a reachability
policy (R2) for its two VMs: V1 » V2, which is translated after
VM placement to the source and destination switches E2 » E4. A
pair of VMs, applications or hosts that are allowed to communicate
by means of a reachability policy defines a flow or a “packet class”;
we use these terms interchangeably. Any communication that is
not defined by a reachability policy is implicitly blocked (i.e., all
communication is “default off”).

Tenant Policy: Middlebox Traversals. A tenant may wish that the
flow between two of her end hosts, or from another tenant, must
traverse specific middleboxes, which we also refer to as “waypoints”
in this paper. Middleboxes are custom processing appliances of-
ten used for security, access control, or performance reasons (e.g.,
firewalls, intrusion prevention systems, monitoring/accounting gate-
ways, proxies, and load balancers). Specifically, for particular flows
of interest, a tenant can provide a sequence of unordered sets of
middleboxes to traverse [26]. The flows must traverse these sets in
order, while in a set, all middleboxes must be traversed and the order
is irrelevant.1 For example, one of the tenants defines a traversal
policy (R1): V1 » FW; [IDS,BC] » V2 which specifies that
traffic must first pass through the firewall (FW), and then through
the Intrusion detection system (IDS) and the byte counter (BC) in
any order.

Tenant Policy: Isolation. Tenants may require various Quality-of-
Service (QoS) or security guarantees that stipulate varying degrees
of isolation for their traffic. In the extreme, a tenant could require
that her flows are not affected in any manner by any other tenant by
strictly isolating the path of the tenant’s flows from others’ flows. In
Figure 1, we have two tenants whose traffic will be isolated from
one another (R1||R2), i.e., the network paths used by the tenants
will not share any links in the topology. A tenant could also specify
isolation for a subset of her (performance-sensitive) flows from other

1 The unordered set abstraction leverages the fact that middleboxes without
dependencies in their traffic processing behavior can be placed in any order
relative to each other [26].

573

Type Policy GPL Syntax Description

Reachability
predicate : src »

dst

Forwarding Rules for path from switch src to switch dst for packets matching
predicate

Tenant

Reachability
with Ordered
Waypoints

predicate :

src » W1; . . .;Wn »

dst

Forwarding Rules for path from switch src to switch dst for packets matching
predicate such that the path traverses w ∈ W1 in any order, then w ∈ W2 in
any order after all waypoints in W1 are traversed and so on.

Traffic
Isolation

R1 || R2 Paths of two reachability policies R1 and R2 do not share a link in the same direction

Link
Isolation

R1 <> R2
Paths of two reachability policies R1 and R2 do not share a link in any direction
(edge-disjoint)

Link
Capacity

sw1 → sw2 :

capacity
The weights of flows traversing the link sw1 → sw2 do not exceed capacity

Operator
Switch
Table Size

sw : size
The number of flows traversing through sw do not exceed size as each flow would
require a forwarding rule at sw

Traffic
Engineering

minimize-tot-te,
minimize-max-te

TE objectives: minimize total/max link utilization

Table 1: Genesis Policy Support with Genesis Policy Language (GPL) syntax

flows of the same tenant or those belonging to other tenants; the rest
of the tenant’s flows may require no guarantees.

Operator Policy: Managing Capacity Constraints. While sup-
port for the above policies can be used to satisfy tenant requirements,
network operators often wish to carefully manage constrained re-
sources. Common examples that GENESIS supports include enforcing
strict constraints on aggregate number of flows traversing a switch
(due to all tenants) so as to adhere to switch memory constraints,
and ensuring that the total load on certain links is within predefined
thresholds (we assume here that each flow has a predefined load
that it imposes on the path it uses). In our example in Figure 1, A2-
C2 and A4-C2 links are of low bandwidth, and the operator wants
to ensure that total load on these links does not exceed 100 (A2
→ C2: 100, A4 → C2:100). These policies could also be
used to provide QoS guarantees to tenants like minimum bandwidth
guarantees.

Operator Policy: Traffic Engineering. As an alternative to man-
aging strict (link) capacity constraints, operates may also want to
balance load on their network infrastructure. This is often done
by optimizing a network-wide objective such as total or maximum
utilization of network links due to traffic induced by all tenants.

Operator Policy: Handling failure gracefully. Modern networks
experience link and switch failures frequently [15]. When a fail-
ure occurs, we must reconfigure the forwarding rules so that the
policies are satisfied. Naively recomputing forwarding rules incurs
an unduly large overhead because old forwarding rules have to be
torn down at all switches, and new rules must be installed. Switch
rules deletions/insertions take a non-trivial amount of time [17],
potentially leading to disruptions. It is therefore desirable to have
graceful approaches that either minimize the potential for disruption
by minimizing the number of forwarding rules or switches modified
in transitioning from an old data-plane, or eliminate the possibility
of disruption altogether by precomputing backup policy-compliant
paths for a fixed number of failures (at the cost of storing extra rules
at switches).

Realizing these policies is challenging today. In particular, state-
of-the-art SDN frameworks, e.g., Pyretic [23] and Frenetic [13], are
insufficient to program networks to realize them. This is because
the above policies are global and cannot be enforced (at least not
in an intuitive manner) by programming individual behavior of
switches. While some existing SDN-based network management
systems [20, 27, 32] overcome these limitations by taking a network-
wide view, they are tailored to support specific policies such as
middlebox placement or link capacity constraints. As such they
cannot enforce several of the policies above.

3. Data Plane Synthesis

Our contribution is GENESIS, a new general network management
system that supports the above policies, and can be extended to
support others. The architecture of GENESIS is shown in Figure 1.
GENESIS performs synthesis of switch forwarding rules to enforce
policies. The policies are specified using Genesis Policy Language,
or GPL, as shown in Table 1.

Unlike previous efforts in the network synthesis space [29, 32],
GENESIS is not tailored to specific formalisms such as regular
expressions; this aspect makes it modular and easy to extend. To
draw an analogy with SMT solvers, GENESIS can be seen as a
constraint solver that allows the addition of different types of policies
(respectively, theories in SMT) and the design of optimizations based
on properties desired by network operators.

Our work is motivated by recent advances in program synthesis,
i.e., the task of discovering an executable program from user intent
expressed in the form of some constraints. There are three key
dimensions to a synthesis problem: the type of constraints that it
accepts as expression of user intent, the space of programs over
which it searches, and the search technique it employs. GENESIS

leverages synthesis as follows: given a set of policies which describe
tenant and operator intent, the search space is the space of all data
planes (i.e., the set of forwarding rules) and the search technique
involved is SAT/SMT solving.

GENESIS’s approach has the following salient features:
(1) Enforcement of the different policies can be translated to

the following problem: Given a set of node pairs (derived from the
reachability policies) in the graph (topology), find paths in the graph
for each of the node pairs satisfying certain properties (derived
from the rest of the policies). Thus, the different policies can be
enforced by a correct set of forwarding rules at the switches. No
extra functionality is required from the controller; its only role is to
install the forwarding rules on switches.

(2) Correct enforcement is challenging due to different goals for
each of the policies — ensuring isolation between paths may lead to
overshooting link utilizations and vice-versa — and is a common
cause of incorrect configurations in networks. Our approach removes
the need for a verification step in which the operator has to “check”
whether the forwarding rules satisfy the desired policies. By using
a formal reasoning technique, we are able to consider the space of
all data planes and find a solution which is correct by construction,
eliminating room for operator errors.

(3) Automatically enforcing policies is a task with high theoreti-
cal complexity. For example, enforcing isolation policies is as hard
as solving graph-coloring, an NP-complete problem. Specialized
techniques can be used to find the forwarding rules when handling
a particular class of policy, but devising good search techniques

574

becomes challenging when multiple types of policies are combined,–
e.g., isolation, waypoints, and traffic engineering. Thanks to the
many engineering efforts, SMT solvers abstract away most of this
complexity and allow us to unify search objectives for every policy
into a generalized search technique. Crucially, GENESIS can be ex-
tended with ease to support new policies without requiring changes
to the underlying search techniques.

In the next section, we describe the GENESIS synthesis algorithm
for tenant policies. We then describe how to accommodate operator
policies pertaining to capacity constraints, traffic engineering and
failure resiliency (§5). Finally, we describe two novel techniques
aimed at speeding up GENESIS’s synthesis: tactics (§6) and divide-
and-conquer synthesis (§7).

4. Synthesis of Tenant Policies

The problem statement here is as follows: Given the network topol-
ogy graph and the set of tenant policies written in GPL, generate
paths in the network for every source-destination pair (derived from
reachability policies) satisfying all policies. To achieve this, GENESIS

creates constraints that encode the forwarding and reachability rules
pertaining to the paths such that they satisfy the input policies. The
synthesized solution of paths obtained from the constraints are then
translated to switch forwarding rules.

4.1 Network Forwarding Model

We start by describing the basic forwarding model we use in GENESIS.
We define the physical switch topology as an undirected graph
T = (S,L), where S is the set of switches and L is the set of
links. We use the neighbour function N(s) = {s′ | (s, s′) ∈ L}
to denote the set of neighbour switches of s. We assume a set of
packet classes PC : [0, λ] and map each reachability policy to a
unique integer in PC. In the rest of the paper, we often use the term
packet class to identify the corresponding reachability policy. Other
policies are not mapped to packet classes as they do not produce a
path, but specify restrictions on paths of packet classes. We use R
to denote the set of reachability policies; each policy r ∈ R is a pair
(predicate:src >> W1;W2; . . . ;Wn >> dst, pc) where:
• predicate is the packet header identifier pertaining to r;
• src, dst ∈ S are the source and destination switches;
• W1,W2, . . . ,Wn ⊆ S are the (potentially empty) ordered sets

of waypoints;
• pc ∈ PC is the packet class and is a unique integer used to

identify the variables associated to r
We fix a constant µ and assume all paths to have length at most µ.
K = [0, µ] is the set of all permissible path lengths. The network
forwarding model abstracts the actual forwarding rules at each node
and encodes the reachability of each packet class.

We use the relation Fwd ⊆ S × S × PC to capture the
network forwarding behavior,—i.e. (sw1, sw2, pc) ∈ Fwd if sw1

forwards packets of class pc to switch sw2. We use the relation
Reach ⊆ S × PC × K to capture the path reachability,—i.e.
(sw, pc, k) ∈ Reach if the switch sw is reachable in the path
from the source switch of packet class pc in exactly k steps. For
brevity, we write Fwd(sw1, sw2, pc) for (sw1, sw2, pc) ∈ Fwd
and similarly for the Reach relation. Since Fwd depends on the
topology, for all sw1, sw2 that are not connected by a link, we have
that ∀pc, (sw1, sw2, pc) /∈ Fwd.

Given a set of policies, GENESIS generates a set of constraints de-
noted by Ψ over the Fwd and Reach relations. (Fwd,Reach) |=
Ψ denotes that Fwd and Reach is a model of Ψ.

Definition 1. Given two concrete relations Fwd and Reach, the set
of induced paths Π = paths(Fwd,Reach) is defined as follows:
given a class pc, (sw0 . . . swk, pc) ∈ Π iff :

1. ∀i ∈ [0, k].(swi, pc, i) ∈ Reach

Figure 2: Values of the Fwd and Reach relations of the network forwarding
model for the policies specified in the figure. The blue and red arrows indicate
the paths of packet classes 0 and 1 respectively according to the model.

2. ∀i ∈ [0, k − 1].(swi, swi+1, pc) ∈ Fwd
Figure 2 illustrates these definitions.

Definition 2. Given the set of constraints Ψ corresponding to
the input policies, a set of paths Π is a solution to Ψ, Π |= Ψ,
if there exists Fwd,Reach such that (Fwd,Reach) |= Ψ and
Π = paths(Fwd,Reach).

In practice, we model the forwarding and reachability relations
using propositions and reduce enforcement of tenant policies like
reachability, waypoints and isolation to a Boolean Satisfiability
Problem (SAT) problem. Using these relations, operators can write
custom policies in a concise and intuitive manner.

4.2 Reachability

We first discuss the constraints added to Ψ for reachability policies
without waypoints. For a reachability policy s >> d and packet
class pc, the added constraints must ensure that the solution model
represents a path from source to destination. The base constraint
states that (s, pc, 0) ∈ Reach meaning that s can be reached in 0
steps. The following constraint states that there must be a forwarding

rule from s to one of the neighbors of s2.

∃n ∈ N(s). Fwd(s, n, pc) ∧Reach(n, pc, 1). (1)

Next, we add the following constraints that state that d can be
reached in some number of steps and, since d is the last switch in
the path, there are no forwarding rules from it.

∃k. Reach(d, pc, k) ∧ ∀n ∈ N(d). ¬Fwd(d, n, pc). (2)

Finally, we add implication constraints that propagate reachability
backward from destination to source. If a node n1 is reachable in
k steps, there must be a node n2 reachable in k − 1 steps and a
forwarding rule n2 → n1.

∀n1.∀k ≥ 1. Reach(n1, pc, k) =⇒ ∃n2.n2 ∈ N(n1)∧

Reach(n2, pc, k − 1) ∧ Fwd(n2, n1, pc). (3)

When combined together, these constraints are sufficient to ensure
the existence of a path from s to d for packet class pc. However,
since there is no restriction on the number of Fwd values that can
be true at a switch, we can get multiple forwarding rules at switches,
and also multiple paths to the destination. These can also create
forwarding loops. Concretely, this is not a problem: as long as there
is at least one path from s to d we can recover it from the solution
of the constraints. Moreover, this representation is quite efficient, as
forcing a single path would require adding further constraints (§4.3)
and increase the synthesis time.

To extract a concrete s-to-d path we perform a breadth-first
search on the reachability graph induced by the solution to the con-

2 We unroll the existential quantifier ∃n ∈ N(s) using disjunction of clauses
∨n∈N(s) and the universal quantifier ∀n ∈ N(dst) using conjunction of

clauses ∧n∈N(dst) and stay in propositional logic.

575

straints. A directed edge n1 → n2 appears in the reachability-graph
if there is a forwarding rule indicated by the relation (n1, n2, pc) ∈
Fwd. We extract the rules relevant to the shortest path from source
to destination from the model, and the additional rules obtained in
the solution (extra paths, forwarding loops) are ignored.

4.3 Waypoint Traversal

For a reachability policy with a sequence of waypoint sets s >>
W1; . . . ;Wn >> d and packet class pc, we add all the constraints
specified in §4.2 to ensure the existence of a path from s to d. We
then add constraints so that all waypoints w are traversed.

∀w ∈ W1, . . . ,Wn. ∃k. Reach(w, pc, k). (4)

For each set Wi for i > 1, we add constraints to ensure that all
waypoints in Wi are reached after all waypoints in Wi−1 :

∀wi ∈ Wi, ∀ki. Reach(wi, pc, ki) =⇒ ∀wi−1 ∈ Wi−1.

∃ki−1. ki−1 < ki ∧Reach(wi−1, pc, ki−1). (5)

Previously, we imposed no restriction on the number of paths from
s to d. In the case of waypoints, this can result in a solution with
multiple paths, with each individual path traversing some of the
waypoints, which is not the correct enforcement for a waypoint
policy. Thus, we need to ensure the solver returns a single path
traversing all the waypoints. To achieve this, we limit the number
of forwarding rules for pc at a switch to 0 or 1. We define the
forwarding set as:

FwdSet(sw, pc) = {k | Fwd(sw, k, pc)}. (6)

We then add constraints stating that the size of the forwarding set
must not exceed 1:

∀sw, pc. |FwdSet(sw, pc)|≤ 1. (7)

Here |A| denotes the size of set A. The above constraints are
expressed in SAT as follows:

∨

k1∈N(sw)

Fwd(sw, k1, pc) ∧ (
∧

k2∈N(sw),k2 6=k1

¬Fwd(sw, k2, pc)) (8)

Since, there cannot exist multiple rules at a switch, the model will
contain a single path from source to destination for pc traversing the
waypoints in the right order.

4.4 Isolation

A traffic isolation policy pc1|| pc2 states that the paths for pc1 and
pc2 do not share any link in the same direction. We enforce this
policy by adding to Ψ, constraints stating that at every switch, pc1
and pc2 must not forward to the same switch:

∀n1. ¬(∃n2.Fwd(n1, n2, pc1) ∧ Fwd(n1, n2, pc2)). (9)

For a link isolation policy pc1 <> pc2 which prevents sharing a
link in both directions, we add the constraints:

∀n1. ¬(∃n2.Fwd(n1, n2, pc1) ∧

(Fwd(n1, n2, pc2) ∨ Fwd(n2, n1, pc2))). (10)

With single paths for pc1 and pc2 (when combined with Equa-
tion (7)), the above constraints ensure those paths are isolated. Inter-
estingly, for a reachability policy without waypoints, the constraints
in Equation (7) are not required to enforce isolation. Even though
the solver could produce multiple forwarding rules which induce
multiple paths, the constraints in Equation (9) or Equation (10) guar-
antee isolation as the solver would discard the rules conflicting with
another packet class.

5. Synthesis of Operator Policies

We now describe how to extend GENESIS’s synthesis to support
various operator policies. We describe GENESIS can support hard
capacity constraints and optimization objectives pertaining to traf-
fic engineering using linear rational arithmetic (LRA) and linear
optimization objectives in SMT. We conclude by describing how
GENESIS can be extended to allow operators to handle datacenter
network failures in a graceful policy-compliant manner.

5.1 Link and Switch Table Capacity

For a link capacity policy on the link sw1 → sw2 : ω, GENESIS

must ensure that the sum of traffic rates of packet classes using link
sw1 → sw2 does not exceed ω. As input, we have the traffic rates
σ(pc) of each of the packet classes. The constraints added to Ψ are:

∑

∀pc

ite(Fwd(sw1, sw2, pc), σ(pc), 0) ≤ ω. (11)

If a class pc uses link sw1 → sw2, then (sw1, sw2, pc) ∈ Fwd
and σ(pc) is added in the utilization of the link.
A switch table policy sw : γ specifies that the number of forwarding
rules on sw must not exceed γ. Similar to the link capacity policy,
the constraints ensure the count of all packet classes which traverse
sw (each will require a forwarding rule) is ≤ γ :

∑

∀pc

ite(∃k.Reach(sw, pc, k), 1, 0) ≤ γ. (12)

5.2 Traffic Engineering

While the above capacity policies can be used to perform a strict
form of traffic engineering (TE) in terms of adhering to link band-
widths, it is often more useful to balance traffic across links because
a link failure will affect fewer flows when the flows are spread
evenly across the network. To this end, network operators often
impose traffic engineering objectives such as minimizing the total
link utilization or the maximum link utilization. GENESIS performs
coarse-grained TE, e.g., given information about diurnal traffic pat-
terns, expected load (such as background systems workloads), plan
how to route flows according to a global objective.

Min-tot TE. To perform traffic engineering, link capacities of the
network C(sw1, sw2) and traffic rates of the packet classes σ(pc)
are specified as input to GENESIS (we assume a single path for a
packet class). The utilization of a link U(sw1, sw2) is defined as
the ratio of total traffic flowing through the link to the link capacity,
and encoded using the theory of linear rational arithmetic as:

U(sw1, sw2) =

∑
∀pc ite(Fwd(sw1, sw2, pc), σ(pc), 0)

C(sw1, sw2)
(13)

The following objective minimizes the total link utilization:

minimize
∑

∀sw1,sw2

U(sw1, sw2) (14)

Min-max TE. To encode the TE objective of minimizing the
maximum link utilization, we define a variable maxU which
represents the maximum link utilization. The constraints added
to ensure that maxU is greater than or equal to all individual link
utilizations:

∀sw1, sw2. maxU ≥ U(sw1, sw2) (15)

We then impose the following objective:

minimizemaxU (16)

Multipath TE. GENESIS can support multipath-TE: for a packet
class pc, we can create k subclasses and split traffic of pc among the

576

k paths adhering to the global objective. However, this requires a
static split of traffic among the subclasses. By adding isolation poli-
cies to the k subclasses, we can split traffic of pc along edge-disjoint
paths. Furthermore, GENESIS can be used for other quantitative objec-
tives like minimizing total latency and load balancing traffic across
middleboxes by using an encoding similar to the one presented in
this section.

5.3 Handling Failures Gracefully

Another network management consideration for operators is the
occurrence of failures (switches, links etc.), which are all too
frequent in datacenter networks [15]. Failures require recomputation
of paths compliant to the input policies for the modified topology.
A naive approach is to use GENESIS to resynthesize the modified
instance; However, the new solution may be drastically different
from the original data plane, incurring a large overhead of removing
old rules and installing new ones [17, 19].

In what follows, we describe two techniques to handle failures
more gracefully. The first technique is data-plane resiliency (§5.3.1),
which synthesizes and pre-installs resilient data planes, which even
in the event of a bounded number of link failures, continue to satisfy
input policies. This technique eliminates the need to resynthesize the
forwarding rules for every failure event, but it requires extra backup
rules on switches, and cannot capture global operator policies.

Thus, we propose a second mechanism called minimal repair
(§5.3.2), which can transition from the disrupted data plane to a
new policy-compliant one with minimal overhead by minimizing
the number of switches whose rule tables are modified. Repair does
not incur the extra rule cost of the first approach and can capture all
GENESIS policies. It is also useful for accommodating incremental
policy changes, which occur frequently in cloud datacenters [14].
The main drawback is that it still requires removal/installation of
rules when a failure occurs, which can end up being expensive
depending on the number of switches involved.

5.3.1 Dataplane Resiliency

In this section, we describe the transformation of input policies to
provide dataplane t-resilience [33], i.e., in the event of up to t arbi-
trary link failures, the synthesized data plane still has a path for each
packet class satisfying all policies which is achieved by synthesizing
backup paths that satisfy input policies. This approach differs from
randomized routing algorithms which provide resiliency [8] but do
not take into account policy-compliance of the backup paths.

We only consider reachability, waypoint, and isolation policies
in the input. Global policies like capacity policies and traffic
engineering pose a difficulty in synthesis. For example, consider
a packet class pc with a traffic rate of σ(pc). By considering the
backup paths with the same traffic characteristics for synthesis, the
total traffic accounted for pc would be c× σ(pc) (for some constant
c), leading to under-provisioning of resources. Our current resilience
transformation has no provisions to avoid or minimize the under-
provisioning of resources which affect capacity policies and TE
objectives.

Given the physical topology T = (S,L), we define a link-failure
scenario θ as the set of failed links such that θ ⊆ L. We define Θ(t)
as the set of all failure scenarios where no more than t arbitrary
links fail,—i.e. Θ(t) = { θ | |θ|≤ t}. Given a packet class pc, we
construct the induced data plane graph ξ = (S,Lpc) from the links
of the paths returned by the synthesis algorithm for class pc. For a
failure scenario θ, the active data plane ξθ = (S,Lpc \ θ) represents
all the links used by ξ which are unaffected by the failure scenario.
A data plane ξ is resilient to θ if it contains a path from the source
to destination for the packet class in the active data plane ξθ .

Definition 3 (Resilience). A data plane ξ = (S,Lpc) for class pc
is t-resilient if ξ is resilient to all θ ∈ Θ(t).

While resilience deals with existence of paths during failure
scenarios, we extend the notion to include policy compliance.

Definition 4 (Policy-compliance). A t-resilient data plane ξ =
(S,Lpc) for class pc is policy-compliant if under any failure sce-
nario θ ∈ Θ(t), any path for pc in ξθ = (S,Lpc \ θ) satisfies the
input policies.

Algorithm 1 Resilience Transformation

1: [Input] PC: Packet classes (Reachability/Waypoint policies)
2: [Input] I: Isolation policies (Traffic and Link types)
3: [Input] t: Maximum number of arbitrary link failures

4: [Output] PCR, IR: Transformed set of policies such that the synthe-
sized data plane is t-resilient and policy-compliant

5: PCR, IR ← ∅
6: for pc : {srcpc, dstpc,Wpc} ∈ PC do

7: // Create t+ 1 edge-disjoint paths of pc
8: p̂c = {rc1, . . . , rct+1} s.t ∀m. rcm : {srcpc, dstpc,Wpc}
9: PCR = PCR ∪ p̂c

10: Ipc = {rcm <> rcn | ∀m,n ≤ t+ 1 ∧m < n}
11: IR = IR ∪ Ipc

12: for i : pcm < op > pcn ∈ I do

13: î = {rc1 < op > rc2 | ∀rc1 ∈ ˆpcm, ∀rc2 ∈ ˆpcn}

14: IR = IR ∪ î
15: return PCR, IR

Algorithm 1 shows how GENESIS can be used to provide t-
resilience. The idea is to modify the input policies such that multiple
disjoint paths satisfying the original policies are synthesized for
each packet class. For t-resilience, a packet class pc needs at least
t + 1 edge-disjoint paths from source to destination. We ensure
this property holds by creating t + 1 new packet classes (p̂c in
line 8) and use link-isolation policies amongst all pairs in p̂c (line
10) to create t + 1 edge-disjoint paths for pc. The synthesized

data plane ξ̂ = (S,Lpc) for class pc is constructed from the
paths in the resilient packet class set p̂c = {rc1, . . . , rct+1}, i.e.,
Lpc =

⋃
rc∈p̂c

Lrc. Each path of p̂c satisfies the reachability policy,

and any arbitrary t link failure scenario cannot affect all t+ 1 paths.
However, the resilient paths need to satisfy the input isolation

policies with other packet classes (which themselves have t+1 paths
for resilience). Thus, for a given policy pc1|| pc2, we add isolation
policies to every pair of classes of ˆpc1 and ˆpc2 (line 13). This
ensures that any path chosen in the data planes of pc1 and pc2 will be
isolated from one another, thus providing policy-compliance under
any arbitrary t− link failure scenario. Figure 3(a) demonstrates an
example transformation for providing 1− resilience.
We now that Algorithm 1 is sound.

Theorem 5.1 (Soundness). Given input policies (PC, I), the data

plane ξ̂pc for every packet class pc ∈ PC synthesized from

transformed policies (PCR, IR) is t-resilient and policy-compliant.

If there are no isolation policies in the input, the resilience transfor-
mation in lines 8-11 of Algorithm 1 is complete.

Theorem 5.2 (Completeness). Given input policies (PC, I) such
that I = ∅, the synthesized data plane ξ for a packet class pc is
t-resilient if and only if it contains t + 1 edge-disjoint paths from
source to destination for pc.

When the original policies contain link-isolation policies, the
policies from Algorithm 1 may return unsat even when a resilient
data plane exists. Specifically, line 13 can add additional policies
than is required for resilience. Figure 3(b) shows a transformation
required for 1− resilience with a smaller number of link-isolation
policies among different classes of pc1 and pc2 than one obtained

577

(a) Traffic Isolation (b) Link Isolation

Figure 3: (a) Resilience Transformation for pc1|| pc2 for providing
1−resilience. The dotted lines represent traffic isolation policies, while the
solid lines represent link isolation. (b) Example of a sufficient transformation
for 1-resilience in the case of a link-isolation policy.

from Algorithm 1. Consider a failure scenario which disables path
of pc1A. By virtue of the link-isolation policies, pc1B and pc2A will
be unaffected and can be used as paths for pc1 and pc2 respectively,
and pc1 <> pc2 holds. Now suppose pc1B is affected. Similarly,
pc1A and pc2A can be used as the paths for the original packet
classes. The same scenarios hold symmetrically for pc2, and thus
the resilience transformation can be achieved without adding link-
isolation policies amongst all the packet classes.

5.3.2 Minimal Repair

Dataplane resiliency imposes high rule storage overhead on switches,
and cannot accommodate global policies like link capacity bounds.
As an alternative to it, we extend GENESIS’s synthesis algorithm to
perform minimal network repair using MaxSMT.

Formally, the MaxSMT problem is as follows: given a set of
formulas Ψ0,Ψ1, . . . ,Ψn with associated weights w1, . . . , wn, find
a subset M ⊆ {1, . . . , n} s.t: 1) Ψ0 ∧

∧
i∈M Ψi is satisfiable, and

2) The award
∑

i∈M wi is maximized. The constraints Ψ1, . . . ,Ψn

denote soft constraints, and the associated weights wi encode the
award for including Ψi in the satisfying assignment.

We reduce the network repair problem to a MaxSMT problem
and use soft constraints to minimize the number of switches on
which rules need to be updated. Note that the disadvantage w.r.t.
dataplane resiliency is that switches still require rule updates, which
may take time depending on the number of switches involved.

Let the policy constraints generated by GENESIS for the new

network state be Ψ0, and let Fwd be the present data plane that
does not satisfy Ψ0. The objective is to find new Fwd which satisfies
Ψ0 while maximizing the number of preserved switches (switches
whose rules are unchanged). If the rules on switch swi are preserved,

then Fwd and Fwd have the same forwarding rules for all packet
classes which traverse through swi. The following soft constraints
capture this idea:

Ψswi
=

∨

∀swj ,pc

(swi,swj ,pc)∈Fwd

Fwd(swi, swj , pc) wswi
= 1 (17)

The solution to this MaxSMT problem is a data plane that minimizes
the number of switches whose rules have to be changed. Alternate
repair objectives like minimizing the number of changed forward-
ing rules can be expressed similarly. Interestingly, the GENESIS’s
network repair mechanism can also be used to transform an existing
non-compliant data plane to a policy-compliant one.

6. Tactics

Synthesizing a data plane translates to choosing paths from the
solution space of all paths for each reachability policy such that
the chosen paths satisfy all policies, e.g., waypoint traversal and
isolation. Datacenter topologies, e.g., fat-trees [4], have numerous
paths between edge switches to provide full bisection bandwidth.
Thus, the solution space of paths for a pair of endpoints is large. For
example, consider the fat-tree topology in Figure 4. The number
of paths under length 10 between two edge switches in the same

Figure 4: Fat Tree Topology with three-level hierarchy.

pod is 242 and between two edge switches in different pods is
272. If we consider the synthesis of n packet classes, the problem
roughly translates to finding a solution in the space of size (242)n.
Operators can leverage the network structure of topologies to reduce
the solution space by specifying undesirable path patterns. For
example, the operator might require that a path between two edge
switches in a fat-tree does not traverse another edge switch. This
pattern doesn’t drastically reduce the set of possible paths due to the
dense interconnect between aggregate and core switches.

We introduce tactics (the name is inspired from the usage in
SMT solvers, not proof assistants) on labels; abstractions that allow
a network operator to impose restrictions on paths. We use the notion
of mapping the set of switches to labels to have a coarse-grained
way for specifying path patterns. Tactics on labels help create search
strategies which can be used for groups of packet classes instead of
individual switch-level patterns which lack generality.

Let Lb be the set of labels and S be the set of switches in the
topology. Let φ : S → Lb be the labeling function that maps each
switch to a label in Lb. For e.g., we can leverage the hierarchical
structure of the fat-tree by mapping all switches in the same level
(core, aggregate or edge) to the same label. A path p is a word over
the alphabet S. We define the path-labeling function Φ : S∗ → Lb∗,
which maps each switch in the path to its corresponding label. For
example, given the path p = e1 a2 c3 a4 e2, the path-labeling
function function produces Φ(p) = eacae—maps each switch to
its corresponding label. Here, e, a, and c stand for edge, aggregate,
and core respectively.

6.1 Synthesis with Tactics

Tactics are simple regular expressions over the set of labels and are
used to blacklist certain path patterns. Regular expressions have been
previously used in tools like NetGen [29] to specify the paths for a
packet class. While supporting full regular expressions is possible,
it causes a blow-up in the solving time as further constraints need
to be added to the solver to ensure that a path satisfies the regular
expression. Rather than specifying how the path must look like, we
use regular expressions on switch labels to specify blacklists i.e.,
what the path must not look like. A tactic, for example, can blacklist
paths from an edge switch to an edge switch that go through another
edge switch.

6.1.1 Restricted Tactic Syntax

We specify tactics using a restricted set of regular expressions3 that
not only do not require extra constraints to be added, but actually
allow us to reduce the number of constraints in Ψ. Tactics are regular
expressions described by the following grammar:

R := ¬(lsrc.
iC.∗ldst)

C := ε | l1 | l1l2

where li ∈ Lb and lsrc, ldst are used to specify the labels of the
source switch and destination switch, respectively. Since our goal is

3 It is a subset of star-free languages [12].

578

to blacklist paths, we allow regular expressions to be negated at the
outer level.

Example 1. ¬(e.ic.∗e) indicates that the path must not contain a

core switch at the (i+ 1)th step. Similarly, ¬(e.i.∗e) indicates that
the path connecting two edge switches should have a length < i+1.

Let π = sw0 . . . swk be a path for packet class pc and let its
labeling be Φ(π) = a0 . . . ak. We say that π satisfies a tactic R,
Φ(π) ∈ L(R), if the following holds:
• Φ(π) ∈ L(¬R) iff Φ(π) 6∈ L(R);

• Φ(π) ∈ L(lsrc.
i.∗ldst) iff k ≥ i+1, lsrc = a0, and ldst = ak;

• Φ(π) ∈ L(lsrc.
il.∗ldst) iff k ≥ i + 2, lsrc = a0, ldst = ak,

and ai+1 = l;

• Φ(π) ∈ L(lsrc.
il1l2.

∗ldst) iff k ≥ i+3, lsrc = a0, ldst = ak,
ai+1 = l1, and ai+2 = l2.

In GENESIS, operators can specify conjunctions of tactics which
adhere to the restricted syntax and the synthesis algorithm is
modified to enforce the tactics.

Example 2. The “No Edge” tactic ensures that a edge-edge
path cannot traverse another edge switch. It is expressed using

conjunctions of tactics: ¬(e.∗e.∗e) ≡
i=µ−2∧
i=0

¬(e.ie.∗e) where µ

is the limit on path length. The “Valley-free” Tactic: ¬(e.5.∗e)
∧¬(e.∗e.∗e) ensures that a edge-edge path is of the form e− a−
c− a− e.

Paths used in production datacenter networks adhere to both
these tactics [16, 30]. Such paths are simple and make networks
easy to manage and troubleshoot [6].

6.1.2 Modified Synthesis Algorithm with Tactics

In our synthesis algorithm, the reachability-propagation constraints
(Equation (3)) construct the path from destination to source. We
use tactics to prune these constraints, so that the path synthesized
satisfies the tactic regular expression.

The tactic set Γ = {(R1, pc1), . . . , (Rn, pcn)} specifies that
tactic Ri is applied on packet class pci where pc1, . . . , pcn ∈ PC
and R1, . . . , Rn are regular expressions satisfying the restricted
tactic syntax. Given a tactic R applied to a packet class pc, we define
ΨT (R, pc) as the additional SMT constraints used for synthesis
such that (Ψ ∧

∧
(R,pc)∈Γ

ΨT (R, pc)) is provided as input to the

SMT solver. Note that ΨT (R, pc) is presented as additional SMT
constraints only for clarity. In practice, the modified synthesis
algorithm will remove constraints for each (R, pc) ∈ Γ.

Type 1. For a tactic R of the form ¬(lsrc.
i.∗ldst) applied to pc:

ΨT (R, pc) = ∀sw, k ≥ i+ 1.(sw, pc, k) /∈ Reach (18)

This tactic restricts the path to a length < i + 1. Thus, we can
remove the reachability constraints of Equation (3) for all the
tuples (sw, pc, k) /∈ Reach satisfying Equation (18) as they cannot
contribute to any path satisfying the tactic.

Type 2. For a tactic R of the form ¬(lsrc.
il.∗ldst) applied to pc:

ΨT (R, pc) = ∀sw. φ(sw) = l ∧ sw 6= dst =⇒

(sw, pc, i+ 1) /∈ Reach (19)

The tactic ensures that a switch with label l cannot be reached in
i + 1 steps, except if l = ldst. In that case, only the destination
switch with label l can be reached in i + 1 steps as the path

with labeling lsrc.
ildst satisfies the tactic. If l 6= ldst, then all

switches with label l cannot be reached in i+ 1 steps. For all tuples
(sw, pc, i+ 1) /∈ Reach satisfying Equation (19), we can remove
the reachability constraints of Equation (3).

Type 3. For a tactic R of the form ¬(lsrc.
il1l2.

∗ldst) applied to pc:

ΨT (R, pc) = ∀n1, n2. φ(n1) = l1 ∧ φ(n2) = l2 ∧ n2 6= dst

=⇒ ¬(Reach(n1, pc, i+ 1) ∧ Fwd(n1, n2, pc)) (20)

This tactic ensures that a switch with label l1 at i + 1 in the path
will not forward the packet to a switch with label l2 (unless n2 is
the destination). To enforce this, we modify the Equation (3) and
remove all l1 → l2 edges at position i+ 1 in the path for which the
switch with label l2 is not the destination.

We now state the soundness and completeness of the synthesis
algorithm with tactics. Let (Fwd,Reach) be a model of Ψ and
Π = paths (Fwd, Reach) be the set of induced paths (from
Definition 1).

Theorem 6.1 (Soundness). For a tactic set Γ, if (Fwd,Reach) |=
Ψ∧

∧
(R,pc)∈Γ

ΨT (R, pc)), then ∀(R, pc) ∈ Γ. ∀(π′, pc′) ∈ Π. pc =

pc′ =⇒ Φ(π′) ∈ L(R).

Theorem 6.2 (Completeness). For a tactic set Γ, if Π |= Ψ and
∀(R, pc) ∈ Γ. ∀(π′, pc′) ∈ Π. pc = pc′ =⇒ Φ(π′) ∈ L(R)
then ∀(R, pc) ∈ Γ.(Fwd,Reach) |= ΨT (R, pc).

The intuition behind the restricted tactic syntax comes from the
structure of the reachability propagation constraints (Equation (3))
which construct the path for a packet class. Each constraint enforces
that if a switch is reachable in k steps in a path, there must a neigh-
bour switch in the path reachable at k − 1 steps. Using the Reach
relations, we can specify path length restrictions (Type 1) or pre-
vent switches with a certain label at some position (Type 2). The
structure of Equation (3) restricts regular expressions on only local
switch neighbours (Type 3). The structure of these constraints pre-
vents us from being able to specify unrestricted regular expressions
(supporting these would require adding additional constraints).

Example 3. Consider a tactic ¬(e.iaca. ∗ e). To enforce this tactic,
we need to have constraints which prevent the path reaching an
aggregate switch in i+3 steps when the path traverses an aggregate
and core switch at i+ 1 and i+ 2 steps respectively. This cannot
be specified by modifying the reachability constraints in its current
form, because the constraints for reachability for a switch in i+ 3
steps only depends on the constraints for reachability in i+ 2 steps.

Tactics are heuristics, but well-defined ones with formal seman-
tics and provable soundness properties. In practice, tactics can be
used to specify restrictions which would not reduce the search space
dramatically, but are still useful toward speeding up the synthesis,
especially in datacenter topologies which are hierarchical and can
be used to specify interesting tactics. One of the biggest advantages
of tactics is that it is policy-agnostic since it enforces conditions on
the path, and can be used in conjunction with the different policies
supported by GENESIS (isolation, traffic engineering etc.). Thus, we
have provided a framework for the development of search strategies
based on path properties, and operators can design tactics based on
the physical topologies (datacenter topologies are hierarchical) to
create a library of tactics that can be reused for workloads. While
tactics sacrifice completeness, operators can discard the tactic if
synthesis fails and use GENESIS without tactics.

7. Divide-and-Conquer Synthesis

Since the complexity of finding a data plane enforcing policies is
exponential in the number of packet classes, the synthesis time
shoots up with increasing packet classes. However, since datacenter
topologies have a dense interconnection of links between layers there
can be numerous different data planes as solutions. We propose
to speed up synthesis by partitioning the problem into smaller
components.

579

Pseudocode 2 Divide-and-Conquer Synthesis

1: procedure DCSYN(P)
2: if size(P) < Pthres then
3: Apply normal synthesis on P
4: else
5: Partition P into P1 and P2

6: if interpartition edges > Ethres then
7: Apply normal synthesis on P

8: F = [] /* Failed solutions */
9: attempts = 0

10: while attempts < RAmax do
11: sol1 = Apply synthesis on P1 such that sol1 /∈ F
12: if synthesis(P1) fails then
13: return DCSyn failure

14: sol2 = Apply synthesis on P2 such that
sol1 ∪ sol2 is a solution for P

15: if synthesis(P2) fails then
16: F.append(unsat-cores(P2))
17: attempts++
18: else
19: return DCSyn success

20: return DCSyn failure

Suppose we have two packet classes pc1, pc2 isolated from one
another; the standard synthesis algorithm adds constraints for both
packet classes to Ψ and finds the solution for both classes. Instead,
we could synthesize pc1 independently and, after that, find a solution
for pc2 that is isolated from the path obtained for pc1. However,
synthesis of pc2 can fail because the solution of pc1 may be such that
there is no way to place an isolated path for pc2 but if they had been
synthesized together, a solution might exist. For combat this, we use
a recovery mechanism which uses unsatisfiable cores extracted from
the solver. We term this procedure divide-and-conquer synthesis.

We define a policy graph P = (R, I) where every vertex
r ∈ R is a packet class for a reachability/waypoint policy and
edges denote isolation constraints between packet classes. An edge
(r1, r2) ∈ I means that the paths of r1 and r2 are isolated from
each other. We assume that there are no capacity policies in the
input specifications. Given the policy graph P , we can synthesize
each connected component independently, since packet classes in
different connected components are not related by any isolation
policy, and therefore are independent of each other.

We describe the divide-and-conquer synthesis procedure in
Pseudocode 2, which takes as input a connected component of
the policy graph. The crux of the procedure is that we partition each
connected component P into two smaller components P1 and P2

and do the following: 1) synthesize P1 and obtain a solution S1, and
2) for packet classes of P2 that are isolated to packet classes in P1,
add the solution S1 as a constraint to ensure that the packet classes
in P2 will not share the edges of the respective paths obtained in P1.

We use the min-cut to partition the policy graph connected
component into two such that the number of edges between the
partitions is minimized. The rationale is that since we intend to
perform the synthesis of both partitions separately, the partitioning
should maximize isolation policies within components and minimize
those across components. By maximizing isolation policies during
synthesis of the component, the partial solution is more likely to
be compatible with a complete solution. However, if the min-cut
partitioning produces a component smaller than a threshold size, we
perform partitioning of the graph into two equal sized partitions and
minimize the cut edges between the partitions. We need to ensure
that we don’t partition the graph smaller than a threshold, as the
partial solutions obtained by synthesis of very small partitions are

more likely to conflict with other packet classes. GENESIS performs
divide-and-conquer synthesis recursively on the components till we
cannot partition the component further.

Solution Recovery. While in the best case divide-and-conquer syn-
thesis leads to a great increase in performance, we need a recovery
mechanism in case we cannot find compatible partial solutions.
Many SMT solvers track constraints and return an unsatisfiable
core [9] when synthesis fails. Informally, the unsatisfiable core is a
set of tracked constraints that describes why there wasn’t a feasible
solution. This helps us track failed partial solutions. Thus, if syn-
thesis of P2 fails, the unsatisfiable cores describe what paths of the
solution of P1 are causing the synthesis of P2 to fail. When perform-
ing synthesis of P1 again, we therefore ensure that we get different
paths from those extracted from the unsatisfiable cores. Basically,
we perform a solver-guided enumeration of different solutions of P1

to find a satisfying solution for P2. The solution recovery procedure
is described in lines 10- 19.

Since, recovery is a form of enumeration, in cases where the
graph has greater number of policies (clique), finding a solution
could take a large number of enumerations, while synthesis without
partitioning would provide a solution faster. Thus, we bound the
number of enumerations performed by the recovery mechanism and
return failure if we don’t obtain a solution.

Divide-and-conquer synthesis with recovery is sound, but it is
incomplete as we bound the number of enumerations. The success
of this approach is directly related to the size of the components (de-
termined by Pthres). This is because, by synthesizing more packet
classes together, we decrease the conflicts arising between partial
solutions. The extreme case of when we do not partition the com-
ponent at all (normal synthesis) is complete. To make the synthesis
complete with faster convergence, we perform iterations of divide-
and-conquer synthesis, and at each iteration we double the partition
threshold Pthres if the previous iteration failed. This scheme tries to
balance the trade-off between completeness, which requires larger
components, and performance, as synthesis is faster on smaller com-
ponents. In the extreme case, after O(log P) iterations, Pthres > P
and divide-and-conquer will not partition P and yield the solution
(if one exists).

Divide-and-conquer is more effective when there is a large
number of solutions and partial solutions do not fail. When the
problem is highly constrained and the number of solutions is low,
the recovery mechanisms and multiple iterations could lead to
a degraded performance. A drawback of the divide-and-conquer
approach is that it is difficult to apply to global policies (like traffic
engineering) primarily because splitting the input problem isn’t easy;
development of strategies to speed-up global policies is future work.

8. Evaluation

We implemented a full working prototype of GENESIS in Python.
We have implemented an interpreter for the Genesis Programming
Language using PLY [3] and the synthesizer using the SMT solver
Z3 [11] and its νZ extension for MaxSMT and linear optimiza-
tion [7]; GENESIS outputs the forwarding rules for the switches,
which can be provided as input to a SDN controller (e.g., Flood-
light [1]) to install over the network. GENESIS uses the Metis graph-
partitioning library [21] to perform equi-sized partitioning used by
divide-and-conquer synthesis.

In this section, we evaluate GENESIS using enterprise-scale multi-
tenant data center settings. Specifically, we ask:

• What is the performance of GENESIS’s baseline synthesis algo-
rithm for tenant policies? How does the performance vary with
size of the network, number and the nature of policies in use?
(§8.1)

580

10 20 30 40 50 60 70 80

Number of Packet Classes

10
−1

10
0

10
1

10
2

10
3

S
y
n

th
e
si

s
T

im
e

(l
o
g

s)

Group Size:1

Group Size:2

Group Size:5

Group Size:10

(a) Baseline

10 20 30 40 50 60 70 80

Number of Packet Classes

10
−1

10
0

10
1

10
2

10
3

S
y
n

th
e
si

s
T

im
e

(l
o
g

s)

Group Size:1

Group Size:2

Group Size:5

Group Size:10

(b) No Edge Tactic

10 20 30 40 50 60 70 80

Number of Packet Classes

10
−2

10
−1

10
0

10
1

10
2

10
3

S
y
n

th
e
si

s
T

im
e

(l
o
g

s)

Group Size:1

Group Size:2

Group Size:5

Group Size:10

(c) Valley-free Routing Tactic

Figure 5: Total synthesis time (log scale) for isolation workloads over range of packet classes and different tenant-group sizes.

• What is the performance of GENESIS for operator policies like
capacity bounds, traffic engineering, and network repair which use
SMT with linear optimization objectives and MaxSMT? (§8.2)
• How much do tactics help improve GENESIS’s performance?

Which tactics offer the best improvement? (§8.3)
• To what extent does the divide-and-conquer synthesis improve

GENESIS’s performance? When does it lead to degraded synthesis
times? (§8.4)

Our experiment settings have a few thousand servers, tens of
switches, and hierarchical fat-tree network topologies which reflect
a private datacenter. Our experiments are parameterized by: (a) total
size of the fat-tree network (45-180 switches), (b) number of tenants
(1-80), and (c) number of packet classes in a tenant (1-10). Note
that a single packet class can be used to specify policy for multiple
host-pairs of a tenant connected to the same edge switches, and
placement of the hosts can take uniformity of policy in account to
reduce the explosion of packet classes with increasing hosts.

Our primary metric of interest is synthesis time, measured in
seconds. In measuring this, we focus on the time the Z3 solver takes

to solve the constraints4. All experiments were conducted using a
32-core Intel-Xeon 2.40GHz CPU machine and 128GB of RAM.
For evaluating the baseline performance, we impose a synthetic
limit on the path length µ to be 10, which is adequate for a fat-tree
topology with three levels.

8.1 Baseline Synthesis Performance for Tenant Policies

Multi-Tenant Isolation. To evaluate the baseline performance of
GENESIS, we model a multi-tenant 80 switch topology with tenant-
isolation in Figure 5(a). For each workload we have n tenants with
group size g which is the number of packet classes for each tenant.
The x-axis shows the total packet classes n ∗ g. Packet classes of
a tenant are not isolated (and they implement simple reachability
within the tenant), while packet classes of different tenants are traffic-
isolated. Thus, no two tenants share a link in the same direction,
and can never affect each other’s performance. We randomly5 place
endpoints for the tenants’ packet classes, ensuring that no more
than 4 tenants share a single edge switch. Operators can aggregate
a tenant’s traffic from multiple instances connected to the same
switches as a single reachability policy and establish pathways for
communication amongst different switches.

4 We do not account for constraint generation time in our evaluation, as it has
polynomial time complexity and thus, can scale well unlike constraint solving
time; a well-engineered system can considerably reduce the constraint
generation overheads.
5 Smarter placement of tenants could speed-up synthesis as tenant endpoints
would be located closer to each other. The placement algorithm can be used
to develop specialized tactics.

For a fixed group size, we observe that the total synthesis time
increases exponentially with number of packet classes. As group
size decreases, for the same number of classes, the number of
tenants increases, increasing the number of isolation policies and
the synthesis times. Group size 1 denotes the extreme case where
all flows are isolated with each other.

While we evaluated a multi-tenant isolation setting, there are
other scenarios that translate to these workloads. Consider an
example where specific flows of tenants require QoS guarantees and
these flows must be isolated w.r.t. all other flows. This translates to a
two-tenant isolation setting. Operators can provide weaker isolation
such that two flows must be isolated on only certain “special" links.
This is an easier problem to tackle than isolation over all links, and
the performance of such scenarios would be better. Failure resiliency
uses link-isolation policies which exhibit a similar performance
compared to the workloads considered here.

Effect of Topology Size. To evaluate GENESIS across increasing
topology sizes for isolation workloads, we fix the tenant-group size
to 5, and for each topology, we maintain the ratio of packet classes
to number of edge-aggregate links to 0.25. We choose this metric
because if we keep the number of classes constant, as topology
sizes increases, it is easier to find isolated paths due to more links.
Thus, by keeping the number of packet classes proportional to size
of the topology, we maintain the relative difficulty of the workload
across topologies. We show the average synthesis time per class with
increasing topology sizes in Figure 6 (baseline trace). We are able
to synthesize forwarding rules for 12 tenants with group size 5 in a
125 switch topology in 124 seconds (avg. 2 seconds per traffic class).
We also observe that average time per flow increases exponentially
with larger topologies, thus synthesis times are also exponential

Number
of Way-
points

Avg.
Synthesis
time per
Class (s)

1 0.034
2 0.138
3 0.983
4 15.41
5 32.93

Table 2: Average syn-
thesis time per class
for waypoint policies
with increasing num-
ber of waypoints.

in the number of switches.

Waypoint Policies. To evaluate GENE-

SIS’s performance for ordered sets of
waypoints, we fix the number of way-
points (range:1-5) and generate 100 way-
point policies with different sizes and
permutations of the ordered waypoint
sets for a 80 switch topology. Each policy
has edge switches as endpoints and ran-
domly picked core or aggregate switches
for waypoints. The synthetic limit µ on
the path length is increased to 15 and
no tactics are used (difficult to devise a
tactic for the path satisfying a waypoint
policy). The average synthesis time for
a waypoint policy is reported in Table 2.

We observe that synthesis time increases exponentially with total
number of waypoints in a packet class’s policy, owing to the com-

581

Workload Type Description Time (s)

minimize-avg-te
100 packet classes 425

200 packet classes 2002

minimize-max-te
25 packet classes 522

50 packet classes 4192

Network repair 8 tenants, group size 10,
tenant-isolation, 1-switch failure

219

Table 3: Synthesis times for workloads on a 80-node fat-tree topology with
different optimization objectives.

plexity of the problem. GENESIS can synthesize rules for a path with
3 total waypoints in less than a second, on average.

8.2 Baseline Synthesis Performance for Operator Policies

Isolation with Link Capacity Policies. Figure 8 (baseline trace)
shows the average synthesis time per flow for the same setting
as above, but additionally, there are 10 low-bandwidth links in the
network for which the operator specifies capacity policies (all packet
classes have uniform capacity). Since we use LRA for link capacity
constraints, we see an increase in average time for synthesis when
compared to pure isolation which is completely encoded using SAT.

Traffic Engineering. Table 3 shows the synthesis time for work-
loads on a 80-node fat-tree topology with different traffic engineer-
ing (TE) objectives. GENESIS can synthesize a data plane minimizing
average utilization for 200 packet classes in approximately 2000
seconds. However, for minimizing the maximum link utilization,
GENESIS can only synthesize 50 packet classes in close to 4000
seconds. For both objectives, the synthesis time increases exponen-
tially with the number of packet classes. SMT with optimization
objectives is an emerging field of research, and we envision that
solvers in the future will become fast and handle larger workloads.

Minimal Repair. To evaluate the performance of minimal repair
using MaxSMT, we consider a setting with 8 tenants, each with 10
packet classes (total classes=80), and tenant flows are isolated from
one another. Now, we disable the switch with the largest number of
rules, and try to find a new data plane satisfying the original tenant
isolation policies such that the number of switches unaffected is
maximized. We can synthesize the minimal repair in nearly 200
seconds on average. With repair, the new data plane only changes
rules on 2-3 switches on average, while naive synthesis results in
nearly 60 switches being updated, which is very expensive.

8.3 Tactic Reductions

We demonstrate the improvements from using tactics for isolation
workloads with different number of tenants and group sizes on a 80
switch topology.
“No Edge" Tactic: Figure 5(b) shows the synthesis time for isola-
tion workloads using the no edge tactic ¬(e.∗e.∗e), which has a
best-case speedup of 9.5× over baseline synthesis. Using this tactic,
GENESIS can synthesize forwarding rules for 12 tenants with group
size 5 in under 200 seconds.
“Valley-free" Tactic: For the same isolation workloads as above,
we use the tactic ¬(e.5.∗e) ∧¬(e.∗e.∗e) which ensures valley-free
routing, that is paths are of the form eacae. The results are shown in
Figure 5(c). Using this tactic, GENESIS synthesizes forwarding rules
for each workload in under 20 seconds and can achieve a best-case
reduction of 400× compared to synthesis without tactics.
Effect of Topology Size: In Figure 6, we evaluate the performance
of different tactics for different topology sizes. There is a significant
reduction in synthesis time for each tactic when compared to the
baseline synthesis. The performance of each tactic is directly related
to the reduction of the search space: more restrictive tactics have
lower synthesis times. Using the length ≤ 7 tactic and “no edge"

40 60 80 100 120 140 160 180

Number of Switches

0

2

4

6

8

10

A
v
g
.

S
y
n

th
e
si

s
T

im
e

p
e
r

C
la

ss
(s

)

Baseline

No Edge

Len ≤ 7

No Edge and Len ≤ 7

Valley-Free

Figure 6: Average synthesis time per packet class versus topology size for
isolation workloads w/o different tactics with the ratio of packet classes to
number of edge-aggregate links 0.25.

tactic, GENESIS synthesizes forwarding rules for 20 tenants of group-
size 5 in 100 seconds in a 180 switch topology (9× speedup over
synthesis without tactics).
Isolation with Link Capacity Policies: A similar setup with ad-
ditional link capacity constraints for 10 links is evaluated using
the no edge tactic, and we get a best-case 14× improvement over
baseline synthesis. Tactics can provide a considerable improvement
over the baseline performance as illustrated by these experiments,
and demonstrate the viability of synthesis approach of GENESIS to
real-world networks.

8.4 Divide-and-Conquer (DC) Synthesis Performance

To evaluate the divide-and-conquer (DC) synthesis procedure, we
perform 100 runs of DC and non-DC synthesis (with the no edge
tactic in both cases) on isolation workloads with varying number
of tenants and different group sizes used in §8.1. We compute the
speedup (time of non-DC synthesis/time of DC synthesis) and plot
its cumulative frequency distribution in Figure 7 to quantify the
benefits of DC synthesis. For more than 80% of the workloads,
divide-and-conquer offers better or comparable performance to non-
DC synthesis, achieving a speedup of 2× for nearly 40% of the
workloads. For 20% of the workloads, divide-and-conquer performs
worse than the non-DC approach, especially for workloads with
tenant group size 1 due to greater number of recovery attempts.

Summary. The key points of our evaluation are: 1) For a represen-
tative tenant-group size of 10 in a 80 switch fat-tree, the baseline
synthesis performance for synthesizing the forwarding rules for 1 to
8 tenants with complete tenant-isolation is in 0.1-2000s. 2) Operator
policies like optimization objectives for TE and network repair is
more expensive than synthesis without objectives. 3) Tactics provide
considerable speedup over the baseline synthesis. We can synthesize
the above workloads in 0.1-300s using the no edge tactic, and un-
der 12s using the valley-free routing tactic. 4) GENESIS can further
benefit from divide-and-conquer (DC) synthesis, which provides a
2.0× speed-up over non-DC synthesis in 40% of the workloads, in
addition to the tactic improvements.

9. Related & Future Work

One Big Switch: Kang et. al [20] tackle a similar problem of flow
policy enforcement. However, their end-point policies deal with
simple reachability. Their rule placement algorithm takes the path
of the flow in the network (called the routing policy) as an input.
Zhang et. al [35] build on the "one big switch" abstraction [20]
to optimize for the specific case of distributed firewall policy
enforcement using ILP. PGA [26] provides a graph-level abstraction
for specifying network policies like ACLs and middlebox service
chaining. However, PGA abstracts the underlying network as "one

582

0 1 2 3 4 5

Non-DC / DC Synthesis Time

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

v
e

F
re

q
u

e
n

cy

Figure 7: CDF for speedup achieved by divide-and-conquer synthesis.

big switch" and cannot be used to compose policies like tenant
isolation or traffic engineering.
Controller synthesis: Program synthesis has seen limited applica-
tions to SDN controllers [24, 34]. These systems synthesize the
behavior of individual switches (e.g., learning switches or firewalls);
furthermore, these techniques apply to networks operating in a reac-
tive mode (where the first packet of a connection is processed by the
controller to determine the actions to employ). Such switch-centric
approaches are too constraining and cannot be applied to realize
network-wide objectives considered in GENESIS. Synthesis has been
also used for generating consistent network updates [22, 36]. But
this problem is orthogonal to policy enforcement.
Policy languages: The closest approaches to ours are Merlin [32],
NetGen [29] and NetKAT [5]. In Merlin, data planes that adhere
to policies expressed using regular expressions are synthesized
by first intersecting the topology with the regular expressions
appearing in the policies and then encoding reachability in the
intersected graph using mixed integer linear programming (ILP).
Merlin supports minimum and maximum bandwidth guarantees. In
its current iteration, Merlin’s encoding does not support isolation
policies, but we believe that it could be extended to support them. A
more prominent difference arises with unordered waypoint policies:
expressing a policy including a waypoint set W of size k requires
a regular expression of size exponential in k as all the possible
permutations of the elements of W must be considered. This fact
clearly impacts the performance of Merlin’s compiler that would
have to generate a mixed ILP with a large number of variables.
In GENESIS, this is not the case as waypoints can be encoded
with polynomially many constraints. While this does not affect
the theoretical complexity, our compiler does not incur an a-priori
exponential blow-up; it rather relies on the power of SMT solvers to
guide the search. This is one of the main aspects behind our decision
of not using regular expressions to express policies. GENESIS uses
a restricted form of regular expressions as tactics that leverage the
network topology. While in Merlin, regular expressions increase the
number of constraints generated by the compiler, tactics decrease the
number of generated constraints, therefore speeding up the search.
To the best of our knowledge, this is the first use of constraints that
leverages the topology structure to simplify the search.

In NetGen, network updates that adhere to policies expressed
using regular expressions are synthesized using SMT solvers. Given
a specification which mentions the packet classes, the old path, and
the new path, NetGen solves the network change problem using
an SMT solver. Due to the use of regular expressions NetGen also
suffers the limitations we just discussed for Merlin. Interestingly,
NetGen uses a specific encoding of regular expressions based on
uninterpreted functions that helps reduce the number of constraints.
While this encoding is fast when updating a single path, we do not
see a way to extend it to our global synthesis setting. A crucial
aspect of NetGen is that in its problem formulation each path can be
synthesized independently and without affecting the other already
synthesized paths. This is not the case when supporting isolation
policies: if an old path needs to be moved to satisfy a new policy

40 60 80 100 120 140 160 180

Number of Switches

0

5

10

15

20

25

30

A
v
g
.

S
y
n

th
e
si

s
T

im
e

p
e
r

C
la

ss
(s

)

Baseline

No Edge

Figure 8: Average synthesis time per packet class versus topology size for
isolation workloads with the ratio of packet classes to number of edge-
aggregate links 0.25 and 10 low bandwidth links in the topology have
capacity policies.

(e.g., because a link is under maintenance), re-synthesizing such a
path can require re-synthesizing other paths.

NetKAT is a domain-specific language and logic for specifying
and verifying network packet-processing functions for SDN, based
on Kleene algebra with tests (KAT). Semantically, a NetKAT
predicate and policy is a function that takes a packet history and
produces a set of (possibly empty) packet histories. NetKAT can
be used to express certain network-wide policies like reachability,
waypoints using regular expressions for describing the paths, and
programs on virtual topologies; it uses BDDs and symbolic automata
to translate global programs to local switch programs [31]. However,
the NetKAT semantics cannot be used to express policies based on
hyperproperties [10], i.e., the packet processing function requires
multiple packet histories as input. Traffic engineering or isolated
paths are policies based on hyperproperties.
Future directions: Fine-grained traffic engineering based on online
demand/flow size estimation and rapid rerouting is also crucial for
datacenter workloads, and extending GENESIS’s TE policies to fine-
grained timescales is subject of future work. Also, the performance
of SMT solvers with optimization objectives is quite slow, and
calls for domain-specific techniques to speed up the synthesis. Also,
datacenter networks are highly symmetrical, and this symmetry can
be leveraged to speed up synthesis (similar to the work of Plotkin
et. al [25] to speed up network verification using symmetry). The
main challenges of using symmetry in synthesis is considering two
aspects of symmetry: network symmetry and policy symmetry. Also,
our treatment of resilience synthesis is preliminary and future work
will be geared towards synthesizing resilient forwarding planes
incorporating capacity constraints and traffic engineering.

10. Conclusion

We presented GENESIS, a general and extensible network manage-
ment system for multi-tenant datacenter networks. It allows rich
policies to be specified declaratively. It leverages the formal rea-
soning foundations of constraint solving together with fast SMT
solvers to synthesize data plane configuration from high level poli-
cies. GENESIS abstracts away the difficult task of programming or
configuring individual switches. GENESIS incorporates novel ideas to
significantly speed up synthesis, leveraging the hierarchical nature
of datacenter network topologies and the structure of the interaction
between tenants’ policies.

Acknowledgments

We thank the anonymous reviewers, Nate Foster, Aaron Gember-
Jacobson, Raajay Viswanathan and Brent Stephens for their in-
sightful feedback and suggestions. Kausik, Loris and Aditya are
supported by the Wisconsin Institute on Software-defined Data-
centers of Madison and grants from Google and National Science
Foundation (CCF-1637516, CNS-1302041, CNS-1330308, CNS-
1345249).

583

References

[1] Floodlight sdn controller. http://www.projectfloodlight.
org/floodlight/.

[2] Intent: Don’t tell me what to do! (tell me what you want). https:
//www.sdxcentral.com/articles/contributed/

network-intent-summit-perspective-david-lenrow/

2015/02/.

[3] Python lex-yacc. http://www.dabeaz.com/ply/.

[4] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data
center network architecture. In Proceedings of the ACM SIGCOMM

2008 Conference on Data Communication, SIGCOMM ’08, pages
63–74, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-175-0.
doi: 10.1145/1402958.1402967. URL http://doi.acm.org/10.

1145/1402958.1402967.

[5] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker. Netkat: Semantic foundations for
networks. In Proceedings of the 41st ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages, POPL ’14, pages
113–126, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2544-8.
doi: 10.1145/2535838.2535862. URL http://doi.acm.org/10.

1145/2535838.2535862.

[6] T. Benson, A. Akella, and D. Maltz. Unraveling the complexity of net-
work management. In Proceedings of the 6th USENIX Symposium on

Networked Systems Design and Implementation, NSDI’09, pages 335–
348, Berkeley, CA, USA, 2009. USENIX Association. URL http:

//dl.acm.org/citation.cfm?id=1558977.1559000.

[7] N. Bjorner and A.-D. Phan. νz - maximal satisfaction with z3. In
T. Kutsia and A. Voronkov, editors, SCSS 2014. 6th International

Symposium on Symbolic Computation in Software Science, volume 30
of EPiC Series in Computer Science, pages 1–9. EasyChair, 2014.

[8] M. Chiesa, A. Gurtov, A. Madry, S. Mitrovic, I. Nikolaevskiy,
M. Shapira, and S. Shenker. On the Resiliency of Randomized Rout-
ing Against Multiple Edge Failures. In 43rd International Collo-

quium on Automata, Languages, and Programming (ICALP 2016),
volume 55 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 134:1–134:15, Dagstuhl, Germany, 2016. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik. ISBN 978-3-95977-013-2. doi:
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.134. URL http://

drops.dagstuhl.de/opus/volltexte/2016/6269.

[9] A. Cimatti, A. Griggio, and R. Sebastiani. Computing small unsat-
isfiable cores in satisfiability modulo theories. J. Artif. Int. Res., 40
(1):701–728, Jan. 2011. ISSN 1076-9757. URL http://dl.acm.

org/citation.cfm?id=2016945.2016964.

[10] M. R. Clarkson and F. B. Schneider. Hyperproperties. Journal of

Computer Security, 18(6):1157–1210, 2010.

[11] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In Pro-

ceedings of the Theory and Practice of Software, 14th International

Conference on Tools and Algorithms for the Construction and Analysis

of Systems, TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidel-
berg, 2008. Springer-Verlag. ISBN 3-540-78799-2, 978-3-540-78799-
0. URL http://dl.acm.org/citation.cfm?id=1792734.
1792766.

[12] V. Diekert and P. Gastin. First-order definable languages. In Logic and

Automata: History and Perspectives, Texts in Logic and Games, pages
261–306. Amsterdam University Press, 2008.

[13] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker. Frenetic: A network programming language.
In Proceedings of the 16th ACM SIGPLAN International Conference

on Functional Programming, ICFP ’11, pages 279–291, New York, NY,
USA, 2011. ACM. ISBN 978-1-4503-0865-6. doi: 10.1145/2034773.
2034812. URL http://doi.acm.org/10.1145/2034773.

2034812.

[14] A. Gember-Jacobson, W. Wu, X. Li, A. Akella, and R. Mahajan.
Management plane analytics. In Proceedings of the 2015 ACM

Conference on Internet Measurement Conference, IMC ’15, pages
395–408, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3848-6.
doi: 10.1145/2815675.2815684. URL http://doi.acm.org/10.

1145/2815675.2815684.

[15] P. Gill, N. Jain, and N. Nagappan. Understanding network failures in
data centers: Measurement, analysis, and implications. In Proceedings

of the ACM SIGCOMM 2011 Conference, SIGCOMM ’11, pages 350–
361, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0797-0.
doi: 10.1145/2018436.2018477. URL http://doi.acm.org/10.

1145/2018436.2018477.

[16] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta. Vl2: A scalable and flexible
data center network. In Proceedings of the ACM SIGCOMM 2009

Conference on Data Communication, SIGCOMM ’09, pages 51–
62, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-594-9.
doi: 10.1145/1592568.1592576. URL http://doi.acm.org/10.

1145/1592568.1592576.

[17] K. He, J. Khalid, A. Gember-Jacobson, S. Das, C. Prakash, A. Akella,
L. E. Li, and M. Thottan. Measuring control plane latency in sdn-
enabled switches. In Proceedings of the 1st ACM SIGCOMM Sym-

posium on Software Defined Networking Research, SOSR ’15, pages
25:1–25:6, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3451-
8. doi: 10.1145/2774993.2775069. URL http://doi.acm.org/

10.1145/2774993.2775069.

[18] V. Heorhiadi, M. K. Reiter, and V. Sekar. Simplifying software-defined
network optimization using sol. In 13th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 16), pages 223–
237, 2016.

[19] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang,
J. Rexford, and R. Wattenhofer. Dynamic scheduling of network
updates. In Proceedings of the 2014 ACM Conference on SIGCOMM,
SIGCOMM ’14, pages 539–550, New York, NY, USA, 2014. ACM.
ISBN 978-1-4503-2836-4. doi: 10.1145/2619239.2626307. URL
http://doi.acm.org/10.1145/2619239.2626307.

[20] N. Kang, Z. Liu, J. Rexford, and D. Walker. Optimizing the "one big
switch" abstraction in software-defined networks. In Proceedings of

the Ninth ACM Conference on Emerging Networking Experiments and

Technologies, CoNEXT ’13, pages 13–24, New York, NY, USA, 2013.
ACM. ISBN 978-1-4503-2101-3. doi: 10.1145/2535372.2535373.
URL http://doi.acm.org/10.1145/2535372.2535373.

[21] G. Karypis and V. Kumar. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM J. Sci. Comput., 20(1):359–392,
Dec. 1998. ISSN 1064-8275. doi: 10.1137/S1064827595287997. URL
http://dx.doi.org/10.1137/S1064827595287997.

[22] J. McClurg, H. Hojjat, P. Černý, and N. Foster. Efficient synthesis
of network updates. In Proceedings of the 36th ACM SIGPLAN

Conference on Programming Language Design and Implementation,
PLDI 2015, pages 196–207, New York, NY, USA, 2015. ACM. ISBN
978-1-4503-3468-6. doi: 10.1145/2737924.2737980. URL http:

//doi.acm.org/10.1145/2737924.2737980.

[23] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker. Composing
software-defined networks. In Proceedings of the 10th USENIX Confer-

ence on Networked Systems Design and Implementation, nsdi’13, pages
1–14, Berkeley, CA, USA, 2013. USENIX Association. URL http:

//dl.acm.org/citation.cfm?id=2482626.2482629.

[24] O. Padon, N. Immerman, A. Karbyshev, O. Lahav, M. Sagiv, and
S. Shoham. Decentralizing sdn policies. In Proceedings of the

42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL ’15, pages 663–676, New York, NY,
USA, 2015. ACM. ISBN 978-1-4503-3300-9. doi: 10.1145/2676726.
2676990. URL http://doi.acm.org/10.1145/2676726.

2676990.

[25] G. D. Plotkin, N. Bjørner, N. P. Lopes, A. Rybalchenko, and G. Vargh-
ese. Scaling network verification using symmetry and surgery. In
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL 2016, pages 69–
83, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-3549-2.
doi: 10.1145/2837614.2837657. URL http://doi.acm.org/10.

1145/2837614.2837657.

[26] C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Banerjee,
C. Clark, Y. Ma, P. Sharma, and Y. Zhang. Pga: Using graphs to
express and automatically reconcile network policies. In Proceedings

of the 2015 ACM Conference on Special Interest Group on Data

584

Communication, SIGCOMM ’15, pages 29–42, New York, NY, USA,
2015. ACM. ISBN 978-1-4503-3542-3. doi: 10.1145/2785956.
2787506. URL http://doi.acm.org/10.1145/2785956.

2787506.

[27] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu. Simple-
fying middlebox policy enforcement using sdn. In Proceedings of the

ACM SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM ’13,
pages 27–38, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-
2056-6. doi: 10.1145/2486001.2486022. URL http://doi.acm.

org/10.1145/2486001.2486022.

[28] M. Reitblatt, M. Canini, A. Guha, and N. Foster. Fattire: Declarative
fault tolerance for software-defined networks. In Proceedings of the

second ACM SIGCOMM workshop on Hot topics in software defined

networking, pages 109–114. ACM, 2013.

[29] S. Saha, S. Prabhu, and P. Madhusudan. Netgen: Synthesizing data-
plane configurations for network policies. In Proceedings of the

1st ACM SIGCOMM Symposium on Software Defined Networking

Research, SOSR ’15, pages 17:1–17:6, New York, NY, USA, 2015.
ACM. ISBN 978-1-4503-3451-8. doi: 10.1145/2774993.2775006.
URL http://doi.acm.org/10.1145/2774993.2775006.

[30] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Ban-
non, S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala,
J. Provost, J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart,
and A. Vahdat. Jupiter rising: A decade of clos topologies and cen-
tralized control in google’s datacenter network. In Proceedings of the

2015 ACM Conference on Special Interest Group on Data Communi-

cation, SIGCOMM ’15, pages 183–197, New York, NY, USA, 2015.
ACM. ISBN 978-1-4503-3542-3. doi: 10.1145/2785956.2787508.
URL http://doi.acm.org/10.1145/2785956.2787508.

[31] S. Smolka, S. Eliopoulos, N. Foster, and A. Guha. A fast compiler
for netkat. In Proceedings of the 20th ACM SIGPLAN International

Conference on Functional Programming, ICFP 2015, pages 328–
341, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3669-7.

doi: 10.1145/2784731.2784761. URL http://doi.acm.org/10.

1145/2784731.2784761.

[32] R. Soulé, S. Basu, P. J. Marandi, F. Pedone, R. Kleinberg, E. G. Sirer,
and N. Foster. Merlin: A language for provisioning network resources.
In Proceedings of the 10th ACM International on Conference on

Emerging Networking Experiments and Technologies, CoNEXT ’14,
pages 213–226, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-
3279-8. doi: 10.1145/2674005.2674989. URL http://doi.acm.

org/10.1145/2674005.2674989.

[33] B. Stephens, A. L. Cox, and S. Rixner. Plinko: Building provably
resilient forwarding tables. In Proceedings of the Twelfth ACM

Workshop on Hot Topics in Networks, HotNets-XII, pages 26:1–
26:7, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2596-7.
doi: 10.1145/2535771.2535774. URL http://doi.acm.org/10.

1145/2535771.2535774.

[34] Y. Yuan, R. Alur, and B. T. Loo. Netegg: Programming network
policies by examples. In Proceedings of the 13th ACM Workshop on

Hot Topics in Networks, HotNets-XIII, pages 20:1–20:7, New York, NY,
USA, 2014. ACM. ISBN 978-1-4503-3256-9. doi: 10.1145/2670518.
2673879. URL http://doi.acm.org/10.1145/2670518.

2673879.

[35] S. Zhang, F. Ivancic, C. Lumezanu, Y. Yuan, A. Gupta, and S. Ma-
lik. An adaptable rule placement for software-defined networks. In
Dependable Systems and Networks (DSN), 2014 44th Annual IEEE/I-

FIP International Conference on, pages 88–99, June 2014. doi:
10.1109/DSN.2014.24.

[36] W. Zhou, D. Jin, J. Croft, M. Caesar, and P. B. Godfrey. Enforcing
customizable consistency properties in software-defined networks. In
Proceedings of the 12th USENIX Conference on Networked Systems De-

sign and Implementation, NSDI’15, pages 73–85, Berkeley, CA, USA,
2015. USENIX Association. ISBN 978-1-931971-218. URL http:

//dl.acm.org/citation.cfm?id=2789770.2789776.

585

