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Abstract

Administrators of today’s networks are highly interested
in monitoring traffic for purposes of collecting statistics,
detecting intrusions, and providing forensic evidence.
Unfortunately, network size and complexity can make
this a daunting task. Aside from the problems in ana-
lyzing network traffic for this information—an extremely
difficult task itself—a more fundamental problem exists:
how to route the traffic for network analysis in a robust,
high performance manner that does not impact normal
network traffic.

Current solutions fail to address these problems in a
manner that allows high performance and easy manage-
ment. In this paper, we propose OpenSAFE, a system
for enabling the arbitrary direction of traffic for security
monitoring applications at line rates. Additionally, we
describe ALARMS, a flow specification language that
greatly simplifies management of network monitoring
appliances. Finally, we describe a proof-of-concept
implementation that we are currently undertaking to
monitor traffic across our network.

1 Introduction
Contemporary computer networks have an interesting
issue; at the same time the dependency we place upon
these networks is increasing, the bandwidth is also in-
creasing. With this, the speed of computer networking
is out-pacing our ability to effectively monitor them for
safety. Ideally network security is best applied with
defense in layers: at the border, at the administrative
boundary, and at the edge.

The last of these, the edge, is the only place where
reasonable security solutions currently exist for most ap-
plications. End-hosts have a diverse array of appropriate
solutions to solve their security problems. However,
as end-hosts are also very complicated, they cannot be
solely trusted for ensuring their safety.

Monitoring network traffic at administrative and
border-level boundary ingress and egress points are the
traditional mainline defenses. Security happens in two
phases: active protection (firewalls, for example) and
network monitoring.

In this work, we are looking at network monitor-
ing. Typically, this monitoring is provided either via
middleboxes placed directly on the network path or via
inspection of copies of traffic at interesting points in the
network.

On campus networks there are specific challenges to
middleboxes—the largest of these is typically high fan-
out. Middleboxes would be placed either at aggre-
gation points—requiring a handful of extremely high-
bandwidth appliances—or further down the fan-out—
requiring a large number of normal-bandwidth ap-
pliances. As of February 2010, the University of
Wisconsin—Madison College of Engineering has 22 ×
1 Gbps connections and 2 × 10 Gbps connections to
the University backbone routers. Clearly, in this envi-
ronment, middleboxes at any level are infeasible due to
cost.

Another issue confronting traditional middleboxes is
network interruption. Adding or removing middleboxes
requires changes to the physical path of the network.
Altering the physical path of the network dramatically
increases the difficulty of network maintenance.

Copy the Traffic
State of the art network monitoring uses span ports
to create copies of traffic traffic at various interesting
points in the network. Typically, interesting points are
at administrative boundaries, either before or after a
network firewall. This allows for complete copies of all
network flows to be seen and inspected.

Span ports are typically directed into a single com-
puter running some sort of IDS (Intrusion Detection Sys-
tem) such as Snort [7], as shown in figure 1. However,
the challenge is that these network connections are typ-
ically 10 Gbps or more. To solve this problem, kludges
like careful NIC driver manipulation and aggressive on-
host queuing on the host need to be employed.

Another constricting factor is that the number of span
ports on network equipment is often extremely limited.
For example, the Cisco Catalyst 6000 series is limited
to two span ports per device. Making it worse, enabling
multicast on a Cisco FireWall Services Module (FWSM)
consumes one of those two, leaving only one for moni-
toring.

Presenting even more difficulty, this 10 Gbps is a
unidirectional span of a bidirectional 10 Gbps connec-
tion. While limited queuing appears to occur, ultimately
the span merely needs 5 Gbps of bidirectional traffic to
saturate the 10 Gbps span port. In other words, the span
port will be twice as busy as it sees both directions of
traffic.

Managing multiple devices on a span is a difficult task.
Either all traffic must be forwarded to every device on the
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Figure 1: A typical configuration for network monitoring today.

span, or special care must be taken to direct subsets of
traffic to different devices.1 This makes it much more
difficult for administrators to add new monitoring de-
vices, which can be troublesome when more specialized
appliances are acquired or when the load becomes too
great for the current monitoring hardware.

We propose OpenSAFE (Open Security Auditing and
Flow Examination), a unified system for network mon-
itoring, to solve this problem. Leveraging open net-
working technology such as OpenFlow [6], OpenSAFE
can direct spanned network traffic in arbitrary ways.
OpenSAFE can handle any number of network inputs
and manage the traffic in such a way that it can be used
by many services while filtering packets at line rate.

OpenSAFE consists of three important components:
a set of design abstractions for thinking about the flow
of network traffic; ALARMS (A Language for Arbitrary
Route Management for Security), a policy language for
easily specifying and managing paths; and an OpenFlow
component that implements the policy. We present
the overall design of the system in section 2, describe
ALARMS in section 3, and show the OpenFlow compo-
nent of our system in section 4. Finally, we list related
work in section 5, discuss future work in section 6, and
conclude in section 7.

2 Overall Design
To make the management of routes for network mon-
itoring both flexible and easy, OpenSAFE is designed
around several simple primitives. We use the notion of
paths as the basic abstraction of describing the selection
of traffic and the route this particular traffic should take.
Fundamentally, we wish to support the construction of

1There are commercial products that also accomplish this—
GigaMon [2] sells a line of switches that offer modular filtering, repli-
cation, and forwarding of network traffic to several monitoring devices.
However, configuration of monitoring policy lacks an expressive, high
level language; the primary interface is a web-based user interface for
connecting ports and specifying filters.

Span
Port: 80

Counter TCP Dump

Figure 2: A basic monitoring path.

Input SinksSelect Filters

Figure 3: Abstractions used to describe monitoring paths.

paths that allow desired traffic to enter the system and be
routed to one or more network monitoring systems.

A basic example of this is shown in figure 2, where
HTTP traffic is routed through a counter appliance and
finally to a TCP dump appliance. This could be easily
implemented as a static route; however, our goal is to
enable the construction of much more complex systems.

2.1 Path Abstractions
In OpenSAFE, the articulation of paths occurs incremen-
tally along the desired route of the path. As shown in
figure 3, paths are composed of several parts: inputs,
selections, filters, and sinks.

At a high level, each path begins with an input, applies
an optional selection criteria, routes matching traffic
through zero or more filters, and ends in one or more
sinks. Inputs can only produce traffic, sinks can only
receive traffic, and filters must do both.

If we take figure 2 and view it in this way, it becomes
figure 4. This shows traffic entering on a span port
(input), being selected for port 80 (selection), routed
through a counter (filter), and finally sent to a TCP dump
(sink). A more complicated example involving more
than one filter is shown in figure 5, demonstrating how
paths can be extended.

The overall design of OpenSAFE is shown in fig-
ure 6. The input is a connection from the span path at
the chosen network aggregation point to an OpenFlow
switch port. Some number of filters are in use, attached
to various OpenFlow switch ports. Finally, output is
directed into some number of sinks.

2.2 Parallel Filters and Sinks
To monitor large networks at line rates, it is quite pos-
sible (and quite likely) that a single filter or sink will
not be able to cope with all the network traffic. To
address this problem, we allow traffic to be routed to
multiple filters or sinks operating in parallel within a
path. Figure 7 shows such a path, with HTTP traffic
routed to multiple IDS appliances. We provide a variety
of methods to distribute traffic between multiple filters or
sinks, described in more detail in section 3.3.
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Figure 4: A basic logical monitoring path (figure 2) with coded ab-
stractions.
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Figure 5: A logical monitoring path with multiple filters.

2.3 Waypoints
Our final abstraction is one that is added largely as
a convenience to ease the creation of multiple semi-
redundant paths. In a system of a reasonable size, it is
possible—even probable—to have multiple paths con-
figured with common attributes. For instance, suppose
that an administrator wants to perform some degree of
processing on traffic, then send the result to a specific
filter and sink, as shown in figure 4 and figure 5. This
quickly becomes a maintenance problem as modifying
the common end-component of the paths may involve
editing many different rules.

We alleviate this issue by introducing a new abstrac-
tion: waypoints. Waypoints serve as “virtual destina-
tions,” allowing administrators to aggregate policy rules
and reduce repetition. A path using a waypoint is
displayed in figure 8, where HTTP and HTTPS traffic
is sent to a “web” waypoint before being passed to a
counter filter and TCP dump sink.

3 ALARMS: A Language for Arbitrary
Route Management for Security

To enable network administrators to easily manage and
update their monitoring infrastructure, we introduce
ALARMS, a language for arbitrary route management
for security traffic. ALARMS utilizes the abstractions
mentioned in section 2 to create a simple policy language
syntax to describe paths. Paths are defined between
named components, and each component may be subject
to a distribution rule in the case of multiple, parallel
components.

ALARMS is a high-level programming language and
relies on a low-level programmatic interface to a network
switch. We use OpenFlow [6] as the programmable
switch technology. OpenFlow is an Ethernet switch with
a programmatic interface to add and remove entries in
its flow table from a centralized controller. By default,
new flows that do not match existing entries in the flow
table are sent to the OpenFlow controller. This way,
the OpenFlow controller can manipulate the flow tables
dynamically, based on network activity.

OpenFlow allows entries in the flow table to be based

OpenFlow 
Switch

Input

Sink1

Filter1 Filterm

Sinkn

...

...

Figure 6: The overall design of OpenSAFE, using our abstractions.

Span

IDS A

Port 80

IDS B

Figure 7: A monitoring path with parallel sinks.

upon up to ten entries in a packet (including source/desti-
nation IP address, source/destination port, and so forth).
This is known as the OpenFlow 10-tuple. While we have
implemented ALARMS with OpenFlow, this language
should be generic enough to handle any arbitrary pro-
grammable network layer.

In this section we will present some of the core con-
cepts of ALARMS; details about the interaction between
ALARMS and OpenFlow are described more fully in
section 4.

3.1 Naming
In ALARMS, all components of a path are given unique
types and names. Specifically, the policy file names the
following components:

• OpenFlow switches (switch)

• Inputs and Sinks (input and sink)

• Filters (filter)

• Selections (select)

• Waypoints (waypoint)

We describe the language specification and features for
each of these components below.

3.1.1 OpenFlow Switches
Each OpenFlow switch is given a unique name that
corresponds to its OpenFlow datapath ID. This is accom-
plished using the switch statement:
switch of = 0x00000021;
Multiple switches may be defined, although it is

assumed that each ALARMS-controlled switch is ei-
ther directly connected to another ALARMS-controlled
switch or connected through a number of ALARMS-
controlled switches. Routes may be defined from a port
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Figure 8: A logical monitoring path with a waypoint.

on any ALARMS-controlled switch to a port on any
other ALARMS-controlled switch.

3.1.2 Inputs and Sinks
As shown in figure 3, paths begin with inputs and end
with sinks. Inputs and sinks are simply named OpenFlow
switch ports (as in figure 6), defined like so:
input span = of:0;
sink tcpdump = of:1;
Since inputs can only transmit traffic and sinks can

only receive traffic, each named input or sink is restricted
to a single port. Traffic, however, can be directed to
multiple sinks—see section 3.3 below.

3.1.3 Filters
Filters are middleboxes within an OpenSAFE network.
They are shown as the third item in figure 3.

A filter is a combination of a sink plus corresponding
inputs. As such, filters are defined similarly to inputs and
sinks, but with somewhat more flexibility as they are able
to transmit and receive traffic. Each filter must define
single tofrom switch port (to both receive and transmit)
or both a to and a from port (to delegate receiving
and transmitting, respectively, to separate ports). As
with inputs and sinks, filters are named OpenFlow switch
ports, and are specified in the policy language as follows:
filter to counter = of:2;
filter from counter = of:3;
Each port may be given its own unique name, or the

same name may be used for both the to and from ports.
Multiple to, from, and tofrom ports for a single name
are not permitted.

3.1.4 Selections
Selections are named instances of the traditional Open-
Flow 10-tuple, with some limited boolean syntax.
Specifically, ALARMS permits syntax like:

select http = tp src: 80 || tp dst: 80;

This selection produces only unencrypted HTTP traf-
fic. Any fields in the OpenFlow 10-tuple that are not
specified in the selection are treated as wildcards.

3.1.5 Waypoints
As waypoints are not physical destinations, they only
exist within the ALARMS language. Defining waypoints
is very simple:
waypoint web;

This allows path rules to reference the waypoint as
either a source or a destination.

3.2 Paths
Now that all named components have been specified,
we can connect these components to form paths. The
simplest form of a path connects an input directly to a
sink:
span -> tcpdump;
This can be modified to include, for example, a filter

and a selection:
span[http] -> counter -> tcpdump;
And the implementation of figure 8 involving a way-

point,
span[http] -> web;
span[https] -> decrypt -> web;
web -> counter -> tcpdump;
As OpenFlow has no concept of waypoints, ALARMS

will unroll the waypoints to specify each path in its
entirety to OpenFlow.

This provides almost all of the functionality we men-
tioned previously in section 2, with the exception of
handling multiple filters or sinks, which we will address
in the next section.

3.3 Distribution Rules
In order to enable features like load balancing, each
portion of a path may be distributed between several
components. The distribution of traffic between these
components is handled by one of the following distribu-
tion rules, applied on a per-flow basis:

• ALL (duplicate)

• RR (Round Robin)

• ANY (random)

• HASH (apply a hash function)

These distribution rules are represented in the policy
language like so:

span[http] -> {ALL, counter1, counter2} ->

tcpdump;

The first three rules are quite straightforward. The
ALL rule sends incoming flows to all components in the
list. The RR rule distributes flows to each component in a
round-robin order. Finally, the ANY rule forwards flows
to one of the components selected randomly.

The HASH rule is a special case. It takes an additional
argument—the name of the hash function—and relies on
this function to determine the destination. The hash func-
tion is provided with the first packet of the flow as well
as the entire distribution list, and it is expected to return
the component to which flows should be forwarded.
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4 OpenFlow Observations
We created a prototype implementation of OpenSAFE in
Python, using the OpenFlow reference software switch
version 0.8.9 and NOX [3], an OpenFlow controller,
version 0.6.

To preserve high performance, we attempt to precom-
pute as many routes as possible and install them in the
flow table of the OpenFlow switch on startup. This is
done to prevent the controller from being overloaded
with traffic—a distinct possibility when operating at high
line rates—as well as to deal with potentially limited
space in the flow table.

OpenFlow-enabled switches are hardware Ethernet
switches that are able to use the OpenFlow protocol. As
these are physical products, they often have limitations
that vary between vendors and products. There are
three distinct concerns when using OpenFlow-enabled
switches: flow table exhaustion, matching ability, and
insertion latency. The number of flow table entries
is often very limited on OpenFlow-enabled switches,
typically from 1500–3000 entries per line card. With
these entries, often not all fields are able to be matched
in hardware on the switch. Finally, when inserting a flow
into the OpenFlow-enabled switch, if new flows need to
be evaluated by the controller, it can take up to several
hundred milliseconds for the initial packet from the flow
to go to the controller and then for the controller to insert
a new entry into the flow table.

As the OpenFlow version 0.8.9 specification does not
have explicit hashing functions, latency can be an impor-
tant issue. To emulate ALARMS rules such as ANY, RR,
or HASH, flows need to be dynamically handled by the
controller. This will result in a relatively long round-trip
time to the controller for each hashing function along the
path that a flow will take.

4.1 Waypoints
Since OpenFlow does not have the concept of waypoints,
we recompute any flow containing a waypoint. By
creating the cross product of the path rules that terminate
and initiate from a waypoint, we create the representative
set of OpenFlow rules. In this way, we are able to pre-
install any routes involving waypoints that use only static
rules. However, paths using dynamic distribution rules
are more complicated and are described in section 3.3.

4.1.1 Virtual Sinks
Waypoints also serve another purpose in our
implementation—that of “virtual sinks.” Virtual
sinks can apply any OpenFlow action to a particular
flow.

One OpenFlow action of particular interest is
discard. ALARMS implicitly creates a virtual dis-
card sink. Traffic sent to this virtual sink is discarded

immediately.
This allows for simple network flow sampling. For

example, if a network administrator wished to drop 50%
of the incoming traffic flows, he could install a RR
distribution rule with two destinations, one of which
would be the discard sink. Other fractions could be
created by setting the RR distribution accordingly—for
instance, one-third of the network traffic could be sam-
pled by having a rule of {RR, discard, discard,
destination}. By adding virtual sinks, this type of
functionality is both easy and seamless; however, it is
still subject to the performance concerns of distribution
rules detailed in the next section.

4.2 Default Drop
OpenFlow defaults to sending all network traffic to the
controller if it does not match an active flow. However,
ALARMS starts with the premise that we are explicitly
stating which traffic we would like to route. Therefore,
any traffic that does not match an entry in the policy file
is dropped.

We accomplish this by pre-installing a wildcard Open-
Flow rule that drops traffic with low priority. Network
administrators can still specify paths which act on all
traffic in the policy file, and this will take priority. Also,
this traffic could all be sent to the controller as part of
a distribution rule. To achieve reasonable performance,
we simply do not want traffic to be sent to the controller
unless this behavior is explicitly desired.

5 Related Work
Casado et al. describe using Ethane [1] switches to
enforce middlebox policies and propose a language, Pol-
Eth, for describing these policies. However, their work
on Pol-Eth is primarily designed around reachability and
the idea that middleboxes would still be on the logical
path of a flow (even if not explicitly on the physical
path). Our work differs in that OpenSAFE implements
a policy language, ALARMS, which handles a copy of
the network traffic instead of on a middlebox inserted
into the network. As such OpenSAFE does not handle
end-to-end connectivity but rather a unidirectional flow.

Joseph et al. propose a similar architecture to Ethane
in their work on policy-aware switching [5]. However,
they do away with OpenFlow’s concept of a centralized
controller, instead relying on each switch to individually
determine the next hop and forward packets immediately.
This improves throughput, especially with large quan-
tities of brief flows (where the overhead of contacting
the controller is significant), but makes some aspects of
network management more difficult, as no single entity
has a complete view of the network. Additionally, the
policy specification language described in their work is
still centered around deciding appropriate paths for a
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flow, rather than a higher-level concept of what network
monitoring needs to be applied.

A Flow-Based Security Language (FSL) [4] for ex-
pressing network policy has been suggested by Hinrichs
et al. FSL, a variant of Datalog, allows specification
of policies such as access controls, isolation, and com-
munication paths. This specification is flexible and fast,
capable of performing lookup and enforcement at high
line rates. Again, however, the language is generally
focused on end-to-end reachability and path selection,
without specific thought to network monitoring.

6 Future Work
ALARMS
To broaden the capabilities of ALARMS, it should be
investigated as to whether implementing dynamic con-
trol as a first-class primitive in the language would be
useful. In the current version of ALARMS, feedback
from filters and sinks is implemented purely through
HASH distribution rules. While this is sufficient for
some dynamic control capability, it could be beneficial
to allow filters and sinks to explicitly modify paths by
adding or removing path components. This would enable
components to directly influence OpenSAFE—because
of being overloaded, being taken offline, and so forth.
In the future, we would like to explore this using a
programmatic interface, such as XML-RPC, that allows
filters and sinks to use all of the naming primitives to
modify paths in the system.

OpenFlow
As we mentioned, when ALARMS uses constructions
that are not available natively in the OpenFlow specifi-
cation, OpenSAFE must send the flows to the OpenFlow
controller to be processed. This potentially has a sig-
nificant performance issue if too many flows are sent to
the controller. First, until flows are entered into the flow
table, packets will be sent to the controller, potentially
overwhelming it. Second, OpenFlow-enabled switches
typically process entries in the flow table in hardware,
but process exceptions in software where performance is
directly impacted.

We avoid these problems by attempting to carefully
construct OpenFlow entries that minimize the number
of flows that are sent to the controller. Additional
study should be done in the area of pre-computing more
dynamic distribution rules. It is possible that a particular
hash function could be covered by a specific set of static
OpenFlow rules; this is obviously not general to all hash
functions, but it could be used to improve performance in
some cases. Additionally, simple dynamic distribution
rules that don’t require any state, like ANY, could be

added to the OpenFlow specification to reduce activity
on the controller.

Deployment
Our test of OpenSAFE and ALARMS was entirely done
using a software implemention of OpenFlow using vir-
tual machines. Next we will be implementing Open-
SAFE using a physical switch and machines. This will
further illustrate the practical issues of using OpenFlow
on a high-traffic link.

7 Conclusion
Network security monitoring in today’s large-scale net-
works is a difficult task. We focused on the area of
how to route traffic to monitoring appliances, rather than
attempting to solve all parts of the problem, including
how to analyze network traffic.

Current solutions for routing monitored traffic are ex-
pensive, difficult to manage, and have problems scaling
to high line rates. OpenSAFE uses OpenFlow to scale to
line rates by utilizing supporting hardware. Management
is facilitated by ALARMS, our simple language for
routing copies of network flows. Finally, the expense
of the system is greatly reduced as OpenSAFE runs on
commodity hardware, with the most exotic component,
the OpenFlow-enabled switch, available from many ven-
dors.

OpenSAFE makes monitoring large scale networks
easier than ever before, and it has a rich area for future
work.
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