Your Programmable NIC Should be a
Programmable Switch

Brent Stephens*®
University of Illinois at Chicago

ABSTRACT

Today’s NICs are becoming programmable (“smart”). To sup-
port new network protocols, services, and offloads, there are
NICs today that have on-board FPGAs, embedded proces-
sors, programmable forwarding pipelines, and specialized
engines to support features like RDMA. Unfortunately, exist-
ing programmable NICs have a number of key limitations. It
is difficult to chain offloads, schedule competing accesses to
shared resources, and support functions that require variable
processing time and thus may not run at line-rate.

In this paper, we propose PANIC, a new architecture for
programmable NICs that overcomes the limitations of existing
NIC designs. We divide the NIC into three components: 1)
self-contained offload engines, 2) a logical switch, and 3) a
logical scheduler. This design overcomes the limitations of
existing designs and is able to scale with increasing line-rates
to a large number of offloads and long offload chains.

1 INTRODUCTION

Networks are beginning to support complex offloads and
in-network computation to accelerate applications, reduce
the load on general purpose CPUs, and provide new com-
plex and stateful network functions [13, 16-19, 21, 24, 31].
Programmable (“Smart”) NICs have emerged as a new tech-
nology that is a key enabler of these new offloads and network
functions [13, 17, 18].

There are many different programmable NICs [2, 7, 8, 13,
17, 20, 22, 23, 28], and there is also a wide range of different
NIC designs. For example, programmable NICs that use a
pipelined design place a chain of offload engines (e.g., an
FPGA) as a separate part of the NIC that logically sits in
between the NIC and its TOR switch [13, 22]. In this way,
the programmable component acts as a bump in the wire.
Another popular programmable NIC design is the manycore

*Work done while at University of Wisconsin-Madison

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions @acm.org.

HotNets-XVII, November 15-16, 2018, Redmond, WA, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to
ACM.

ACM ISBN 978-1-4503-6120-0/18/11...$15.00
https://doi.org/10.1145/3286062.3286068

Aditya Akella

University of Wisconsin-Madison

36

Michael M. Swift

University of Wisconsin-Madison

NIC architecture. Instead of forwarding all packets through
every offload, in this architecture, packets are load balanced
across many embedded CPU cores [7, 23, 28, 38]. Finally,
some programmable NICs use an on-NIC reconfigurable
match+action (RMT) pipeline that can be programmed [17].
This can be used to perform custom message parsing, steer
flows to queues, and provide new efficient DMA interfaces.
Unfortunately, these NIC designs have key limitations:

e Pipeline designs have difficulty chaining offloads. Be-
cause the offload topology is linear, the topology of the
offload chain must match the order in which every packet
needs to use the offloads. Further, slow offloads can cause
head-of-line (HOL) blocking.

e Manycore architectures require the use of an embedded
CPU core to orchestrate packet processing, which incurs
tens of microseconds of additional latency [13].

e The types of offloads that can be supported by pro-
grammable forwarding pipelines are limited because each
pipeline stage must be able to finish processing a packet in
a single cycle. For example, it is not possible to perform
IPSec offloading with an RMT pipeline.

This paper presents the design of PANIC, a new NIC archi-
tecture that overcomes the key limitations of existing smart
NIC designs. This design draws inspiration from recent work
on designing reconfigurable (RMT) switches [3, 5, 9, 34, 35]
while simultaneously addressing the issues that arise as a
result of NICs being a different environment than switches.

PANIC divides up the NIC into three complementary com-
ponents: 1) self-contained offload engines, and 2) a logical
programmable RMT switch, and 3) a logical scheduler. Fig-
ure 1 provides a high-level illustration of this design. Engines
generate packets, which are parsed and used to make rout-
ing decisions. Packets are routed and placed in per-engine
scheduling queues and then read by on-NIC engines.

NICs need to support many different types of offloads. For
example, despite their differences, embedded processors, net-
work processors, FPGAs, custom ASICs, regular expression
engines, and memory caches are all potentially useful offloads.
In PANIC, all offloads are implemented as independent en-
gines, i.e., independent tiles in the on-chip network. This
allows for a wide-range of offloads to be easily supported,
even if individual offloads do not run at line-rate.

Even parts of the NIC that would not normally be thought
of as offloads are implemented as engines in PANIC. For
example, PANIC uses a DMA engine and PCle engine to
interface with the main processor. These engines are attached
to the logical switch in the same way as the offload engines.

https://doi.org/10.1145/3286062.3286068

RMT
" | Pipeline

v

Scheduling >

300

!

®

Figure 1: A logical overview of the PANIC architecture. Every
Ethernet port (P;), offload (O;), and DMA/PCle engine is con-
nected to a common match+action (RMT) pipeline and schedul-
ing pipeline. Each packet is processed and scheduled by a logi-
cally centralized pipeline as it is chained between engines even
though the implementation of the logical switch and scheduler
is distributed across the engines.

However, not every offload needs to process every packet.
In PANIC, a logical programmable switch provides a common
high-performance substrate for switching packets between
the server, the network, and various offload engines. The
logical switch is implemented through the coordination of a
heavyweight RMT pipeline, lightweight lookup tables at each
engine, and an on-chip network that interconnects the engines.
This division of labor 1) avoids long wire lengths associated
with building the logical switch with a single large crossbar
and 2) avoids incurring the latency of the heavyweight RMT
pipeline as packets are forwarded between offloads.

Lastly, each engine in PANIC also has a logical scheduler
that determines the order in which the engine processes com-
peting packets and requests. High-throughput applications
using the same offloads as latency-sensitive applications can
lead to performance isolation problems in NICs [40]. Packets
in PANIC are inserted into these queues according to a slack
time that is computed by the RMT pipeline and carried by the
packets. This avoids these performance isolation problems.

This new architecture overcomes the limitations of existing
NIC designs. Unlike pipelined designs, PANIC can dynami-
cally chain packets between offloads without HOL blocking.
Unlike manycore architectures, the logical switch is able to
forward packets between different engines without requiring
the involvement of CPU, which incurs high latency. Unlike
RMT architectures, engines enable offloads that cannot be
implemented directly as a part of an RMT pipeline.

2 PROGRAMMABLE NIC LIMITATIONS

We find that there are multitude of different offloads that
can potentially improve application performance, although
not every packet needs every single offload. However, all
existing NIC designs suffer from key limitations with respect
to supporting multiple independent offloads.

2.1 Types of Offloads

There is a vast potential for NIC offloads to accelerate appli-
cation performance. Any computation performed to generate
or process messages can be performed by the NIC.

37

Project H Offload Type
FlexNIC [17] Application Inline Computation
Emu [37] Application CPU-bypass Memory and
Infrastructure CPU-bypass Network
SENIC [29] Infrastructure Inline Network
sNICh [30] Infrastructure CPU-bypass Network
DCQCN [41] Infrastructure CPU-bypass Network
TCP Offload Engines [26] || Infrastructure CPU-bypass Network
Uno [18] Infrastructure CPU-bypass Network
Azure SmartNIC [13] Infrastructure CPU-bypass Network
RDMA Application Inline/CPU-bypass
Network/Memory

Table 1: The different offload types used by prior work.

For the sake of discussion, we categorize NIC offloads in
the following dimensions: Infrastructure vs. Application
Offloads, CPU-bypass vs. Inline offloads, and Computa-
tion vs. Memory vs. Network offloads. Using these dimen-
sions, we find that most of the different possible types of
offloads already exist and all different types are potentially
useful. Additionally, different types of offloads may be pro-
vided by different types of hardware devices. ASICs, GPUs,
embedded CPUs, FPGAs, and network processors are all
potentially useful for implementing different offloads. To il-
lustrate this taxonomy, Table 1 shows the different kinds of
offloads that are provided by different prior works.

2.2 Vision

Any application that uses the network can potentially benefit
from NIC offloads. However, different packets benefit from
different sets of offloads, and every packet does not need
every offload. This complicates on-NIC packet processing.
An ideal programmable NIC should not restrict the type of
offloads that may be simultaneously used. Instead, the NIC
should be able to dynamically switch and schedule packets as
needed between independent offloads.

For example, consider a key-value store like Dy-
namoDB [36] that serves requests from multiple different
tenants that may potentially be geodistributed across multi-
ple data centers. Many different parts of this application can
be offloaded, but not every packet needs every offload. For
example, IPSec should be offloaded. However, only packets
sent over the WAN need to be encrypted, so not every packet
should be sent through the IPSec engine. Similarly, to reduce
latency and CPU load, the NIC can cache the location of val-
ues for hot keys pairs and use DMA to directly return replies,
completely bypassing the CPU. However, only requests that
are cached on the NIC should be processed in this way. Re-
quests that cannot bypass the CPU should instead be steered
to appropriate receive queues used by the driver/application.

2.3 Current NIC Limitations

This section gives background information on the design of
programmable NICs, all of which have key limitations.

2.3.1 Pipeline Designs. Figure 2a illustrates the pipelined
programmable NIC design. In this design, the offloads are

]—» Off|103d - ... > Oﬁ:\?ad le» to CPU

(a) A pipelined programmable
architecture

architecture

'

7.
}

NIC (b) A tiled manycore programmable NIC (¢c) A programmable NIC architecture

! to CPU - RMT /V Egress RMT
: @ Pipeline [~ DVA Pipeline @

Core M,N to CPU

with a reconfigurable match+action pipeline
(like FlexNIC [17])

Figure 2: Illustrations of existing programmable NIC architectures.

arranged in a linear sequence, i.e., a pipeline. Effectively, each
offload looks as though it is an independent device attached in
the middle of the wire connecting the NIC to a TOR switch.

Pipeline designs are popular because they allow for offloads
to be easily designed and built. Most existing NICs with
on-board FPGAs located as a “bump-in-the-wire” use this
design [12, 13, 22], and other NICs use this design for fixed
function offloads for TCP checksums and IPSec [1, 15].

Pipeline designs suffer from two key limitations: 1) Packets
are forwarded through offloads that do not need to process the
packet. This increases latency and wastes on-NIC bandwidth.
Further, this can cause HOL blocking with offloads that do
not run at line-rate, although this can be avoided with logic
to bypass offloads. 2) Chaining offloads is difficult because
these designs lead to a static offload topology; the offloads
are arranged in a line. Although it is possible to allow packets
recirculate through the pipeline as needed, this is also waste-
ful of on-NIC bandwidth. If enough packets are recirculated,
the NIC may not be able to process packets at line-rate.

2.3.2 Manycore Designs. Figure 2b illustrates a many-
core programmable NIC design [8, 18, 23, 38, 39]. These
designs implement network offloads by parallelizing flow
processing across a large number of embedded processors
that are arranged into a multi-hop on-chip network, (i.e., a
tiled topology). Some manycore NICs additionally contain
hardware engines for cryptography and compression [38].

The main limitation of manycore NICs is that they use
an embedded CPU core to orchestrate the processing of a
packet. This is because the on-chip network cannot cannot
parse complex packet headers to determine the appropriate
on-NIC addresses for the packet’s destination. Instead, many-
core designs use a CPU to generate requests to hardware
offloads as needed. However, when this is not needed, this
can significantly increase latency. For example, Firestone et
al. [13] report that processing a packet in one of the cores on
a manycore NIC adds a latency of 10 us or more.

2.3.3 Reconfigurable Match+Action (P4) Designs. Fig-
ure 2c shows a programmable NIC design using a pro-
grammable match+action (RMT) pipeline. This model was
recently proposed by FlexNIC [17]. In this model, incoming
packets are first parsed by a programmable parser and then
sent through a pipeline of M+A tables.

The main limitation of RMT NIC designs is that they are
limited in the functions that they can support. For example,

38

RMT NICs cannot support compression, encryption, or any
offload that must wait on the completion of a DMA from main
memory. This is because the actions that are possible at each
stage of the pipeline are limited to relatively simple atoms
to guarantee that the entire pipeline can process packets at
line-rate [34]. Unfortunately, many interesting offloads are
too complex to fit in this model.

3 PANIC DESIGN

The core idea behind the design of PANIC is that the NIC
should be implemented as three logical components :1) many
different types of offload engines, 2) a logical switch, and 3)
a logical scheduler. The logical switch is used to dynamically
chain packets between offloads without additional orchestra-
tion. The logical scheduler is used to explicitly schedule when
competing packets are processed at each engine. As a result
of the logical switch and scheduler, there are no additional
constraints placed on individual offload engines.

In this section, we describe the different components of
PANIC and how they coordinate to implement a logical switch
and logical scheduler in more detail. After that, we then give
an example of the flow of packets in PANIC.

3.1 PANIC Components

A key insight of the PANIC design is that even messages
between different on-NIC engines and offloads that are not
Ethernet packets can be treated as if they were. For example,
reading transmit descriptors, writing an incoming packet to
main memory, and processing an RDMA request all need
to use the DMA engine to read or write from main mem-
ory. In PANIC, these are all treated as packets. For the sake
of clarity, we refer to both packets and engine-to-engine re-
quests/response as messages from here on out.

This design allows PANIC to use a single unified on-chip
network. If the messages sent between engines were treated
differently than packets, then it would be necessary to imple-
ment two (or more) separate networks. While some manycore
NICs have taken this approach and have as many as five sepa-
rate on-chip networks [38, 39], using a unified network can
lead to higher peak throughputs for a given aggregate network
bit width'.

1t there are multiple networks and one is in use while the other is not, then
parallel wires are idle. If all of these wires were instead used for a single
network, this could not be the case

Local Memory
(SRAM)

Local
Scheduling

Local Lookup
Tables
t Net

(a) Offload Engine

Compute Engine I

Router

i 1T Net

Engine Local
Memory
(SRAM)

@ RMT Stages
@ Engines
@ sRAM

@ Routers

Local Lookup
Tables.
Queues

100Gbps [100Gbps
Eth PHY § Eth PHY

I PCle x16

(b) RMT Engine

(c) PANIC Overview

Figure 3: (a) An offload engine in the PANIC architecture. The compute engine and local memory are used by the offload. The
router connects to neighbor engines to form an on-chip network. The local lookup tables allow for chaining messages between offloads
without first passing through the RMT pipeline. The local request scheduling queues implement the logical scheduler. (b) An RMT
engine that is used to build the heavyweight RMT pipeline. The difference between offload engines is that the compute engine and
local lookup tables are replaced with a programmable parser and a match+action pipeline. (¢) An illustration of the on-chip network
that connects engines in PANIC. Together, these components cooperate to implement the logical switch and logical scheduler. The
individual offload and RMT engines are connected in a tiled topology and form an on-chip message (packet) network.

3.1.1 Offload Engines. In PANIC, any component of the
NIC that requires buffering or cannot run at line-rate is im-
plemented as an engine attached to a common switch and
scheduler (Figure 1). This includes the new components of
programmable NICs like FPGAs, embedded processors, and
ASICs for custom offloads. However, this also includes exist-
ing NIC components that would not normally be thought of
as switch ports, including the on-NIC DMA and PCle engines
that are used to interact with main memory and the host CPU.
To connect to the on-chip network, each engine contains
local lookup tables, a router, and scheduling queues. These ad-
ditional components are used to implement the logical switch
and scheduler and are illustrated by Figures 3a, 3b, and 3c.

3.1.2 Logical Switch. Due to physical constraints (e.g.,
wire length), it is not feasible to build a single large switch
and scheduler when there are a large number of engines [39].
To overcome this challenge, PANIC distributes the implemen-
tation of the logical switch and scheduler across the different
engines, which are connected by an on-chip mesh network.

The logical switch in PANIC routes messages (packets) be-
tween the Ethernet ports, offloads, and the server. The switch
has three components: a heavyweight RMT pipeline, light-
weight lookup tables at every engine, and a unified on-chip
network formed by connecting each engine to its neighbors
in a mesh topology. Figure 3c illustrates this design, and we
provide more details below.

Heavyweight RMT Pipeline: The heavyweight RMT
pipeline parses complex message (packet) headers and per-
forms stateful match-+action processing. This includes load-
balancing messages across descriptor queues, determining
the chain of offloads that a message should be forwarded
through, and computing slack times for the logical scheduler.
Figure 3b illustrates the design of the RMT engines that are
used to compose the heavyweight pipeline.

In PANIC, the heavyweight pipeline is composed of mul-
tiple RMT engines. Each engine contains a parser, multiple

39

internal match+action stages, and a deparser. Neighboring en-
gines may be configured to independently process messages
or be chained to form a longer pipeline. This design allows
for flexible trade-offs between pipeline depth and parallelism,
with more pipelines leading to more throughput.

Most messages in PANIC must traverse the RMT pipeline
at least once. Some messages may need to traverse the
pipeline more than once, although the use of lightweight
per-engine lookup tables is intended to minimize this. Ideally,
PANIC is able to process unencrypted messages in one pass
through the pipeline and encrypted messages in two passes.

Lightweight Lookup Tables: Lightweight lookup tables
reduce the load on the heavyweight RMT pipeline and more
evenly distribute traffic across the on-chip mesh network.
When a message is processed by the RMT pipeline, instead of
only looking up the next hop, a chain of engine destinations is
found and added as a lightweight message header. These ad-
dresses are then matched on at each engine without requiring
an additional heavyweight pipeline traversal.

Sometimes it is not possible to know the complete chain
that is needed for a message. This is the case with encrypted
messages. In this case, either a default route back to the heavy-
weight RMT pipeline is installed at the engine or the RMT
pipeline includes itself as a nexthop in the chain so that it can
generate the remainder of the chain.

Multi-hop on-chip networks: Instead of using a single
crossbar to connect engines, PANIC uses a multi-hop on-
chip network to forward messages between engines. Every
engine contains a router, and the routers are connected in
a 2D mesh topology. This is illustrated in Figure 3b. Every
engine connects to its neighbors, including the RMT engines
that compose the heavyweight RMT pipeline. The edges of
the on-chip network are the engines that provide external
interfaces, e.g., the Ethernet ports and DMA/PCle engines.
Additionally, the on-chip network is lossless. If it is necessary
to drop messages, this is done by the logical scheduler.

The on-chip network’s performance can be characterized
by its bandwidth and latency. The bisection bandwidth of
the network scales with topology size due to multipathing.
The routers add one cycle of latency at each hop, and the
lightweight tables also add another cycle of latency.

3.1.3 Logical Scheduler. Every engine contains a local
scheduling queue, and messages sent to each engine are
placed in the queue local to the engine (Figure 3b). Together,
these queues implement a logical scheduler that is used to
avoid head-of-line blocking latency for high priority mes-
sages and ensure that messages from different applications,
containers, and VMs share on-NIC resources according to
some high-level policy.

In PANIC, each local scheduling queue is a priority queue.
When the heavyweight RMT pipeline computes the chain
of offloads to send a message through, it also computes an
end-to-end slack time for each offload in the chain. This slack
time is added as a header and determines the order in which
messages are inserted into the priority queue for each engine.

Although simple, this approach is able to implement any
arbitrary local scheduling algorithm [25]. As ongoing work,
we are looking into how slack values should be computed so
as to best enforce a high-level network policy.

3.2 Example

To understand the benefits of the PANIC design, consider the
example offloads for a geodistributed multi-tentant KVS like
DynamoDB in Section 2. When an Ethernet port is receiving
incoming requests, they will be sent to the heavyweight RMT
pipeline after being processed by the Ethernet MAC. The
pipeline will parse the messages and use lookup tables to
determine a chain of offloads to forward it to. If it is an IPSec
packet, it will forward the packet to an IPSec engine, which
will reinject the packet into the heavyweight RMT pipeline
once it has finished decrypting the packet.

The heavyweight RMT pipeline will parse the request and
determine a chain of engines to forward the message to. For
GETs that should be sent to the main CPU, the pipeline will
select a receive queue according to some policy and send the
parsed request to a DMA engine. After the DMA has com-
pleted, the DMA engine will send a message to a PCle engine
that may generate an interrupt depending on the interrupt
coalescing state. If the incoming request is a SET, the process
is similar, except that the DMA engine will append the value
in the SET to a log. However, if the request instead hits in the
on-NIC application cache, it will be forwarded to an RDMA
engine. This RDMA engine will then issue DMA requests
(via the pipeline) to read the value, generate the packet head-
ers for the response, and then inject this new response into
the pipeline, where it will be switched to the Ethernet port for
transmission after the heavy RMT pipeline deparses it.

Due to possible memory contention from applications on
the main CPU, the DMA engine has variable performance
and may become a bottleneck. However, the PANIC design is
still able to avoid queuing latency for high-priority messages.

40

Line-rate | # Eth Ports H PPS
40Gbps 2 || 240Mpps
40Gbps 4 || 480Mpps

100Gbps 1 || 300Mpps

100Gbps 2 || 600Mpps

Table 2: The packet per second (PPS) throughput needed for
line-rate forwarding of minimal sized packets in both RX and
TX directions for different line-rates and NIC port counts.

Because of the scheduler, it is possible to ensure that all of
the dependent accesses required to process a high priority
message are able to bypass other pending DMA requests.

4 DISCUSSION

This section discusses important aspects and implications of
the PANIC design in more detail.

4.1 Programming Model

Individual offload engines, the logical switch, and the logi-
cal scheduler in PANIC are programmable. PANIC allows
for individual engines to be programmed in the most ap-
propriate domain specific language. The heavyweight RMT
pipeline and lightweight lookup tables are programmed sim-
ilarly to how current RMT switches are programmed (e.g.,
using P4 [4] and SDN). The logical scheduler is programmed
by associating each message with a slack time, and the respon-
sibility for computing the appropriate slack time is placed on
the heavyweight RMT pipeline.

4.2 Switch Throughput

The throughput of the logical switch must be high enough to
send and receive messages at line-rate while also chaining
messages between offloads as needed.

Two aspects of the logical switch in PANIC can be perfor-
mance limitations: the throughput of the heavyweight RMT
pipeline and the throughput of the on-chip network used to
route messages between engines. For the RMT pipeline, we
target a throughput that is able to guarantee that every TX and
RX packet can be processed at least once, even when using
minimal sized packets at line-rate. For the on-chip network,
we target a throughput that is able to forward every packet at
line-rate through some average length of offload chain before
the packets are forwarded to their destinations.

Table 2 shows the number of minimally sized packets per
second (pps) that can be transmitted and received given dif-
ferent NIC line-rates and port counts. For comparison, given
a clock frequency of F and P parallel pipelines, the heavy-
weight RMT pipeline in PANIC can process F * P packets per
second. (Two S00MHz pipelines can process packets at a rate
of 1000Mpps.) To be able to drive line-rate, the heavyweight
RMT pipeline’s throughput must be equal to or greater the
NIC’s line-rate (Table 2) multiplied by the average number of
times each packet is processed by the pipeline.

Supporting today’s increasing Ethernet line-rates in PANIC
should not be problem. With two RMT pipelines and a

Line- Bit Bisec | Chain

rate Freq | Width Topo BW Len
40Gbps x2 | 500MHz 64 | 6x6 Mesh || 384Gbps | 5.60
40Gbps x2 | 5S00MHz 64 | 8x8 Mesh 512Gbps 8.80
100Gbps x2 | 500MHz 128 | 6x6 Mesh 768Gbps | 3.68
100Gbps x2 | 500MHz 128 | 8x8 Mesh || 1024Gbps | 6.24

Table 3: The all-to-all network throughput and the number of
offloads that a packet can be forwarded to in a chain assuming
uniform traffic patterns for different on-NIC topologies.

500 MHz clock frequency, PANIC can forward every packet
through the RMT pipeline at least once and still sustain line-
rate even for a two port 100 Gbps NIC.

However, this analysis also demonstrates the need for the
PANIC architecture. If the RMT pipeline is needed to switch
packets between every offload, then it would not be possible
to send each packet to even a single offload and sustain line-
rate given a two port 100 Gbps NIC and two RMT pipelines
running at 500 MHz.

Next, Table 3 shows that it should be possible to use a 2D
mesh topology to route packets between offloads once the
RMT pipeline has chosen an offload chain. In this analysis,
we look at the topological properties of 2D mesh networks
assuming that packets are uniformly distributed across of-
floads [10, 11]. For different topologies, frequencies, and
channel bit widths, we compute the network’s bisection band-
width, capacity (all-to-all throughput), and average number
of offloads that each packet may be forwarded to while still
sustaining line-rate in both transmit and receive directions.
Across a range of topology sizes, we find that reasonable
clock frequencies and bit widths can support long average
packet chain lengths.

4.3 Memory Pressure

Finally, PANIC does not increase memory pressure in the
NIC, which is important as packet buffer space is a limited re-
source [29]. Although offloads that do not run at line-rate must
buffer and eventually drop or pause traffic if packets using the
offload arrive faster than the service-rate, this is fundamental
to all programmable NICs. Nothing about PANIC increases
memory pressure compared to the other programmable NIC
designs in Section 2. Further, PANIC introduces mechanisms
unavailable in other designs that can be used to intelligently
drop packets when memory pressure is a limiting factor.

S RELATED WORK

This section briefly discusses related work.

The architecture of the Tile-GX NICs [38] is most similar
to PANIC. These NICs contain up to a hundred embedded
CPU cores, a programmable packet parsing engine, and ASIC
offloads for cryptography and compression. The principle
limitation of the Tile-GX architecture is that it requires using
an embedded CPU core to orchestrate packet processing.

41

PANIC builds upon recent work on the design of pro-
grammable switches [5, 6, 9, 27, 34]. Also, the logical sched-
uler in PANIC is similar to recent work on programmable
packet scheduling [25, 35]. One of the contributions of PANIC
is in adapting these designs to NICs, an environment with
different requirements and constraints.

Additionally, PANIC is also an interesting point in the
switch design space. Some reconfigurable switches provide
functionality through an RMT pipeline [5, 34], while others
use a collection of different engines [9]. PANIC introduces a
new middle ground between these two competing designs.

Recent work has argued that the processing stages of a
NIC should be modeled as a directed graph [14, 32, 33].
Similarly, prior work has proposed placing a switch on the
NIC [13, 18, 30]. PANIC takes both of these ideas a step
further by using an on-NIC switch to connect the different
NIC components and offloads.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we argue that programmable NICs need to
internally implement a programmable switch that connects
the Ethernet ports, the offloads, and the PCle connection to
the server. We propose PANIC, a new NIC with an on-chip
logical switch and logical scheduler that are able to route and
schedule packets between different internal offload engines.

This approach overcomes the limitations of previous de-
signs. PANIC supports arbitrary types of offloads. Messages
are not unnecessarily sent to engines, and offloads that do
not run at line-rate do not cause head-of-line blocking for
packets that do not use the offload. PANIC is also able to
chain packets between offloads without requiring either an
embedded CPU core to orchestrate or requiring heavyweight
RMT processing after each hop in the offload chain. We show
that PANIC is able to scale performance with increasing line-
rates, number of offload engines, and offload chain lengths
given reasonable clock frequencies and bit widths.

There are still some open questions that are raised by the

PANIC design: What is the best way to simultaneously pro-
vide lossless forwarding to ensure that important messages
like DMA requests for descriptors are never dropped while
also providing lossy forwarding to ensure that other messages
(e.g., packets from a DOS attack) are dropped as needed?
What is the best way to provide flow control for lossless for-
warding so that neither the heavyweight RMT pipeline nor
the on-chip network are ever stalled by a slow or overloaded
engine? What is the best on-chip topology? How should differ-
ent engines be placed in this topology? Should entire packets
always be passed from engines, or are there times when it
is better to instead pass pointers to packet data located in a
common packet buffer? We hope to answer these questions
as part of our ongoing work.
Acknowledgments: We would like to thank the anonymous
reviewers for their thoughtful feedback. Brent Stephens,
Aditya Akella, and Michael Swift are supported in part by the
NSF grant CNS-1717039.

REFERENCES

[1] Intel ethernet switch fm10000 datasheet. https://www.intel.
com/content/dam/www/public/us/en/documents/datasheets/
ethernet-multi-host-controller-fm10000- family- datasheet.pdf.

[2] Accolade Technology. Accolade ANIC. https://accoladetechnology.
com/whitepapers/ANIC-Features-Overview.pdf.

[3] Barefoot. Barefoot Tofino. https://www.barefootnetworks.com/
technology/#tofino, 2017.

[4] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker.
P4: Programming protocol-independent packet processors. SIGCOMM
CCR, 2014.

[5] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. 1z-
zard, F. A. Mujica, and M. Horowitz. Forwarding metamorphosis:
fast programmable match-action processing in hardware for SDN. In
SIGCOMM. ACM, 2013.

[6] L. D. Carli, Y. Pan, A. Kumar, C. Estan, and K. Sankaralingam. PLUG:
Flexible lookup modules for rapid deployment of new protocols in
high-speed routers. In SIGCOMM. ACM, 2009.

[7] Cavium Corporation. Cavium CN63XX-NICI0E. http://cavium.com/
Intelligent_Network_Adapters_CN63XX_NIC10E.html.

[8] Cavium Corporation. Cavium LiquidIO. http://www.cavium.com/
pdfFiles/LiquidlO_Server_Adapters_PB_Rev1.2.pdf.

[9] S. Chole, A. Fingerhut, S. Ma, A. Sivaraman, S. Vargaftik, A. Berger,
G. Mendelson, M. Alizadeh, S.-T. Chuang, I. Keslassy, A. Orda, and
T. Edsall. dRMT: Disaggregated programmable switching. In SIG-
COMM. ACM, 2017.

[10] W. Dally and B. Towles. Principles and Practices of Interconnection
Networks. Morgan Kaufmann Publishers Inc., 2003.

[11] W.J. Dally. Performance analysis of k-ary n-cube interconnection
networks. IEEE Trans. Comput., 39(6), June 1990.

[12] Exablaze. ExaNIC V5P. https://exablaze.com//exanic-v5p.

[13] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. An-
drewartha, H. Angepat, V. Bhanu, A. Caulfield, E. Chung, H. K. Chan-
drappa, S. Chaturmohta, M. Humphrey, J. Lavier, N. Lam, F. Liu,
K. Ovtcharov, J. Padhye, G. Popuri, S. Raindel, T. Sapre, M. Shaw,
G. Silva, M. Sivakumar, N. Srivastava, A. Verma, Q. Zuhair, D. Bansal,
D. Burger, K. Vaid, D. A. Maltz, and A. Greenberg. Azure acceler-
ated networking: SmartNICs in the public cloud. In NSDI. USENIX
Association, 2018.

[14] M. Flajslik and M. Rosenblum. Network interface design for low
latency request-response protocols. In USENIX ATC, 2013.

[15] Intel. Intel 82599 10 GbE controller datasheet.
/fwww.intel.com/content/dam/www/public/us/en/documents/
datasheets/82599-10- gbe-controller-datasheet.pdf.

[16] X.Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica.
NetCache: Balancing key-value stores with fast in-network caching.
SOSP. ACM, 2017.

[17] A. Kaufmann, S. Peter, N. K. Sharma, T. Anderson, and A. Krish-
namurthy. High performance packet processing with FlexNIC. In
ASPLOS. ACM, 2016.

[18] Y. Le, H. Chang, S. Mukherjee, L. Wang, A. Akella, M. M. Swift,
and T. V. Lakshman. UNO: Uniflying host and smart NIC offload for
flexible packet processing. In SoCC. ACM, 2017.

[19] J. Li, E. Michael, N. K. Sharma, A. Szekeres, and D. R. K. Ports. Just
say NO to paxos overhead: Replacing consensus with network ordering.
In OSDI. USENIX, 2016.

[20] J. Li, E. Michael, N. K. Sharma, A. Szekeres, and D. R. K. Ports. Just
say NO to paxos overhead: Replacing consensus with network ordering.
In OSDI. USENIX, 2016.

[21] M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy, and K. Atreya.
Incbricks: Toward in-network computation with an in-network cache.
In ASPLOS. ACM, 2017.

[22] Mellanox Technologies. Innova - 2 Flex Programmable Network
Adapter. http://www.mellanox.com/related-docs/prod_adapter_cards/
PB_Innova-2_Flex.pdf.

http:

42

(23]

[24]

[25]
[26]

[27]

(28]

[29]

[30]

(31]

[32]
[33]

[34]

[35]

[36]

[37]

[38]

(39]

[40]

[41]

Mellanox Technologies. Mellanox BlueField SmartNIC.
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_
BlueField_Smart_NIC.pdf.

R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu. SilkRoad: Making
stateful layer-4 load balancing fast and cheap using switching ASICs.
In SIGCOMM. ACM, 2017.

R. Mittal, R. Agarwal, S. Ratnasamy, and S. Shenker. Universal packet
scheduling. In NSDI. USENIX, 2016.

J. C. Mogul. TCP offload is a dumb idea whose time has come. In
HotOS. USENIX, 2003.

R. Narayanan, S. Kotha, G. Lin, A. Khan, S. Rizvi, W. Javed, H. Khan,
and S. A. Khayam. Macroflows and microflows: Enabling rapid network
innovation through a split SDN data plane. In EWSDN. IEEE, 2012.
Netronome. NFP-6xxx flow processor. https:/netronome.com/product/
nfp-6xxx/.

S. Radhakrishnan, Y. Geng, V. Jeyakumar, A. Kabbani, G. Porter, and
A. Vahdat. SENIC: Scalable NIC for end-host rate limiting. In NSDI,
2014.

K. K. Ram, J. Mudigonda, A. L. Cox, S. Rixner, P. Ranganathan, and
J. R. Santos. sNICh: Efficient last hop networking in the data center. In
ANCS. ACM/IEEE, 2010.

N. K. Sharma, M. Liu, K. Atreya, and A. Krishnamurthy. Approxi-
mating fair queueing on reconfigurable switches. In NSDI. USENIX,
2018.

P. Shinde, A. Kaufmann, K. Kourtis, and T. Roscoe. Modeling NICs
with Unicorn. In PLOS. ACM, 2013.

P. Shinde, A. Kaufmann, T. Roscoe, and S. Kaestle. We need to talk
about NICs. In HorOS. USENIX, 2013.

A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, H. Balakr-
ishnan, G. Varghese, N. McKeown, and S. Licking. Packet transactions:
High-level programming for line-rate switches. In SIGCOMM, SIG-
COMM, 2016.

A. Sivaraman, S. Subramanian, M. Alizadeh, S. Chole, S.-T. Chuang,
A. Agrawal, H. Balakrishnan, T. Edsall, S. Katti, and N. McKeown.
Programmable packet scheduling at line rate. In SIGCOMM. ACM,
2016.

S. Sivasubramanian. Amazon dynamoDB: A seamlessly scalable non-
relational database service. In SIGMOD. ACM, 2012.

N. Sultana, S. Galea, D. Greaves, M. Wojcik, J. Shipton, R. Clegg,
L. Mai, P. Bressana, R. Soulé, R. Mortier, P. Costa, P. Pietzuch,
J. Crowcroft, A. W. Moore, and N. Zilberman. Emu: Rapid proto-
typing of networking services. In USENIX ATC. USENIX, 2017.
Tilera. Tile Processor Architecture Overview For the TILE-GX
Series. http://www.mellanox.com/repository/solutions/tile-scm/docs/
UG130-ArchOverview-TILE-Gx.pdf.

D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C.-C. Miao, J. F. Brown III, and A. Agarwal. On-chip
interconnection architecture of the tile processor. IEEE Micro, 27(5),
Sept. 2007.

Y. Zhang, J. Gu, Y. Lee, M. Chowdhury, and K. G. Shin. Performance
isolation anomalies in RDMA. In KBNets. ACM, 2017.

Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye,
S. Raindel, M. H. Yahia, and M. Zhang. Congestion control for large-
scale RDMA deployments. In SIGCOMM. ACM, 2015.

https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/ethernet-multi-host-controller-fm10000-family-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/ethernet-multi-host-controller-fm10000-family-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/ethernet-multi-host-controller-fm10000-family-datasheet.pdf
https://accoladetechnology.com/whitepapers/ANIC-Features-Overview.pdf
https://accoladetechnology.com/whitepapers/ANIC-Features-Overview.pdf
https://www.barefootnetworks.com/technology/#tofino
https://www.barefootnetworks.com/technology/#tofino
http://cavium.com/Intelligent_Network_Adapters_CN63XX_NIC10E.html
http://cavium.com/Intelligent_Network_Adapters_CN63XX_NIC10E.html
http://www.cavium.com/pdfFiles/LiquidIO_Server_Adapters_PB_Rev1.2.pdf
http://www.cavium.com/pdfFiles/LiquidIO_Server_Adapters_PB_Rev1.2.pdf
https://exablaze.com//exanic-v5p
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_Innova-2_Flex.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_Innova-2_Flex.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
https://netronome.com/product/nfp-6xxx/
https://netronome.com/product/nfp-6xxx/
http://www.mellanox.com/repository/solutions/tile-scm/docs/UG130-ArchOverview-TILE-Gx.pdf
http://www.mellanox.com/repository/solutions/tile-scm/docs/UG130-ArchOverview-TILE-Gx.pdf

	Abstract
	1 Introduction
	2 Programmable NIC Limitations
	2.1 Types of Offloads
	2.2 Vision
	2.3 Current NIC Limitations

	3 PANIC Design
	3.1 PANIC Components
	3.2 Example

	4 Discussion
	4.1 Programming Model
	4.2 Switch Throughput
	4.3 Memory Pressure

	5 Related Work
	6 Conclusions and Future Work
	References

