
OpenNF: Enabling Innovation in Network Function Control

Aaron Gember-Jacobson, Raajay Viswanathan, Chaithan Prakash, Robert Grandl,
Junaid Khalid, Sourav Das, and Aditya Akella

University of Wisconsin-Madison
{agember,raajay,cprakash,rgrandl,junaid,souravd,akella}@cs.wisc.edu

http://opennf.cs.wisc.edu

ABSTRACT
Network functions virtualization (NFV) together with software-
defined networking (SDN) has the potential to help operators sat-
isfy tight service level agreements, accurately monitor and manipu-
late network traffic, and minimize operating expenses. However, in
scenarios that require packet processing to be redistributed across
a collection of network function (NF) instances, simultaneously
achieving all three goals requires a framework that provides effi-
cient, coordinated control of both internal NF state and network
forwarding state. To this end, we design a control plane called
OpenNF. We use carefully designed APIs and a clever combina-
tion of events and forwarding updates to address race conditions,
bound overhead, and accommodate a variety of NFs. Our evalua-
tion shows that OpenNF offers efficient state control without com-
promising flexibility, and requires modest additions to NFs.

Categories and Subject Descriptors

C.2.1 [Computer Communication Networks]: Network Archi-
tecture and Design; C.2.3 [Computer Communication Networks]:
Network Operations

Keywords
Network functions, middleboxes, software-defined networking

1. INTRODUCTION
Network functions (NFs), or middleboxes, are systems that ex-

amine and modify packets and flows in sophisticated ways: e.g.,
intrusion detection systems (IDSs), load balancers, caching prox-
ies, etc. NFs play a critical role in ensuring security, improving
performance, and providing other novel network functionality [37].

Recently, we have seen a growing interest in replacing dedicated
NF hardware with software-based NFs running on generic com-
pute resources—a trend known as network functions virtualization
(NFV) [12]. In parallel, software-defined networking (SDN) is be-
ing used to steer flows through appropriate NFs to enforce policies
and jointly manage network and NF load [17, 20, 22, 26, 32].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGCOMM’14, August 17–22, 2014, Chicago, IL, USA.

Copyright 2014 ACM 978-1-4503-2836-4/14/08 ...$15.00.

http://dx.doi.org/10.1145/2619239.2626313.

Together, NFV and SDN can enable an important class of man-
agement applications that need to dynamically redistribute packet
processing across multiple instances of an NF—e.g., NF load bal-
ancing [32] and elastic NF scaling [21]. In the context of such ap-
plications, “NFV + SDN” can help achieve three important goals:
(1) satisfy tight service level agreements (SLAs) on NF perfor-
mance or availability; (2) accurately monitor and manipulate net-
work traffic, e.g., an IDS should raise alerts for all flows containing
known malware; and (3) minimize NF operating costs. However,
simultaneously achieving all three goals is not possible today, and
fundamentally requires more control than NFV + SDN can offer.

To see why, consider a scenario where an IDS is overloaded and
must be scaled out in order to satisfy SLAs on throughput (Fig-
ure 1). With NFV we can easily launch a new IDS instance, and
with SDN we can reroute some in-progress flows to the new in-
stance [17, 32]. However, attacks may go undetected because the
necessary internal NF state is unavailable at the new instance. To
overcome this problem, an SDN control application can wait for
existing flows to terminate and only reroute new flows [22, 38], but
this delays the mitigation of overload and increases the likelihood
of SLA violations. NF accuracy may also be impacted due to some
NF-internal state not being copied or shared.

In this example, the only way to avoid a trade-off between NF ac-
curacy and performance is to allow a control application to quickly
and safely move the internal IDS state for some flows from the orig-
inal instance to the new instance, and update network forwarding
state alongside. Similar needs arise in the context of other applica-
tions that rely on dynamic reallocation of packet processing: e.g.,
rapid NF upgrades and dynamic invocation of remote processing.

In this paper, we present OpenNF, a control plane architecture
that provides efficient, coordinated control of both internal NF state
and network forwarding state to allow quick, safe, and fine-grained
reallocation of flows across NF instances. Using OpenNF, opera-
tors can create rich control applications that redistribute processing
to optimally meet their performance, availability, security and cost
objectives, thus avoiding the need to make undesirable trade-offs.

We address three major challenges in designing OpenNF:
C1: Addressing race conditions. This is the most basic issue that
arises when reallocating in-progress flows: When some internal NF
state is being moved, packets may arrive at the source instance after
the move starts, or at the destination instance before the state trans-
fer finishes. Unless care is taken, updates to NF state due to such
packets may either be lost or happen out of order, violating move
safety. Similarly, when state is copied across NF instances, updates
occurring contemporaneously may cause state to become inconsis-
tent. Depending on the NF, these issues may hurt its accuracy.

To account for race conditions, we introduce two novel con-
structs: (1) an event abstraction to externally observe and prevent

Figure 1: A scenario requiring scale-out and load balancing to sat-
isfy SLAs on throughput are and minimize operating expenses. The
IDS [31] processes a copy of network traffic to detect port scans and
malware in HTTP flows. For each active flow, the IDS maintains a
connection object with src/dst IPs, ports, etc. and several analyzer ob-
jects with protocol-specific state (e.g., current TCP seq # or partially
reassembled HTTP payloads). It also maintains host-specific connec-
tion counters. If the red (darker) flow is reassigned to the second IDS
instance to avoid SLA violations, then the SDN switch’s flow table must
be updated, the flow-specific state must be moved, and the host-specific
state must be copied or shared to ensure no attacks go undetected.

local state changes inside NFs, and (2) a clever two-phase scheme
for updating network forwarding state. We show how to combine
the two to provably ensure state updates are not lost or reordered
during state moves and shared state remains consistent.
C2: Bounding overhead. The second issue is ensuring that real-
location can be efficient. Moving and sharing state between NF in-
stances consumes both NF CPU and network resources. Moreover,
avoiding loss, reordering, and state inconsistency requires packet
buffering, which introduces both latency and memory overhead. If
these performance and resource overheads are unbounded, then we
cannot satisfy tight SLAs or constrain operating costs.

To bound overhead, we propose a flexible northbound API that
control applications use to precisely specify which state to move,
copy, or share, and which guarantees to enforce (e.g., loss-free).
C3: Accommodating a variety of NFs with minimal changes.
The final issue is ensuring that our framework is capable of accom-
modating a wide range of NFs in a largely non-intrusive fashion.
Providing APIs for NFs to create/update state [34] is one approach,
but it restricts how internal NF state is structured and may not ac-
commodate the state allocation/access needs of some packet pro-
cessing logic. Instead, we design a novel southbound API for NFs
that allows a controller to request the export or import of NF state
without changing how NFs internally manage state.

We have implemented our northbound API using Floodlight [6],
and we have constructed several control applications that use this
API. We have also augmented four NFs—Bro [31], Squid [15], ipt-
ables [9], and PRADS [13]—to support our southbound API (§7).

Our evaluation of OpenNF shows that: (1) OpenNF can elim-
inate spurious alerts and cut NF scale-in time by tens of minutes
compared to using current control frameworks; (2) state can be
moved, copied, and shared efficiently even when certain guaran-
tees are requested—e.g., a loss-free move involving state for 500
flows takes only 215ms and imposes only 50ms of additional la-
tency on packets received during the operation; and (3) additions
to NFs to support OpenNF’s southbound API increase code size by
at most 9.8%, and packet processing time at NFs increases by less
than 6% during state export or import.

2. WHY OpenNF?
When packet processing is being collectively handled by multi-

ple instances of an NF, the NF deployment as a whole must typi-
cally meet three important goals: (1) satisfy tight NF service level
agreements (SLAs) on performance or availability—e.g., aggregate
throughput should exceed 1Gbps most of the time, and the time out-

dated/unpatched NFs are used to process flows should be less than
10 minutes per year; (2) accurately monitor and manipulate net-
work traffic—e.g., an IDS should raise alerts for all HTTP flows
containing known malware packages, and a redundancy elimina-
tion (RE) decoder should correctly restore redundancy removed by
an RE encoder; and (3) operate with minimal cost—e.g., resources
are shutdown when the extra capacity is not needed.

Simultaneously achieving all three goals is not possible today.
In particular, we need additional control mechanisms, beyond those
offered by combining NFV [12] and SDN [29]. Below, we describe
several concrete examples and highlight how the aforementioned
triumvirate of goals translate into control plane requirements. We
also discuss how current NFV and SDN control frameworks, and
simplistic enhancements to them, fall short in satisfying these needs.

2.1 Motivating Examples
Always up-to-dateNFs. For maximum security, a cellular provider
may want traffic to always be processed by the latest NF software.
For example, an SLA may require that traffic is never processed by
outdated NF instances for more than 10 minutes per year (goal #1).
Fortunately, NFV allows us to launch an updated instance in a mat-
ter of milliseconds [28], and SDN allows us to reroute traffic to that
instance just as quickly [17, 32]. However, this simple rerouting of
traffic can compromise NF accuracy (goal #2) due to the absence of
internal NF state at the new instance: e.g., rerouting active HTTP
flows to a new IDS instance can cause the IDS to miss detecting
some malware due to the lack of metadata for earlier packets in
the flows. To overcome this issue, we can wait for existing flows
to terminate and only reroute new flows [22, 38]. However, since
flow durations are unbounded, this approach cannot guarantee the
SLA will be satisfied: e.g., up to 40% of flows in cellular networks
last longer than 10 minutes [36].1 The only way to both satisfy the
SLA and maintain NF accuracy is for the control plane to offer the
ability tomove NF state alongside updates to network forwarding
state. Furthermore, the operation must complete in bounded time.

To guarantee NF accuracy (goal #2) during and after state trans-
fer, it may be important that no packets or updates to state are lost
and no re-ordering of updates happens. For example, IDS instances
operating on a copy of traffic have no opportunity to request a
packet retransmission if the copied traffic is dropped during state
move; this can lead to missed alerts because only part of the data
sent over a connection is checked for malware.2 Likewise, the IDS
may raise false alerts if it receives and processes SYN and data
packets out of order. Thus, the control plane must offer support
for key guarantees such as loss-freedom and order preservation.
(We formally define loss-freedom and order-preservation in §5.1.)
High performance network monitoring. Performance is also a
crucial concern for cellular providers. For example, an SLA may
require NF deployment throughput to exceed 1Gbps most of the
time. Meeting this SLA with a single NF instance can be chal-
lenging due to the complexity of packet processing. Fortunately,
NFV enables NFs to be dynamically scaled-out as network load in-
creases, and SDN enables flows to be rerouted to leverage the new
capacity. However, as in the first scenario, flows must be rerouted
quickly—waiting for flows to terminate can cause NF overload to
persist and violate the SLA (goal #1)—and safely—rerouting flows
without moving internal NF state (in a loss-free and order-preser-

1Prematurely terminating flows also violates SLAs.
2Is loss-free important given the network already can drop pack-
ets? Note that end points recover from network-induced drops us-
ing retransmissions, and the IDS can eventually get a copy; but
the IDS can never recover packets dropped during state transfer. A
similar argument applies to order-preserving.

ving manner) can compromise NF accuracy (goal #2). Similarly,
when network load decreases the NF should be scaled-in, with
flows rerouted quickly and safely beforehand, to minimize oper-
ating costs (goal #3). To achieve this, we again need the ability to
move NF state alongside updates to network forwarding state, and
the move must occur within bounded time and with key guarantees.

When rebalancing load, we must also account for the fact that
NFs may depend on state that applies to more than one flow: e.g.,
an IDS maintains connection counters for each end-host. If traffic
is balanced at the granularity of hosts or subnets, all flows for a
host will traverse the same IDS instance, and the counters can be
moved to that instance. However, when flows involving the same
host are balanced to different instances, both instances must have
the relevant counters. Furthermore, if one instance is later termi-
nated and flows for a given host are re-routed to the same remaining
instance, the counters from both instances should be merged. Thus,
the control plane must offer the ability tomove, copy or share, and
combine NF state that applies to multiple flows.
Fast failure recovery with low resource footprint. When an NF
instance fails, we can minimize downtime (goal #1) by rerouting
in-progress (and new) flows to a non-failed instance. For these
flows to be accurately processed (goal #2), critical NF state must
be available at the selected instance. One way to fulfil this is to
periodically create a backup of all NF state; this consumes non-
negligible CPU and memory bandwidth at the NF (violating goal
#3), and the delay between copies will result in the backup contain-
ing significant amounts of stale state. A second approach would be
to back up pieces of NF state as they are updated. This eliminates
the stale state problem, and the resource footprint is proportional to
the frequency of state updates and the amount of state being backed
up. To support this, we need the ability to copy NF state, as well as
the ability to track when/how state is updated.
Selectively invoking advanced remote processing. Based on pre-
liminary observations made by a local NF, an enterprise may want
to employ deeper and more advanced processing of a subset of in-
progress flows (variant of goal #2). For example, when an IDS de-
tects that internal hosts are making HTTP requests for a blacklisted
domain, the enterprise invokes additional packet processing to have
the corresponding replies analyzed for malware. Due to limited
resources at the local IDS instance, the enterprise may leverage
a more powerful remote cloud-resident IDS. Further, to avoid the
cost of redirecting all traffic to the cloud (goal #3), traffic from
the remaining hosts should continue to be processed locally. This
requires the support highlighted in earlier examples (e.g., moving
flow-specific state with a loss-free guarantee). Additionally, more
advanced processing typically requires maintaining more detailed
state: e.g., the cloud-resident IDS may create additional state for
the new flows to compare signatures to a large corpus of known
attacks. Thus, the NF control plane should not restrict an NF’s
ability to create additional state. Further, it should automatically
capture this additional state if the processing of the flow is later
transferred back to the original NF instance.

2.2 Related Work
Existing NF control planes such as PLayer [26], SIMPLE [32],

Stratos [21], FlowTags [20], and connection acrobatics [30] only
provide control over, and coordination of, traffic forwarding. As
already discussed, forwarding changes alone are insufficient to sat-
isfy multiple objectives without degrading NF accuracy.

VM [18] or process replication [5] only allows cloning of NF in-
stances in their entirety. The additional, unneeded state included in
a clone not only wastes memory, but more crucially can cause un-
desirable NF behavior: e.g., an IDS may generate false alerts (we

Figure 2: OpenNF architecture

quantify this in §8.4). Moreover, this approach prevents state from
multiple NF instances from being moved and merged, precluding,
e.g., fast elastic scale-down.3 Because of their intrinsic limitations,
combining existing control planes with techniques for VM migra-
tion/process replication does not address the above requirements.

Vendor-supplied controllers [4, 14] that move, copy, and share
NF state between multiple NF instances can leverage knowledge
about the internal workings of NFs. However, they cannot control
network state in a way that fully satisfies all goals—e.g., it is hard
to provide optimized load balancing across network links.

Split/Merge [34] and Pico Replication [33] are the only systems
that provide some control over both internal NF state and network
state. They provide a shared library that NFs use to create, access,
and modify internal state through pre-defined APIs. In Split/Merge,
an orchestrator is responsible for coordinating load balancing by in-
voking a simplemigrate (f) operation that reroutes flow f and moves
corresponding NF state. In Pico Replication, modules are added to
an NF to manage the flow of packets in and out of each instance
and to clone states at policy-defined frequencies.

Unfortunately, the migrate operation can cause lost or re-ordered
NF state updates, since packets arriving at an NF instance after
migrate is initiated are dropped, and a race exists between applying
the network forwarding state update and resuming the flow of traffic
(which is halted when migrate starts). Furthermore, the orchestra-
tor and NF modules are targeted to specific problems, making them
ill-suited to support other complex control applications. Finally, the
API NFs must use to create and access states uses nondescript keys
for non-flow-based state, making it difficult to know the exact states
to move and copy when flows are rerouted, and the API only allows
one state allocation per flow, requiring some internal NF state and
packet processing logic to be significantly restructured. We discuss
these issues in more detail later in the paper.

3. OpenNF OVERVIEW
OpenNF is a novel control plane architecture (Figure 2) that sat-

isfies the aforementioned requirements and challenges. In this sec-
tion, we outline our key ideas; §4 and §5 provide the details.

OpenNF allows control applications to closely manage the be-
havior and performance of NFs to satisfy high level objectives.
Based on NF output or external input, control applications: (1) de-
termine the precise sets of flows that specific NF instances should
process, (2) direct the controller to provide the needed state at each
instance, including both flow-specific state and state shared be-
tween flows, and (3) ask the controller to provide certain guarantees
on state and state operations.

In turn, the OpenNF controller encapsulates the complexities
of distributed state control and, when requested, guarantees loss-
freedom, order-preservation, and consistency for state and state op-
erations. We design two novel schemes to overcome underlying
race conditions: (1) an event abstraction that the controller uses

3Basic scale-down can be supported by assigning new flows to the
“combined” instance and waiting for flows at the “old” instance to
terminate; but this can take a long time.

Figure 3: NF state taxonomy, with state from the Squid caching proxy
as an example

to closely observe updates to state, or to prevent updates but know
what update was intended, and (2) a two phase forwarding state
update scheme. Using just the former, the controller can ensure
move operations are loss-free, and state copies are eventually con-
sistent. By carefully sequencing state updates or update preven-
tion (scheme 1) with the phases of scheme 2, the controller can
ensure move operations are loss-free and order-preserving; we pro-
vide a formal proof in our technical report [23]. Lastly, by buffer-
ing events corresponding to intended updates and handling them
one at a time in conjunction with piece-meal copying of state, the
controller can ensure state copies are strongly or strictly consistent.

OpenNF’s southbound API defines a standard NF interface for
a controller to request events or the export or import of internal
NF state. We leave it to the NFs to furnish all state matching a
filter specified in an export call, and to determine how to merge
existing state with state provided in an import call. This requires
modest additions to NFs and, crucially, does not restrict, or require
modifications to, the internal state data structures that NFs main-
tain. Furthermore, we use the well defined notion of a flow (e.g.,
TCP connection) as the basis for specifying which state to export
and import. This naturally aligns with the way NFs already create,
read, and update state.

4. SOUTHBOUND API
In this section, we describe the design of OpenNF’s southbound

API. To ensure a variety of NFs can be easily integrated into
OpenNF, we must address two challenges: (1) account for the di-
versity of NF state and (2) minimize NF modifications.

4.1 State Taxonomy
To address the first challenge, we must identify commonalities in

how internal state is allocated and accessed across various NFs. To
this end, we examined several types of NFs from a variety of ven-
dors, including: NATs [9], IDSs [31], load balancers [1, 7], caching
proxies [15], WAN optimizers [16], and traffic monitors [11, 13].

We observe that state created or updated by an NF while pro-
cessing traffic applies to either an individual flow (e.g., TCP con-
nection) or a collection of flows. As shown in Figure 1, the Bro
IDS maintains connection and analyzer objects for each TCP/UD-
P/ICMP flow and state for each host summarizing observations re-
lating to all flows involving that host. Similarly, as shown in Fig-
ure 3, the Squid caching proxy maintains socket context, request
context, and reply context for each client connection and cache en-
tries for each requested web object. Most NFs also have state which
is updated for every packet or flow the NF processes: e.g., statistics
about the number of packets/flows the NF processed.4

Thus, as shown in Figure 3, we classify NF state based on scope,
or how many flows an NF-created piece of state applies to—one
flow (per-flow), multiple flows (multi-flow), or all flows (all-flow).
In particular, per-flow state refers to structures/objects that are read
or updated only when processing packets from the same flow (e.g.,

4NFs also have configuration state. It is read but never updated by
NFs, making it easy to handle; we ignore the details in this paper.

TCP connection), while multi-flow state is read or updated when
processing packets from multiple, but not all, flows.

Thinking about each piece of NF-created state in terms of its
association with flows provides a natural way for reasoning about
how a control application should move/copy/share state. For exam-
ple, a control application that routes all flows destined for a hostH
to a specific NF instance can assume the instance will need all per-
flow state for flows destined for H and all multi-flow state which
stores information related to one or more flows destined for H .
This applies even in the case of seemingly non-flow-based state:
e.g., the fingerprint table in a redundancy eliminator is classified
as all-flows state, and cache entries in a Squid caching proxy are
multi-flow state that can be referenced by client IP (to refer to
cached objects actively being served), server IP, or URL.

Prior works on NF state management either draw no association
between state and flows [25], or they do not distinguish between
multi-flow and all-flows state [34]. This makes it difficult to know
the exact set of state to move, copy, or share when flows are re-
routed. For example, in the Squid caching proxy, cached web ob-
jects (multi-flow states) that are currently being sent to clients must
be copied to avoid disrupting these in-progress connections, while
other cached objects may or may not be copied depending on the
SLAs a control application needs to satisfy (e.g., high cache hit
ratio vs. fast scale out).5 We quantitatively show the benefits of
granular, flow-based control in §8.1.2.

We also discovered during our examination of NFs that they tend
to: (1) allocate state at many points during flow processing—e.g.,
when the Bro IDS is monitoring for malware in HTTP sessions, it
allocates state when the connection starts, as protocols are identi-
fied, and as HTTP reply data is received—and (2) organize/label
state in many different ways—e.g., the Squid caching proxy orga-
nizes some state based on a traditional 5-tuple and some state based
on a URL. Prior works [34] assume NFs allocate and organize state
in particular ways (e.g., allocate state once for each flow), which
means NFs may need significant changes to use these frameworks.

4.2 API to Export/Import State
We leverage our taxonomy to design a simple API for NFs to

export and import pieces of state; it requires minimal NF modifica-
tions. In particular, we leverage the well defined notion of a flow
(e.g., TCP or UDP connection) and our definition of state scope to
allow a controller to specify exactly which state to export or import.
State gathering and merging is delegated to NFs which perform
these tasks within the context of their existing internal architecture.

For each scope we provide three simple functions: get, put, and
delete. More formally, the functions are:

multimap<flowid,chunk> getPerflow(filter)
void putPerflow(multimap<flowid,chunk>)
void delPerflow(list<flowid>)
multimap<flowid,chunk> getMultiflow(filter)
void putMultiflow(multimap<flowid,chunk>)
void delMultiflow(list<flowid>)
list<chunk> getAllflows()
void putAllflows(list<chunk>)

A filter is a dictionary specifying values for one or more stan-
dard packet header fields (e.g., source/destination IP, network pro-
tocol, source/destination ports), similar to match criteria in Open-
Flow [29].6 This defines the set of flows whose state to get/put/del-

5NF-specific state sharing features, such as inter-cache protocols
in Squid, can also be leveraged, but they do not avoid the need for
per-flow state, and some multi-flow state, to be moved or copied.
6Some NFs may also support extended filters and flowids that in-
clude header fields for other common protocols: e.g., the Squid
caching proxy may include the HTTP URL.

ete. Header fields not specified are assumed to be wildcards. The
getAllflows and putAllflows functions do not contain a
filter because they refer to state that applies to all flows. Similarly,
there is no delAllflows function because all-flows state is al-
ways relevant regardless of the traffic an NF is processing.

A chunk of state consists of one or more related internal NF
structures, or objects, associated with the same flow (or set of flows):
e.g., a chunk of per-flow state for the Bro IDS contains a Conn ob-
ject and all per-flow objects it references (Figure 1). A correspond-
ing flowid is provided for each chunk of per-flow and multi-flow
state. The flowid is a dictionary of header fields and values that
describe the exact flow (e.g., TCP or UDP connection) or set of
flows (e.g., host or subnet) to which the state pertains. For exam-
ple, a per-flow chunk from the Bro IDS has a flowid that includes
the source and destination IPs, ports, and transport protocol, while
a multi-flow chunk containing a counter for an end-host has a flowid
that only includes the host’s IP.

When getPerflow or getMultiflow is called, the NF is
responsible for identifying and providing all per-flow or multi-flow
state that pertains to flows matching the filter. Crucially, only fields
relevant to the state are matched against the filter; other fields in
the filter are ignored: e.g., in the Bro IDS, only the IP fields in a
filter will be considered when determining which end-host connec-
tion counters to return. This API design avoids the need for a con-
trol application to be aware of the way an NF internally organizes
state. Additionally, by identifying and exporting state on-demand,
we avoid the need to change an NF’s architecture to conform to a
specific memory allocation strategy [34].

The NF is also responsible for replacing or combining existing
state for a given flow (or set of flows) with state provided in an invo-
cation of putPerflow (or putMultiflow). Common methods
of combining state include adding or averaging values (for coun-
ters), selecting the greatest or least value (for timestamps), and cal-
culating the union or intersection of sets (for lists of addresses or
ports). State merging must be implemented by individual NFs be-
cause the diversity of internal state structures makes it prohibitive
to provide a generic solution.

4.3 API to Observe/Prevent State Updates
The API described above does not interpose on internal state cre-

ations and accesses. However, there are times when we need to
prevent an NF instance from updating state—e.g., while state is be-
ing moved—or we want to know updates are happening—e.g., to
determine when to copy state.

OpenNF uses two mechanisms to prevent and observe updates:
(1) having NFs generate packet-received events for certain packets—
the controller tells the NF which subset of packets should trigger
events—and (2) controlling how NFs should act on the packets that
generate events—process, buffer, or drop them.

Specifically, we add the following functions to the API:
void enableEvents(filter,action)
void disableEvents(filter)

The filter defines the set of packets that should trigger events; it
has the same format as described in §4.2. The action may be
process, buffer, or drop; any buffered packets are released to
the NF for processing when events are disabled. The events them-
selves contain a copy of the triggering packet.

In the next section, we discuss how events are used to realize
important guarantees on state and state operations.

5. NORTHBOUND API
OpenNF’s northbound API allows control applications to flex-

ibly move, copy, or share subsets of state between NF instances,

(a) Off-path NF (b) On-path NF

Figure 4: Assumed topologies for move operation

and to request important guarantees, including loss-freedom, order-
preservation, and various forms of consistency. This API design ap-
propriately balances OpenNF’s generality and complexity: Not of-
fering some guarantees would reduce complexity but make OpenNF
insufficient for use with many NFs—e.g., a redundancy elimina-
tor [16] will incorrectly reconstruct packets when re-ordering oc-
curs (§5.1.2). Similarly, always enforcing the strongest guarantees
would simplify the API but make OpenNF insufficient for scenar-
ios with tight SLAs—e.g., a loss-free and order-preserving move is
unnecessary for a NAT, and the latency increase imposed by these
guarantees (§8.1) could cripple VoIP sessions.

The main challenge in supporting this API is designing suit-
able, low-overhead mechanisms to provide the necessary guaran-
tees. In this section, we show how we use events together with fine-
grained control over network forwarding to overcome this chal-
lenge. We first describe how we provide a loss-free and order-pre-
serving move operation (we provide a formal proof of these guar-
antees in our technical report [23]), and what optimizations we use
to improve efficiency. We then describe how OpenNF’s copy and
share operations provide eventual, strong, or strict consistency
for state required by multiple NF instances.

5.1 Move Operation
OpenNF’s move operation transfers both the state and input (i.e.,

traffic) for a set of flows from one NF instance (srcInst) to another
(dstInst). Its syntax is:
move(srcInst,dstInst,filter,scope,properties)

As in the southbound API, the set of flows is defined by filter; a
single flow is the finest granularity at which a move can occur. The
scope argument specifies which class(es) of state (per-flow and/or
multi-flow) to move, and the properties argument defines whether
the move should be loss-free (§5.1.1) and order-preserving (§5.1.2).

In what follows, sw denotes the last SDN switch through which
all packets matching filter will pass before diverging on their paths
to reach srcInst and dstInst (Figure 4). We assume the SDN con-
troller keeps track of sw. We also assume that loss and reordering
does not occur on the network path from sw to srcInst; our techni-
cal report [23] includes a stronger version of order-preserving move
(§5.1.2) that does not rely on this assumption.

For a move without guarantees, the controller (1) calls getPer-
flow and delPerflow on srcInst, (2) calls putPerflow on
dstInst, and (3) updates the flow table on sw to forward the affected
flows to dstInst. To move multi-flow state as well (or instead), the
analogous multi-flow functions are also (instead) called. For the
rest of this section, we assume the scope is per-flow, but our ideas
can easily be extended to multi-flow state.

With the above sequence of steps, packets corresponding to the
state being moved may continue to arrive at srcInst from the start of
getPerflow until after the forwarding change at sw takes effect
and all packets in transit to srcInst have arrived and been read from
the NIC and operating system buffers. A simple approach of drop-
ping these packets when srcInst receives them [34] prevents srcInst
from establishing new state for the flows or failing due to missing
state. But this is only acceptable in scenarios where an application
is willing to tolerate the effects of skipped processing: e.g., scan

detection in the Bro IDS will still function if some TCP packets are
not processed, but it may take longer to detect scans. Alternatively,
an NF may be on the forwarding path between flow endpoints (Fig-
ure 4(b)), e.g., a Squid caching proxy, in which case dropped TCP
packets will be retransmitted, although throughput will be reduced.

5.1.1 Loss-free Move
In some situations loss is problematic: e.g., the Bro IDS’s mal-

ware detection script will compute incorrect md5sums and fail to
detect malicious content if part of an HTTP reply is missing; we
quantify this in our technical report [23]. Thus, we need a move
operation that satisfies the following property:

Loss-free: All state updates resulting from packet process-
ing should be reflected at the destination instance, and all
packets the switch receives should be processed.

The first half of this property is important for ensuring all infor-
mation pertaining to a flow (or group of flows) is available at the
instance where subsequent packet processing for the flow(s) will
occur, and that information is not left, or discarded, at the original
instance. The latter half ensures an NF does not miss gathering
important information about a flow.

In an attempt to be loss-free, Split/Merge halts, and buffers at
the controller, all traffic arriving at sw while migrating per-flow
state [34]. However, when traffic is halted, packets may already be
in-transit to srcInst, or sitting in NIC or operating system queues at
srcInst. Split/Merge drops these packets when they (arrive and) are
dequeued at srcInst. This ensures that srcInst does not attempt to
update (or create new) per-flow state after the transfer of state has
started, guaranteeing the first half of our loss-free property. How-
ever, dropping packets at srcInst violates the latter half. While we
could modify Split/Merge to delay state transfer until packets have
drained from the network and local queues, it is impossible to know
how long to wait, and extra waiting increases the delay imposed on
packets buffered at the controller.

SDN consistency abstractions [27, 35] are also insufficient for
guaranteeing loss-freedom. They can guarantee packets will be for-
warded to srcInst or dstInst, but they do not provide any guarantees
on what happens to the packets once they arrive at the NF instances.
If srcInst processes the packets after state transfer has started, then
the state installed at dstInst will not include some updates; if srcInst
drops the packets instead, then some state updates will never occur.

What then should we do to ensure loss-freedom in the face of
packets that are in-transit (or buffered) when the move operation
starts? In OpenNF, we leverage events raised by NFs. Specifically,
the controller calls enableEvents(filter,drop) on srcInst be-
fore calling getPerflow. This causes srcInst to raise an event
for each received packet matching filter. The events are buffered
at the controller until the putPerflow call on dstInst completes.
Then, the packet in each buffered event is sent to sw to be forwarded
to dstInst; any events arriving at the controller after the buffer has
been emptied are handled immediately in the same way. Lastly, the
flow table on sw is updated to forward the affected flows to dstInst.

Calling disableEvents(filter) on srcInst is unnecessary, be-
cause packets matching filter will eventually stop arriving at srcInst
and no more events will be generated. Nonetheless, to eliminate
the need for srcInst to check if it should raised events for incoming
packets, the controller can issue this call after several minutes—i.e.,
after all packets matching filter have likely arrived or timed out.

5.1.2 Order-preserving Move
In addition to loss, NFs can be negatively affected by re-ordering.

For example, the “weird activity” policy script included with the

Figure 5: Order-preserving problem in Split/Merge

Bro IDS will raise a false “SYN_inside_connection” alert if the IDS
receives and processes SYN and data packets in a different order
than they were actually exchanged by the connection endpoints.
Another example is a redundancy elimination decoder [16] where
an encoded packet arriving before the data packet w.r.t. which it
was encoded will be silently dropped; this can cause the decoder’s
data store to rapidly become out of synch with the encoders.

Thus, we need a move operation that satisfies the following:

Order-preserving: All packets should be processed in the
order they were forwarded to the NF instances by the switch.

This property applies within one direction of a flow (e.g., process
SYN before ACK), across both directions of a flow7 (e.g., pro-
cess SYN before SYN+ACK), and, for moves including multi-flow
state, across flows (e.g., process an FTP get command before the
SYN for the new transfer connection).

Unfortunately, neither Split/Merge nor the loss-free move de-
scribed above are order-preserving. The basic problem in both sys-
tems is a race between flushing packets buffered at the controller
and changing the flow table at sw to forward all packets to dstInst.
Figure 5 illustrates the problem in the context of Split/Merge. Even
if all buffered packets (pi and pi+1) are flushed before the con-
troller requests a forwarding table update at sw, another packet
(pi+2) may arrive at sw and be forwarded to the controller before
sw applies the forwarding table update. Once the update is applied,
swmay start forwarding packets (pi+3) to dstInst, but the controller
may not have received the packet pi+2 from sw. Thus, the packet
pi+2 will be forwarded to dstInst after a later packet of the flow
(pi+3) has already been forwarded to dstInst.

We use a clever combination of events and a two-phase forward-
ing state update to guarantee a loss-free and order-preserving move.
Figure 6 has psuedo-code for the steps.

We start with the steps used for a loss-free move, through call-
ing putPerflow on dstInst. After putPerflow completes we
extract the packet from each buffered event, mark it with a special
“do-not-buffer” flag, and send it to sw to be forwarded to dstInst;
any events arriving at the controller after the buffer has been emp-
tied are handled immediately in the same way. Then, we call ena-
bleEvents(filter,buffer) on dstInst, so that any packets for-
warded directly to dstInst by swwill be buffered; note that the pack-
ets marked with “do-not-buffer” (discussed above) are not buffered.

Next, we perform the two phase forwarding state update. First,
we update the forwarding entry for filter on sw to forward match-
ing packets to both srcInst and the controller.8 The controller waits

7If packets in opposite directions do not traverse a common switch
before reaching the NF—e.g., a NAT is placed between two
switches—then we lack a vantage point to know the total order of
packets across directions, and we cannot guarantee such an order
unless it is enforced by a flow’s end-points—e.g., a server will not
send SYN+ACK until the NAT forwards the SYN from a client.
8We use existing SDN consistency mechanisms [27, 35] to ensure
the update is atomic and no packets are lost.

1 eventReceivedFromSrcInst (event)
2 if shouldBufferEvents then
3 eventQueue.enqueue (event.packet)
4 else
5 sw.forward (event.packet, dstInst)

6 packetReceivedFromSw (packet)
7 if lastPacketFromSw== null then
8 signal (GOT_FIRST_PKT_FROM_SW) // wait @ 24
9 lastPacketFromSw← packet

10 eventReceivedFromDstInst (event)
11 if event.packet == lastPacketFromSw then
12 signal (DST_PROCESSED_LAST_PKT) // wait @ 26

13 moveLossfreeOrderpreserve (srcInst, dstInst, filter)
14 shouldBufferEvents← true
15 srcInst.enableEvents (filter, DROP)
16 chunks← srcInst.getPerflow (filter)
17 srcInst.delPerflow (chunks.keys)
18 dstInst.putPerflow (chunks)
19 foreach event in eventQueue do
20 sw.forward (event.packet, dstInst)
21 shouldBufferEvents← false
22 dstInst.enableEvents (filter, BUFFER)
23 sw.install (filter, {srcInst, ctrl}, LOW_PRIORITY)
24 wait (GOT_FIRST_PKT_FROM_SW)
25 sw.install (filter, dstInst, HIGH_PRIORITY)
26 wait (DST_PROCESSED_LAST_PKT)
27 dstInst.disableEvents (filter)

Figure 6: Pseudo-code for loss-free and order-preserving move

for at least one packet from sw, and always stores the most recent
packet it receives. Second, we install a higher priority forward-
ing entry for filter on sw to forward matching packets to dstInst.
Through this two phase update, the controller can become aware of
the last packet sent to srcInst.9

Finally, we need to ensure that dstInst processes all packets for-
warded to srcInst before processing any packets that sw directly
forwards to dstInst. We achieve this with the following sequence
of steps: (1) wait for an event from srcInst for the last packet sent
to srcInst—this is the packet we stored during the two phase for-
warding state update; (2) send the packet contained in the event
to sw to forward to dstInst; (3) wait for an event from dstInst for
the packet; and (4) call disableEvents(filter) on dstInst to re-
lease any packets that had already been sent to dstInst by sw and
were buffered at dstInst.

In our technical report [23], we formally prove that this sequence
of steps is loss-free and order-preserving.

The additional waiting required for order-preserving does come
at a performance cost (we quantify this in §8.1.1). Thus, we offer
applications three versions of move (loss-free and order-preserving,
loss-free only, and no guarantees) so they can select the most effi-
cient version that satisfies their requirements.

5.1.3 Optimizations
Supporting the above guarantees may impose additional laten-

cies on packets arriving during the move operation. In particular,
when a move involves multiple flows, we halt the processing of
those flows’ packets from the time enableEvents is called until
after putPerflow completes.

One way to reduce these latencies (and reduce drops in the case
of a move without guarantees) is to reduce the total time taken to
complete the move operation. To achieve this, an application could

9The controller can check the counters on the first flow entry in sw
against the number of packets it has received from sw to ensure the
packet it currently has stored is in fact the last packet.

issue multiple pipelined moves that each cover a smaller portion of
the flow space. However, this requires more forwarding rules in sw
and requires the application to know how flows are divided among
the flow space. Instead, we can leverage the fact that getPer-
flow and putPerflow operations can be, at least partially, ex-
ecuted in parallel. Rather than returning all requested states as a
single result, the srcInst can return each chunk of per-flow state im-
mediately, and the controller can immediately call putPerflow
with just that chunk. The forwarding table update(s) at sw occurs
after the getPerflow and all putPerflow calls have returned.

The additional latency imposed on redirected packets can be fur-
ther reduced by following an early release and late locking strat-
egy. For late-locking, the controller calls getPerflow on srcInst
with a special flag instructing srcInst to enable events for each flow
just before the corresponding per-flow state is prepared for export
(avoiding the need to call enableEvents for all flows before-
hand). Also, once putPerflow for a specific chunk returns, the
controller can release any events pertaining to that chunk.10

The parallelizing optimization can be applied to any version of
move, and the early-release optimization can be applied to a move
of either per-flow or multi-flow state, but not a move involving both.

5.2 Copy and Share Operations
OpenNF’s copy and share operations address applications’

need for the same state to be readable and/or updateable at multiple
NF instances and, potentially, for updates made at one instance to
be reflected elsewhere. For example, in a failure recovery applica-
tion (§2) a backup NF instance needs to keep an updated copy of all
per-/multi-/all-flows state. Similarly, a load balancing application
that distributes an end-host’s flows among multiple IDS instances
needs updates to the host connection counter at one instance to be
reflected at the other instances to effectively detect port scans.

In particular, copy can be used when state consistency is not
required or eventual consistency is desired, while share can be
used when strong or strict consistency is desired. Note that eventual
consistency is akin to extending our loss-free property to multiple
copies of state, while strict consistency is akin to extending both our
loss-free and order-preserving properties to multiple NF instances.

5.2.1 Copy Operation
OpenNF’s copy operation clones state from one NF instance

(srcInst) to another (dstInst). Its syntax is:
copy(srcInst,dstInst,filter,scope)

The filter argument specifies the set of flows whose state to copy,
while the scope argument specifies which class(es) of state (per-
flow, multi-flow, and/or all-flows) to copy.

The copy operation is implemented using the get and put calls
from the southbound API (§4.2). No change in forwarding state oc-
curs as part of copy because state is not deleted from srcInst, allow-
ing srcInst to continue processing traffic and updating its copy of
state. It is up to control applications to separately initiate a change
in forwarding state where the situation warrants (e.g., by directly
interacting with the SDN controller, or calling move for some other
class of state).

Eventual consistency can be achieved by occasionally re-copying
the same set of state. As described in §4.2, an NF will automatically
replace or combine the new and existing copies when putPer-
flow, putMultiflow, and putAllflows are called. Since
there are many possible ways to decide when state should be re-
copied—based on time, NF output, updates to NF state, or other

10Although state chunks get transferred and events get processed via
the controller in our current system, they can also happen peer to
peer.

external factors—we leave it to applications to issue subsequent
copy calls. As a convenience, we do provide a function for control
applications to become aware of state updates:

void notify(filter,inst,enable,callback)

When invoked with enable set to true, the controller calls ena-
bleEvents(filter, process) on NF instance inst, otherwise it
calls disableEvents(filter) on inst. For each event the con-
troller receives, it invokes the provided callback function.

5.2.2 Share Operation
Strong and strict consistency are more difficult to achieve be-

cause state reads and updates must occur at each NF instance in
the same global order. For strict consistency this global order must
match the order in which packets are received by sw. For strong
consistency the global order may differ from the order in which
packets were received by sw, but updates for packets received by a
specific NF instance must occur in the global order in the order the
instance received the packets.

Both cases require synchronizing reads/updates across all NF in-
stances (list<inst>) that are using a given piece of state. OpenNF’s
share operation provides this:

void share(list<inst>,filter,scope,consistency)

The filter and scope arguments are the same as above, while con-
sistency is set to strong or strict.

Events can again be used to keep state strongly consistent. The
controller calls enableEvents(filter,drop) on each instance,
followed by a sequence of get and put calls to initially synchronize
their state. When events arrive at the controller, they are placed in
a FIFO queue labeled with the flowid for the flow group to which
they pertain; flows are grouped based on the coarsest granularity of
state being shared (e.g., per-host or per-prefix).

For each queue, one event at a time is dequeued, and the packet
it contains is marked with a “do-not-drop” flag and forwarded to
the originating NF instance. The NF instance processes the packet
and raises an event, which signals to the controller that all state
reads/updates at the NF are complete. The controller then calls
getMultiflow (or getPerflow,getAllflows) on the orig-
inating NF instance, followed by putMultiflow (or putPer-
flow, putAllflows) on all other instances in list<inst>.
Then, the next event is dequeued and the process repeated.

Since events from different NFs may arrive at the controller in
a different order than packets were received by sw, we require a
slightly different approach for strict consistency. The controller
must receive packets directly from the switch to know the global
order in which packets should be processed. We therefore update
all relevant forwarding entries in sw—i.e., entries that both cover
a portion of the flow space covered by filter and forward to an in-
stance in list<inst>—to forward to the controller instead. We
then employ the same methodology as above, except we invoke
enableEvents with action set to process and queue packets
received from sw rather than receiving packets via events.

It is up to control applications to determine the appropriate con-
sistency requirements for the situation, recognizing that strong or
strict consistency comes at a significant performance cost (§8.1.1).
Applications should also consider which multi-/all-flows state is re-
quired for accurate packet processing, and, generally, invoke copy
or share operations on this state prior to moving per-flow state.

6. CONTROL APPLICATIONS
Using OpenNF, we have written control applications for several

of the scenarios described in §2. The applications are designed for
the environment shown in Figure 7. In all applications, we use the

Figure 7: The Bro IDS runs on VMs in both a local data center and a
public cloud. An SDN switch in the local data center receives a copy of
all traffic from the Internet gateway for the local network and routes
it to an IDS instance. The local IDS instances monitor for port scans
and HTTP requests from outdated web browsers. The cloud instances
additionally check for malware in HTTP replies.

1 movePrefix (prefix, oldInst, newInst)
2 copy (oldInst, newInst, {nw_src: prefix}, MULTI)
3 move (oldInst, newInst, {nw_src: prefix}, PER, LOSSFREE)
4 while true do
5 sleep (60)
6 copy (oldInst, newInst, {nw_src: prefix}, MULTI)
7 copy (newInst, oldInst, {nw_src: prefix}, MULTI)

Figure 8: Load balanced network monitoring application

Bro IDS, but different applications place different requirements on
both the granularities of state operations and the guarantees needed;
despite these differences, the applications are relatively simple to
implement. We describe them below.
High performance network monitoring. The first application
(Figure 8) monitors the CPU load on the local Bro IDS instances
and calculates a new distribution of local network prefixes when
load becomes imbalanced. If a subnet is assigned to a different
IDS instance, the movePrefix function is invoked. This func-
tion calls copy to clone the multi-flow state associated with scan
detection, followed by move to perform a loss-free transfer of the
per-flow state for all active flows in the subnet.

We copy, rather than move, multi-flow state because the coun-
ters for port scan detection are maintained on the basis of ⟨external
IP, destination port⟩ pairs, and connections may exist between a
single external host and hosts in multiple local subnets. An order-
preserving move is unnecessary because re-ordering would only
potentially result in the scan detector failing to count some con-
nection attempts, and, in this application, we are willing to tolerate
moderate delay in scan detection. However, to avoid missing scans
completely, we maintain eventual consistency of multi-flow state
by invoking copy in both directions every 60 seconds.
Fast failure recovery. The second application (Figure 9) maintains
a hot standby for each local IDS instance with an eventually consis-
tent copy of all per-flow and multi-flow state. The initStandby
function is invoked to initialize a standby (stbyInst) for an IDS
instance (normInst). It notes which normInst the standby
is associated with and requests notifications from normInst for
packets whose corresponding state updates are important for scan
detection and browser identification—TCP SYN, SYN+ACK, and
RST packets and HTTP packets sent from a local client to an exter-
nal server. The copy is made eventually consistent when these key
packets are processed, rather than recopying state for every packet.
In particular, events are raised by normInst for these packets and
the controller invokes the updateStandby function. This func-
tion copies the appropriate per-flow state from normInst to the
corresponding stbyInst. When a failure occurs, the forwarding
table in the switch is updated to forward the appropriate prefixes to
stbyInst instead of normInst (code not shown).
Selectively invoking advanced remote processing. The third ap-
plication (code not shown) monitors for outdated browser alerts
from each local Bro IDS instance, and uses the cloud to check for
malware in connections triggering such alerts.

1 standbys← {}
2 initStandby (normInst, stbyInst)
3 standbys[normInst]← stbyInst
4 notify ({nw_proto: TCP, tcp_flags: SYN}, normInst, true,

updateStandby)
5 notify ({nw_proto: TCP, tcp_flags: RST}, normInst, true,

updateStandby)
6 notify ({nw_src: 10.0.0.0/8, nw_proto: TCP, tp_dst: 80},

normInst, true, updateStandby)
7 updateStandby (event)
8 normInst← event.src
9 stbyInst← standbys[normInst]
10 filter← extractFlowId (event.pkt)
11 copy (normInst, stbyInst, filter, PER)

Figure 9: Fast failure recovery application

When a local IDS instance (locInst) raises an alert for a spe-
cific flow (flowid), the application calls move(locInst,

cloudInst,flowid,perflow,lossfree) to transfer the
flow’s per-flow state and forward the flow’s packets to the IDS in-
stance running in the cloud. The move must be loss-free to ensure
all data packets contained in the HTTP reply are received and in-
cluded in the md5sum that is compared against a malware database,
otherwise malware may go undetected. Multi-flow state in this
case, i.e., the set of scan counters at the local IDS instance, does
not matter for the cloud instance’s actions (i.e., malware signature
detection), so it is not moved or copied.

7. IMPLEMENTATION
Our OpenNF prototype consists of a controller that implements

our northbound API (§5) and several modified NFs—Bro, PRADS,
Squid, and iptables–that implement our southbound API (§4).

The OpenNF controller is written as a module atop Floodlight [6]
(≈4.7K lines of Java code). The controller listens for connections
from NFs and launches two threads—for handling state operations
and events—for each NF. The controller and NFs exchange JSON
messages to invoke southbound functions, provide function results,
and send events. Packets contained in events are forwarded to NFs
by issuing OpenFlow packet-out control messages [29] to the SDN
switch (sw); flow-mod messages are issued for route updates. The
interface with control applications is event-driven.

We implemented NF-specific handlers for each southbound API
functions. The NFs use a shared library for communicating with
the controller. We discuss the NF-specific modifications below, and
evaluate the extent of these modifications in §8.2.2.
Bro IDS [31] performs a variety of security analyses defined by
policy scripts. The get/putPerflow handlers for Bro lookup
(using linear search) and insert Connection objects into internal
hash tables for TCP, UDP, and ICMP connections. The key chal-
lenge is serializing these Connection objects and the many other
objects (>100 classes) they refer to; we wrote custom serialization
functions for each of these objects using Boost [2]. We also added a
moved flag to some of these classes—to prevent Bro from logging
errors during delPerflow—and a mutex to the Connection
class—to prevent Bro from modifying the objects associated with
a flow while they are being serialized. Lastly, we added library
calls to Bro’s main packet processing loop to raise events when a
received packet matches a filter on which events are enabled.
PRADS asset monitor [13] identifies and logs basic information
about active hosts and the services they are running. The get/put-
Perflow and get/putMultiflow handlers for PRADS lookup
and insert connection and asset structures, which store flow
meta data and end-host operating system and service details, re-
spectively, in the appropriate hash tables. If an asset object pro-

vided in a putMultiflow call is associated with the same end-
host as an asset object already in the hash table, then the handler
merges the contents of the two objects. The get/putAllflows
handlers copy and merge, respectively, a global statistics structure.
Squid caching proxy [15] reduces bandwidth consumption by
caching and serving web objects requested by clients. The per-
flow state in Squid includes sockets, making it challenging to write
get/putPerflow handlers. Fortunately, we are able to borrow
code from CRIU [5] to (de)serialize sockets for active client and
server connections. As with Bro, we wrote custom serialization
functions, using Boost [2], for all objects associated with each con-
nection. The get/put/delMultiflow handlers capture, insert,
and remove entries from Squid’s in-memory cache; entries are
(de)serialized individually to allow for fine-grained state control.
iptables [9] is a firewall and network address translator integrated
into the Linux kernel. The kernel tracks the 5-tuple, TCP state,
security marks, etc. for all active flows; this state is read/written by
iptables. We wrote an agent that uses libnetfilter_conntrack [10] to
capture and insert this state when get/putPerflow are invoked.
There is no multi-flow or all-flows state in iptables.

8. EVALUATION
Our evaluation of OpenNF answers the following key questions:

• Can state be moved, copied, and shared efficiently even when
guarantees on state or state operations are requested by appli-
cations? What benefits do applications see from the ability
to move, copy, or share state at varying granularities?

• How efficiently can NFs export and import state, and do these
operations impact NF performance? How much must NFs be
modified to support the southbound API?

• How is OpenNF’s efficiency impacted by the scale of an NF
deployment?

• To what extent do existing NF control planes hinder the abil-
ity to satisfy a combination of high-level objectives?

The testbed we used for our evaluation consists of an OpenFlow-
enabled HP ProCurve 6600 switch and four mid-range servers
(Quad-core Intel Xeon 2.8GHz, 8GB, 2 x 1Gbps NICs) that run
the OpenNF controller and modified NFs and generate traffic. We
use a combination of replayed university-to-cloud [24] and data-
center [19] network traffic traces, along with synthetic workloads.

8.1 Northbound Operations

8.1.1 Efficiency with Guarantees
We first evaluate the efficiency of our northbound operations

when guarantees are requested on state or state operations. We use
two PRADS asset monitor instances (PRADS1 and PRADS2)
and replay our university-to-cloud trace at 2500 packets/second.
We initially send all traffic to PRADS1. Once it has created
state for 500 flows (≈80K packets have been processed), we move
all flows and their per-flow state, or copy all multi-flow state, to
PRADS2; we evaluate finer granularity operations in §8.1.2. To
evaluate sharing with strong consistency, we instead call share
(for all multi-flow state) at the beginning of the experiment, and
then replay our traffic trace. During these operations, we measure
the number of dropped packets, the added latency for packets con-
tained in events from PRADS1 or buffered at PRADS2, and the
total operation time (for move and copy only). Although the spe-
cific values for these metrics vary based on the NF, scope, filter
granularity (i.e., number of flows/states affected), and packet rate,
the high-level takeaways still apply.

 0

 100

 200

 300

 400

 500

T
o
ta

l T
im

e
 (

m
s)

NG
NG PL
LF PL

LF PL+ER
LF+OP PL+ER

(a) Total move time

 0

 50

 100

 150

 200

 250

P
e

r-
P

a
ck

e
t

L
a

te
n

cy
In

cr
e

a
se

 (
m

s)

 Average Maximum

(b) Per-packet latency increase

Figure 10: Efficiency of movewith no guarantees (NG), loss-free (LF),
and loss-free and order-preserving (LF+OP) with and without paral-
lelizing (PL) and early-release (ER) optimizations; traffic rate is 2500
packets/sec; times are averaged over 5 runs and the error bars show
95% confidence intervals

Move. Figure 10 shows our results for move with varying guaran-
tees and optimizations.

Amove without any guarantees or optimizations (NG) completes
in 193ms. This time is primarily dictated by the time required for
the NF to export (89ms) and import (54ms) state; we evaluate the
southbound operations in detail in §8.2. The remaining 50ms is
spent processing control messages from the NFs and performing
the route update. Our parallelizing optimization (§5.1.3) can reduce
the total time for the move operation (NG PL) to 134ms by export-
ing and importing state (mostly) in parallel. However, even this
faster version of move comes at a cost: 225 packets are dropped!
Figure 11(a) shows how the number of drops changes as a function
of the packet rate and the number of flows whose state is moved.
We observe a linear increase in the number of drops as the packet
rate increases, because more packets will arrive in the time window
between the start of move and the routing update taking effect.

A parallelized loss-free move (LF PL) avoids drops by raising
events. However, the 410 packets contained in events may each
incur up to 185ms of additional latency. (Packets processed by
PRADS1 before the move or PRADS2 after the move do not
incur additional latency.) Additionally, the total time for the move
operation increases by 62% (84ms). Figure 11(b) shows how the
total move time scales with the number of flows affected and the
packet rate. We observe that the total time for a parallelized loss-
free move increases more substantially at higher packet rates. This
is because more events are raised, and the rate at which the packets
contained in these events can be forwarded to PRADS2 becomes
limited by the packet-out rate our OpenFlow switch can sustain.
The average and maximum per-packet latency increase for packets
contained in events also grows with packet rate for the same reason:
e.g., the average (maximum) per-packet latency increase is 465ms
(573ms) for a parallelized loss-free move of 500 flows at a packet
rate of 10K packets/sec (graph not shown).

While we cannot decrease the total move time without using
more rules in SDN switches, our early-release optimization (§5.1.3)
can decrease the additional packet latency. At a rate of 2500 pack-
ets/sec, the average per-packet latency overhead for the 326 packets
contained in events drops to 50ms (LF PL+ER in Figure 10(b)), a
63% decrease compared to LF PL; at 10K packets/sec this overhead
drops to 201ms, a 99% decrease. Forwarding packets in events di-

 0

 500

 1000

 1500

 0 2.5 5 7.5 10

#
 D

ro
p

p
e

d
 P

a
ck

e
ts

Packet Rate (1000s of pkts/s)

250 flows
500 flows

1000 flows

(a) Packet drops during a paral-
lelized movewith no guarantees

 0

 200

 400

 600

 800

 0 2.5 5 7.5 10

M
o

ve
 T

im
e

 (
m

s)

Packet Rate (1000s of pkts/s)

250 flows
500 flows

1000 flows

(b) Total time for a parallelized
loss-free move

Figure 11: Impact of packet rate and number of per-flows states on
parallelized move with and without a loss-free guarantee

rectly to PRADS2, rather than sending packet-out commands to
the OpenFlow switch, can likely reduce this latency even further.

In addition to added packet latency, a loss-free move also intro-
duces re-ordering: 657 packets (335 from events + 322 received
by PRADS2 while packets from events are still arriving) are pro-
cessed out-of-order with a parallelized loss-free move. However,
this re-ordering can be eliminated with an order-preserving move.

A fully optimized loss-free and order-preserving move (LF+OP
PL+ER in Figure 10) takes 96% (208ms) longer than a fully opti-
mized loss-free-only move (LF PL+ER) due to the additional steps
involved. Furthermore, packets buffered at PRADS2 (100 pack-
ets on average), while waiting for all packets originally sent to
PRADS1 to arrive and be processed, each incur up to 96ms of
additional latency (7% more than LF PL+ER). Thus, applications
can benefit from choosing an alternative version of move if they do
not require both guarantees.
Copy and Share. A parallelized copy takes 111ms, with no packet
drops or added packet latency, as there is no interaction between
forwarding state update and this operation. In contrast, a share op-
eration that keeps multi-flow state strongly consistent adds at least
13ms of latency to every packet, with more latency incurred when a
packet must wait for the processing of an earlier packet to complete.
This latency stems from the need to call getMultiflow and
putMultiflow on PRADS1 and PRADS2, respectively, after
every packet is processed, because our events only provide hints as
to whether state changed but do not inform us if the state update
is significant. For example, every packet processed by the PRADS
asset monitor causes an update to the last seen timestamp in the
multi-flow state object for the source host, but only a handful of
special packets (e.g., TCP handshake and HTTP request packets)
result in interesting updates to the object. However, adding more
PRADS asset monitor instances (we experimented with up to 6 in-
stances) does not increase the latency because putMultiflow
calls can be issued in parallel. In general, it is difficult to efficiently
support strong consistency of state without more intrinsic support
from an NF, e.g., information on the significance of a state update.

8.1.2 Benefits of Granular Control
Although the move, copy, and share operations above en-

compassed all flows, the northbound API allows applications to in-
voke these operations at any granularity, down to as fine as a single
flow. We now examine the benefits this flexibility enables by using
the copy operation with the Squid caching proxy. We generate
100 requests (drawn from a logarithmic distribution) for 40 unique
URLs (objects are 0.5–4MB in size) from each of two clients at
a rate of 5 requests/second. Initially, all requests are forwarded
to Squid1. After 20 seconds, we launch a second Squid instance
(Squid2) and take one of three approaches to handling multi-flow
state: do nothing (ignore), invoke copy with the second client’s

Metric Ignore Copy Client Copy All
Hits on Squid1 117 117 117
Hits on Squid2 Crashed 39 50
MB of multi-flow state transfered 0 3.8 54.4

Table 1: Effects of different ways of handling multi-flow

 0

 200

 400

 600

 800

 1000

iptables PRADS Bro

g
e
tP

e
rf

lo
w

 T
im

e
 (

m
s)

250 flows
500 flows

1000 flows

(a) Time for getPerflow

 0

 25

 50

 75

 100

 125

 150

iptables PRADS Bro
p
u
tP

e
rf

lo
w

 T
im

e
 (

m
s)

250 flows
500 flows

1000 flows

(b) Time for putPerflow

Figure 12: Efficiency of state export and import

IP as the filter (copy client), or invoke copy for all flows (copy
all). Then, we update routing to forward all in-progress and future
requests from the second client to Squid2.

Table 1 shows the number of cache hits at each instance, and
the bytes of multi-flow state transfered, under the three different
approaches for handling multi-flow state. In all three approaches,
the number of cache hits for Squid1 are the same because all the
unique objects were cached before the copy. Ignoring multi-flow
state entirely causes the second instance to crash, as the objects
currently being served to the second client are not available. Copy-
ing multi-flow state for the second client’s flows avoids the crash,
but skipping the other multi-flow state results in a 28% lower cache
hit ratio at Squid2 compared to copying all multi-flow state (i.e,
the entire cache). However, the latter requires a 14.2x larger state
transfer. OpenNF’s APIs allows each application to make the ap-
propriate trade-offs in such respects when selecting the granularity
at which to invoke operations.

8.2 Southbound API
The time required to export and import state at NFs directly im-

pacts how quickly a move or copy operation completes and how
much additional packet latency is incurred when share is used.
We thus evaluate the efficiency of OpenNF’s southbound opera-
tions for several of the NFs we modified. We also examine how
much code was added to the NFs to support these operations.

8.2.1 API Call Processing
Figures 12(a) and 12(b) show the time required to complete a

getPerflow and putPerflow operation, respectively, as a func-
tion of the number of flows whose state is exported/imported. We
observe a linear increase in the execution time of getPerflow
and putPerflow as the number of per-flow state chunks increases.
The time required to (de)serialize each chunk of state and send it
to (receive it from) the controller accounts for the majority of the
execution time. Additionally, we observe that putPerflow com-
pletes at least 2x faster than getPerflow; this is due to deserial-
ization being faster than serialization. Overall, the processing time
is highest for Bro because of the size and complexity of the per-
flow state. The results for multi-flow state are qualitatively similar;
we exclude them for brevity. We are working on techniques for
further improving the efficiency of southbound API calls.

We also evaluate how NF performance is impacted by the ex-
ecution of southbound operations. In particular, we measure aver-
age per-packet processing latency (including queueing time) during
normal NF operation and when an NF is executing a getPerflow
call. Among the NFs, the PRADS asset monitor has the largest rel-
ative increase—5.8% (0.120ms vs. 0.127ms), while the Bro IDS

LOC added for Total Increase in
NF serialization LOC added NF code
Bro IDS 2.9K 3.3K 4.0%
PRADS asset monitor 0.1K 1.0K 9.8%
Squid caching proxy 5.0K 7.8K 4.2%
iptables 0.6K 1.0K n/a

Table 2: Additional NF code to implement OpenNF’s southbound API

 0
 250
 500
 750

 1000
 1250
 1500

 0 4 8 12 16 20

A
ve

ra
g
e
 t
im

e
 p

e
r

m
o
ve

 (
m

s)

Number of simultaneous moves

1000 flows
2000 flows
3000 flows

Figure 13: Performance of concurrent loss-free move operations

has the largest absolute increase—0.12ms (6.93ms vs. 7.06ms). In
both cases, the impact is minimal, implying that southbound oper-
ations do not significantly degrade NF performance.

8.2.2 NF Changes
To quantify the NF modifications required to support our south-

bound API, we counted the lines of code (LOC) that we added to
each NF (Table 2). The counts do not include the shared library
used with each NF for communication with the controller: ≈2.6K
LOC. At most, there is a 9.8% increase in LOC11, most of which is
state serialization code that could be automatically generated [3].
Thus, the NF changes required to support OpenNF are minimal.

8.3 Controller Scalability
Since the controller executes all northbound operations (§5), its

ability to scale is crucial. We thus measure the performance impact
of conducting simultaneous operations across many pairs of NFs.

To isolate the controller from the performance of individual NFs,
we use “dummy” NFs that replay traces of past state in response
to getPerflow, simply consume state for putPerflow, and
infinitely generate events during the lifetime of the experiment.
The traces we use are derived from actual state and events sent
by PRADS asset monitor while processing our cloud traffic trace.
All state and messages are small (202 bytes and 128 bytes, respec-
tively) for consistency, and to maximize the processing demand at
the controller and minimize the impact due to network transfer.

Figure 13 shows the average time per loss-free move operation
as a function of the number of simultaneous operations. The aver-
age time per operation increases linearly with both the number of
simultaneous operations and the number of flows affected.

We profiled our controller using HPROF [8] and found that threads
are busy reading from sockets most of the time. This bottleneck
can be overcome by optimizing the size of state transfers using
compression. We ran a simple experiment and observed that, for
a move operation for 500 flows, state can be compressed by 38%
improving execution latency from 110ms to 70ms.

8.4 Prior NF Control Planes
Lastly, we compare the ability to satisfy the objectives of an elas-

tic/load balanced network monitoring application using OpenNF
versus existing approaches [5, 18, 22, 26, 32] (§2.2). We start with
one Bro IDS instance (Bro1) and replay our data center traffic trace

11We do not calculate an increase for iptables because we wrote
a user-level tool to export/import state rather than modifying the
Linux kernel.

at a rate of 2500 packets/sec for 2 minutes. We then double the traf-
fic rate, add a second Bro IDS instance (Bro2), and rebalance all
HTTP flows to Bro2 (other flows remain at Bro1); 2 minutes later
we scale back down to one instance.
VM Replication. This approach takes a snapshot of the current
state in an existing NF instance (Bro1) and copies it to a new in-
stance (Bro2) as is. Since, VM replication does not do fine-grained
state migration, we expect it to have unneeded states (§2.2) in all
instances. We quantify unneeded state by comparing: a snapshot
of a VM running the Bro IDS that has not yet received any traf-
fic (base), a snapshot taken at the instant of scale up (full), and
snapshots of VMs that have only received either HTTP or other
traffic prior to scale up (HTTP and other). Base and full differed by
22MB. HTTP and other differed from base by 19MB and 4MB, re-
spectively; these numbers indicate the overhead imposed by the un-
needed state at the two Bro IDS instances. In contrast, the amount
of state moved by OpenNF (i.e., per-flow and multi-flow state for
all active HTTP flows) was 8.1MB. More crucial are the correctness
implications of unneeded state: we found 3173 and 716 incorrect
entries in conn.log at the two Bro IDS instances, arising because the
migrated HTTP (other) flows terminate abruptly at Bro1 (Bro2).
Scaling Without Re-balancing Active Flows. Control planes that
steer only new flows to new scaled out NF instances leave existing
flows to be handled by the same NF instance [22]. Thus, Bro1
continues to remain bottlenecked until some of the flows traversing
it complete. Likewise, in the case of scale in, NFs are unnecessarily
“held up” as long as flows are active. We observe that ≈9% of the
HTTP flows in our cloud trace were longer than 25 minutes; this
requires us to wait for more than 25 minutes before we can safely
terminate Bro2, otherwise we may miss detecting some attacks.

9. CONCLUSION
Fully extracting the combined benefits of NFV and SDN requires

a control plane to manage both network forwarding state and inter-
nal NF state. Without such joint control, applications will be forced
to make trade-offs among key objectives. Providing such control is
challenging because we must address race conditions and accom-
modate a variety of application objectives and NF types. We pre-
sented a novel control plane architecture called OpenNF that ad-
dresses these challenges through careful API design informed by
the ways NFs internally manage state today, and clever techniques
that ensure lock-step coordination of updates to NF and network
state. A thorough evaluation of OpenNF shows that: its joint con-
trol is generally efficient even when applications have certain strin-
gent requirements; OpenNF allows applications to make suitable
choices in meeting their objectives; and NFs need modest changes
and incur minimal overhead when supporting OpenNF primitives.

10. ACKNOWLEDGEMENTS
We would like to thank Vivek Pai (our shepherd), Katerina Ar-

gyraki, Tom Anderson, David Cheriton, Vimalkumar Jeyakumar,
Arvind Krishnamurthy, Ratul Mahajan, Jennifer Rexford, and the
anonymous reviewers for their insightful feedback. This work is
supported in part by a Wisconsin Alumni Research Foundation
(WARF)Accelerator Award and National Science Foundation grants
CNS-1302041, CNS-1314363 and CNS-1040757. Aaron Gember-
Jacobson is supported by an IBM PhD Fellowship.

11. REFERENCES
[1] Balance. http://inlab.de/balance.html.

[2] Boost C++ libraries. http://boost.org.

[3] C++ Middleware Writer. http://webebenezer.net.

[4] Check Point Software: ClusterXL.
http://checkpoint.com/products/clusterxl.

[5] CRIU: Checkpoint/Restore In Userspace. http://criu.org.

[6] Floodlight OpenFlow Controller.
http://floodlight.openflowhub.org.

[7] HAProxy: The reliable, high performance TCP/HTTP load balancer.
http://haproxy.1wt.eu/.

[8] HPROF. http://docs.oracle.com/javase/7/docs/technotes/
samples/hprof.html.

[9] iptables. http://netfilter.org/projects/iptables.

[10] libnetfilter_conntrack project.
http://netfilter.org/projects/libnetfilter_conntrack.

[11] nDPI. http://ntop.org/products/ndpi.

[12] Network functions virtualisation: Introductory white paper.
http://www.tid.es/es/Documents/NFV_White_PaperV2.pdf.

[13] Passive Real-time Asset Detection System.
http://prads.projects.linpro.no.

[14] RiverBed Steelhead Load Balancing.
http://riverbed.com/products-solutions/products/wan-
optimization-steelhead/wan-optimization-management.

[15] Squid. http://squid-cache.org.

[16] A. Anand, V. Sekar, and A. Akella. SmartRE: An architecture for coordinated
network-wide redundancy elimination. In SIGCOMM, 2009.

[17] B. Anwer, T. Benson, N. Feamster, D. Levin, and J. Rexford. A slick control
plane for network middleboxes. In HotSDN, 2013.

[18] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield. Xen and the art of virtualization. In SOSP, 2003.

[19] T. Benson, A. Akella, and D. Maltz. Network Traffic Characteristics of Data
Centers in the Wild. In IMC, 2010.

[20] S. K. Fayazbakhsh, L. Chaing, V. Sekar, M. Yu, and J. C. Mogul. Enforcing
network-wide policies in the presence of dynamic middlebox actions using
FlowTags. In NSDI, 2014.

[21] A. Gember, R. Grandl, A. Anand, T. Benson, and A. Akella. Stratos: Virtual
Middleboxes as First-Class Entities. Technical Report TR1771, University of
Wisconsin-Madison, 2012.

[22] A. Gember, A. Krishnamurthy, S. St. John, R. Grandl, X. Gao, A. Anand,
T. Benson, A. Akella, and V. Sekar. Stratos: A network-aware orchestration
layer for middleboxes in the cloud. Technical Report arXiv:1305.0209, 2013.

[23] A. Gember, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid, S. Das, and
A. Akella. OpenNF: Enabling innovation in network function control. Technical
report, University of Wisconsin-Madison, 2014.

[24] K. He, L. Wang, A. Fisher, A. Gember, A. Akella, and T. Ristenpart. Next stop,
the cloud: Understanding modern web service deployment in EC2 and Azure.
In IMC, 2013.

[25] D. Joseph and I. Stoica. Modeling middleboxes. IEEE Network, 2008.

[26] D. A. Joseph, A. Tavakoli, and I. Stoica. A policy-aware switching layer for
data centers. In SIGCOMM, 2008.

[27] R. Mahajan and R. Wattenhofer. On consistent updates in software defined
networks. In HotNets, 2013.

[28] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco, and
F. Huici. ClickOS and the art of network function virtualization. In NSDI, 2014.

[29] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. OpenFlow: Enabling innovation in
campus networks. ACM SIGCOMM CCR, 38(2), 2008.

[30] C. Nicutar, C. Paasch, M. Bagnulo, and C. Raiciu. Evolving the internet with
connection acrobatics. In HotMiddlebox, 2013.

[31] V. Paxson. Bro: a system for detecting network intruders in real-time. In
USENIX Security (SSYM), 1998.

[32] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu. SIMPLE-fying
middlebox policy enforcement using SDN. In SIGCOMM, 2013.

[33] S. Rajagopalan, D. Williams, and H. Jamjoom. Pico Replication: A high
availability framework for middleboxes. In SoCC, 2013.

[34] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield. Split/Merge:
System support for elastic execution in virtual middleboxes. In NSDI, 2013.

[35] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker. Abstractions
for network update. In SIGCOMM, 2012.

[36] M. Z. Shafiq, L. Ji, A. X. Liu, J. Pang, and J. Wang. A first look at cellular
machine-to-machine traffic: Large scale measurement and characterization. In
SIGMETRICS, 2012.

[37] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and V. Sekar.
Making middleboxes someone else’s problem: Network processing as a cloud
service. In SIGCOMM, 2012.

[38] R. Wang, D. Butnariu, and J. Rexford. OpenFlow-based server load balancing
gone wild. In Hot-ICE, 2011.

