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Abstract— We present a new inter-domain traffic engineer-
ing protocol based on the concepts ofNash bargaining and
dual decomposition. Under this scheme, ISPs use an iterative
procedure to jointly optimize a social cost function, referred
to as the Nash product. We show that the global optimization
problem can be separated into sub-problems by introducing
appropriate shadow prices on the inter-domain flows. These
sub-problems can then be solved independently and in a
decentralized manner by the individual ISPs. Our approach
does not require the ISPs to share any sensitive internal
information (such as network topology or link weights). More
importantly, our approach is provably Pareto-efficient and fair.
Therefore, we believe that our approach is highly amenable to
adoption by ISPs when compared to past naive approaches.

We conduct simulation studies of our approach over several
real ISP topologies. Our evaluation shows that the approach
converges quickly, offers equitable performance improvements
to ISPs, is significantly better than unilateral approaches(e.g.
hot potato routing) and offers the same performance as a
centralized solution with full knowledge.

I. I NTRODUCTION

A key component of operating and managing any ISP
network is the ability to control how traffic enters or leaves
the network. This is critical to ensuring that the ISP can
offer good performance and reliability even in the face of
internal or external failures and overload.

BGP provides networks with a limited set of mechanisms
to achieve this control (e.g. local prefs for outbound control,
MEDs and AS path pre-pending for inbound control). How-
ever, these mechanisms only offer ISPsunilateral control
over traffic. Unfortunately, unilateral decisions of neighbor-
ing networks may have undesirable interactions, and may
result in unstable routing [1], poor performance [2], and
huge, unpredictable shifts in network traffic volumes [3].

Recently, it has been argued that supporting dynamic
control over inter-domain traffic in a stable, efficient and
predictable manner requires a new inter-domain traffic en-
gineering architecture that is based onexplicit coordination
between ISPs [4], [5], [6]. In this approach, neighboring
ISPs exchange information about inter-domain traffic vol-
umes and routes, and participate in a simple “negotiation
protocol” to arrive at mutually acceptable routes for the
traffic between them (see Section VI for more details). It
has been shown that such explicit coordination can simulta-
neously helpboth networks [5], [6].

These seminal studies establish the potential benefits of
coordinated inter-domain traffic engineering (TE). Unfortu-
nately, realizing co-operation among ISPs in practice is not
straight-forward, since ISPs alsocompeteagainst each other,
and their competitive concerns must be explicitly accounted
for. As such, any naive approach for inter-domain TE – such
as the negotiation protocol above – is unlikely to be adopted

by ISPs. In particular, we note that co-operative inter-domain
TE approaches must satisfy the following criteria for ISPs
to adopt them1:
1. Minimum information revealed: ISPs regard their net-
work structure, link capacities, and link weights as “sensitive
internal information”, crucial to maintaining their competi-
tive edge. Therefore, ISPs must be able to perform coopera-
tive TE without having to reveal their sensitive information.
2. Efficiency: Cooperative approaches must ideally result
in Pareto-efficientoperating points. By this, we mean that
the resulting allocation of traffic across inter-domain routes
must lie on the boundary of the feasible outcomes – on this
boundary, we cannot make one ISP better off without disad-
vantaging the other. Pareto-efficiency ensures that network
resources are used in the most efficient manner by both ISPs.
Note that efficient network usage is also the driving goal of
intra-domain traffic engineering.
3. Fairness:Any inter-domain TE approach should yield an
operating point that isprovably fair. By fair we mean that
cooperation should yield equitable performance gains to the
participants when compared to their default TE strategies
(e.g. both ISPs employing naive unilateral control). Ap-
proaches that yield disproportionate benefits are likely to
be spurned by the ISP that gets the short end of the stick.

Another desirable property is that ofincentive compatibil-
ity, which means that the participating ISPs have no incen-
tive to lie or cheat. Without this guarantee, ISP’s can “game”
any inter-domain TE protocol to gain unfair advantage. It
is a well-known fact that achieving fairness, efficiency and
incentive compatibilitytogetheris impossible [7]. However,
it is possible to achieve two out of these three criteria. As a
first step, in this paper, we focus on fairness and efficiency.
We assume that ISPs are willing to co-operate with each
other, and will not resort to lying, as long as cooperation
can yield better performance than the default un-cooperative
mode of operation. We leave incentive compatibility for
future work (further details in Section IV).

To the best of our knowledge, no single approach for inter-
domain traffic engineering can provide information hiding
along with fairness and efficiency (i.e. criteria 1–3 listed
above). Existing approaches [5], [6] at best satisfy the first
criteria, but not the other two. In this paper, we present a
new cooperative inter-domain TE approach that can provably
offer these three desirable properties. Therefore, we believe
that our approach is highly amenable to adoption by ISPs.

Our approach uses ideas from multi-criteria optimization
[8] and axiomatic bargaining [9]. Like past studies, we

1Unless otherwise specified, our focus in this paper is on a pair of
neighboring ISPs.



assume that ISPs can improve their local performance by
bargaining (or negotiating) about the traffic flow distribution
on their peering links. Our first insight is that we can use
the well-known concept ofNash bargaining[10],[11] to do
so. Under this scheme, the ISPs agree to jointly optimize a
social cost function, known as the Nash product, which is
essentially the product of the utility functions of the two
ISPs. The key advantage of using this approach is that
the solution is guaranteed to provide Pareto efficiency and
fairness. When the ISPs’ utilities (measures of performance,
such as average delay or maximum load on a link) are
directly comparable, this solution is min-max fair, i.e.,
the gains from cooperation are equal. However, when the
utilities are not comparable, it still provides a Pareto efficient
solution that isproportionally fair [12]. By this, we mean
that the gains from cooperation to individual ISPs are equal
after some (automatic) suitable scaling of the utilities. This
scaling is endogenous to the solution and, therefore, is
highly desirable.

This leaves us with the issue of not revealing critical
internal information. Our insight here is that we can usedual
decomposition[13] to transform the joint optimization of the
Nash product into a procedure with precisely this property,
as follows. The global optimization problem can be decom-
posed into two independent sub-problems by recognizing
the coupling flows (these are the flows crossing between ISP
domains) and introducing appropriate Lagrange multipliers
(or shadow prices) [13]. These sub-problems can now be
assigned to the ISPs to be solved in a decentralized manner.
These have the critical feature that they are completely local
– an ISP’s assigned sub-problem depends only on its own
network – thus, the ISPs don’t have to share critical internal
information. Relying on this insight, we develop an iterative
procedure based on the sub-gradient method [14] where,
given Lagrange multipliers, the ISPs independently optimize
their local sub-problems to come up with their required
coupling flows. The Lagrange multipliers are then updated
using the sub-gradient method, which uses the difference in
the two sets of required flows to determine the magnitude
of the update. The update can be done in a decentralized
manner. After the update, the ISPs again try to optimize their
local sub-problems. We show that this process converges in
finite time to a fair and Pareto-efficient allocation.

We evaluate the effectiveness of our approach using sim-
ulations over real ISP topologies. Through simulations, we
show that our approach significantly out-performs unilateral
approaches such as the commonly used hot potato or shortest
path routing (where ISPs route to nearest peering location
in terms of link weights) as well as the Nash equilibrium
setting (where ISPs optimize local objectives while playing
best responses to each other [9]). For the case where ISPs
employ similar utilities, we compare our solution against
centralized optimal routing (where a central arbitrator op-
timizes the common objective across both ISP networks).
We also confirm the proportional fairness guarantees of our
solution via simulation experiments.
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Fig. 1. The Model

II. I NTER-DOMAIN TRAFFIC ENGINEERING USINGNASH

BARGAINING AND DECOMPOSITION

A. The Model

We model the interaction between two ISPs: ISP1 and
ISP2 as shown in Figure 1. These ISPs are optimizing
utilities u1 andu2, respectively. As mentioned in Section I,
these utilities are related to some measure of performance.
These utilities could mean different things to the ISPs. For
example, for one ISP the utility could be related to the
average delay in the network, and for the other ISP the
utility could be related to the maximum load on a link
in the network. The ISPs optimize these utilities under the
flow conservation constraints, i.e., flows from all sources to
all destinations must be routed. To simplify exposition, in
the following description, we assume that the ISPs employ
MPLS-like routing. We believe the approach we describe
below can be easily modified to yield a mechanism for
setting link weights for ISPs using OSPF in a way similar
to [15].

We make the common assumption that the utilities are
either convex or concave functions, and that the ISPs are
respectively minimizing or maximizing these utilities. For
example, some convex utilities are the maximum load on a
link and the average delay using convex link per unit delay
functions (e.g., the per unit delay in anM/M/1 queue).

We assume that ISP1 needs to send flowssd
12 to ISP2 on

a per destination basis:sd
12 is a vector of flows to be sent to

each of the destinations in ISP2 from ISP1.2 Similarly, ISP2

needs to send flowssd
21 to ISP1 on a per destination basis:

sd
21 is a vector of flows to be sent to each of the destinations

in ISP1 from ISP2. Even though the ISPs may have multiple
peering links, to facilitate easier understanding, we explain
our model using two bi-directional peering links (Figure 1).
The model generalizes readily to multiple peering links. We
assume that ISP1 splits sd

12 so thatyd
12 goes on the upper

link and (sd
12 − yd

12) goes on the lower link. Similarly ISP2
splits sd

21 so thatyd
21 goes on the upper link and(sd

21 − yd
21)

goes on the lower link.
Optimizing for the utilities would be a no-brainer if the

ISPs had no interaction. Then they could optimize their
respective utilities independently. What makes it compli-
cated is the interaction of the ISPs through flows sent be-
tween each other. These flows make the ISPs utilities inter-

2We make the notation precise in Section II-C.1.
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Fig. 2. The feasible region with Pareto efficient frontier.

dependent. These flows between the ISPs are sometimes
referred to ascoupling flows since they cause the ISPs
optimization problems to be coupled.

If the ISPs are myopic, i.e., they employ unilateral ap-
proaches towards inter-domain TE, they would optimize
without paying attention to how the coupling flows affect
the other ISPs optimization problem. For example,yd

12 is
an output of ISP1’s optimization problem and is thus under
its control. However,yd

12 is an input to ISP2’s optimization
problem and thus affects its outcome. Now, if ISP1 is
myopic, it will optimize without paying attention to how
much it may be hurting ISP2 by determiningyd

12 myopically.
Similarly, ISP2 could determineyd

21 myopically. Thus, in
this process, both ISPs may end up hurting each other.

When both ISPs route myopically, we denote the ISPs
utilities asumyopic

1 andumyopic
2 , respectively. The question

then arises is: Is there any way that the ISPs could somehow
cooperate on determining the coupling flows and improve
their performance, i.e., achieveu1 ≥ umyopic

1 and u2 ≥
umyopic

2 such that

1) The gains from cooperation are equitable (or fair)
while operating at a Pareto efficient operation point?

2) ISPs don’t have to divulge any critical information
about their networks?

The answer to the first question lies in the idea of Nash
Bargaining [11]. The answer to the second question lies in
the idea of decomposition [13]. We explain both of these
ideas next.

B. Nash Bargaining

The basic idea behind Nash bargaining is as follows. We
assume that the ISP utilities are inter-dependent, concave
and cardinal, where by cardinal we mean that the actual
values of utilities matter – as opposed to ordinal utilities
where only the relative ordering of outcomes matters. Figure
2 shows the feasible region for the two utilities, where the
feasible region is defined as the region where both ISPs
would do better off compared to the myopic outcome. The
myopic outcome is also referred to as thebreakdown point.

A fair and Pareto efficient outcome, also referred to
as theNash solutioncan be obtained by maximizing the
Nash productgiven by u1u2. Using the axiomatic theory

of cooperative games, it can be shown that when two
players (ISPs for us) with equal market power bargain, using
threat strategies, they should arrive at the Nash solution.
Referring to Figure 2, these threat strategies correspond to
the breakdown point, which is the outcome if the ISPs are
unable to reach an agreement.

In what follows, we provide a brief summary of the prop-
erties of the Nash solution, using the axiomatic bargaining
approach. The idea here is that a good bargaining solution
should satisfy the following four axioms, which we simply
state as follows (see [11] for a detailed discussion):
Pareto efficiency. This is obviously desirable since ISPs
prefer more to less.
Symmetry. This says that the solution should provide
equal gains from cooperation when the feasible region is
symmetric, where by symmetric we mean that the feasible
region is agnostic of the player’s identities and that it would
look the same even if the ISPs utility axis were swapped.
Independence of affine transformations. This requires that
the solution should be agnostic of any affine transformations
(that is, shifts and scalings) applied to any of the two
utilities. So, if the solution is given by(uNB

1 , uNB
2 ) for some

utilities (u1, u2), andu1 is scaled and shifted toα1u1 + β1,
then the solution should change to(α1u

NB
1 + β1, u

NB
2 ).

Independence of irrelevant alternatives. This basically
says that addition of irrelevant alternatives should not change
the solution. That is, for feasible regionsF and G, if
(uNB

1 , uNB
2 ) ∈ solution(F ), G ⊂ F , and(uNB

1 , uNB
2 ) ∈ G

then (uNB
1 , uNB

2 ) ∈ solution(G).
It turns out that the Nash solution is the only solution that

satisfies these four axioms [10]. In fact, the Nash solution is
the only solution that satisfies the following problem that is
simultaneouslyutilitarian (Pareto efficient) andegalitarian
(fair) [11]. That is, the Nash solution solves

maximize α1u1 + α2u2

subject to α1u1 = α2u2

(u1, u2) ∈ U

for someα1 ≥ 0 and α2 ≥ 0, where the optimization is
over the bounded setU . Note that this scaling byα’s does
not change the Pareto efficient frontier in Figure 2, i.e., the
values of the choice variables resulting in Pareto efficient
points remain the same. Theseα’s bring the usually un-
comparableu1 andu2 on a common footing so that we can
talk about fairness in the first place. In particular, the Nash
solution isproportionally fair [12]. This means that moving
away from the Nash solution causes a negative cumulative
percentage change in utilities. That is, if(uNB

1 , uNB
2 ) is the

Nash solution, and we move to another point(u∗
1, u

∗
2), then

2
∑

i=1

(u∗
i − uNB

i )

uNB
i

≤ 0 (1)

We next describe how decomposition can be used to
jointly optimize the Nash product without revealing any
sensitive information.

C. Decomposition

The idea of decomposition is not new. It has been success-
fully used to solve large scale optimization problems [13]
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and to solve separable problems in a decentralized manner.
Moreover, in our case, decomposition allows separate enti-
ties in the optimization problem to hide their internal critical
information. In what follows, we first develop a precise
optimization framework, and then use this framework to
explain decomposition.

1) Optimization Formulation: We denote the network
topology of ISPi, i ∈ {1, 2}, by a directed graphGi =
(Ni,Li) with ni = |Ni| nodes andli = |Li| internal links.
We also denote byP the set ofp directed peering links.
We then define the incidence matrix for ISPi as matrix
Ai ∈ Rni×(li+p), with Ai,jk = +1 if link k leaves node
j, Ai,jk = −1 if link k enters nodej, and0 otherwise.

We consideraggregatedata flows through the network,
where we identify each flow by its destination node. We
denote byD the set of all possible destination nodes. For
ISPi, we denote the nonnegative amount of flow originating
at nodej and destined to noded ∈ D by sd

i,j (j 6= d).
Whenj = d, sd

i,d is the negative sum of the flows destined
to the noded, thus ensuring flow conservation. We refer to
sd

i ∈ Rn as thesource-sink vector. Note thatsd
i , i ∈ {1, 2}

includesd
12 andsd

21, as described in Section II-A. Similarly,
for ISPi, we denote the amount of nonnegative flow destined
to noded on each internal linkk ∈ Li by xd

i,k. We call
xd

i ∈ Rl the internal flow vectorfor destinationd. Finally,
we denote the amount of nonnegative flow destined to node
d on each peering linkk ∈ P by yd

k. We call yd ∈ Rp the
peering flow vectorfor destinationd. This yd includesyd

12

andyd
21, as described in Section II-A.

Now, we are ready to define the optimization problems
in various scenarios. We first present theNash product
problem, where ISP would jointly solve

maximize u1u2

subject to A1

[

xd
1

yd

]

= sd
1, A2

[

xd
2

yd

]

= sd
2

xd
1 ≥ 0, xd

2 ≥ 0, yd ≥ 0,

(2)

for all d ∈ D, where the optimization variables arexd
1,

xd
2, andyd. Here the two equality constraints are the flow

conservation constraints for ISP1 and ISP2, respectively, and
the last set of inequality constraints ensures that the choice
variables are non-negative.3

A related problem to (2) is when both ISPs route myopi-
cally. The myopic routing schemes that we are particularly
interested in are:
1. Hot potato routing: Under this approach, each ISP routes
inter-domain traffic originating in its network to the closest
peering point (i.e., least OSPF-cost). In a way, this attempts
to minimize the network resources consumed by inter-
domain traffic within the source ISP network. This form
of inter-domain traffic exchange is commonly used today.
2. Nash equilibrium: Under this approach, ISPs myopically
optimize local objectives while iteratively playing best re-
sponse to each other. Each ISP finds the optimal way to split
inter-domain traffic across peering links, given the traffic
splits of its neighbor, until no better traffic split can be

3Other constraints such as link capacity constraints can be readily
included.

found. This dynamic eventually finds an equilibrium, also
known as the Nash equilibrium [9], from which no ISP has
an incentive to deviate.

Under these routing schemes, each ISP myopically solves
an optimization problem

maximize ui

subject to Ai

[

xd
i

yd

]

= ŝd
i

xd
i ≥ 0, yd ≥ 0,

(3)

for i = {1, 2} and for all d ∈ D. Here we usêsd
i instead

of sd
i to represent the fact that the myopic routing strategies

change the original flow vectors. For example, in hot-potato
routing, since each ISP routes the inter-domain flows to the
nearest exit points, the flow vector reflects the source of
flows being on peering points instead of being on internal
nodes. In Nash equilibrium, where the ISPs iterate over the
myopic problems based on current incoming flows, the flow
vector reflects a similar transformation.

2) Decomposition:Now we look into how we can cast
problem (2) in separable form, allowing for a decentralized
solution. We face two challenges: first, as it stands, the
objective is not separable, and second, the ISPs utilities are
coupled throughyd.

We first transform problem (2) into an equivalent problem
by taking the logarithm of the objective function. Since
the logarithm is an increasing and concave function, this
transformation does not change the solution to the original
problem [14]. We then get the following equivalent problem

maximize ln(u1) + ln(u2)

subject to A1

[

xd
1

yd

]

= sd
1, A2

[

xd
2

yd

]

= sd
2

xd
1 ≥ 0, xd

2 ≥ 0, yd ≥ 0,

(4)

We next introduce new nonnegative variablesyd
1 and

yd
2 , which are local versions ofyd for ISP1 and ISP2,

respectively. Problem (4) can then be rewritten as

maximize ln(u1) + ln(u2)

subject to A1

[

xd
1

yd
1

]

= sd
1, A2

[

xd
2

yd
2

]

= sd
2

xd
1 ≥ 0, yd

1 ≥ 0, xd
2 ≥ 0, yd

2 ≥ 0

yd
1 = yd

2 .

(5)

We still have a coupling constraintyd
1 = yd

2 , which we deal
with using dual (or pricing) decomposition [13], which is
outlined next.

We first write the partial Lagrangian of problem (5), with
respect to the coupling constraint, as

L(xd
1, y

d
1 , xd

2, y
d
2 , λd) = ln(u1)+ln(u2)+

∑

d

(λd)T (yd
1−yd

2),

whereλd ∈ Rp areLagrange multipliersassociated with the
coupling constraint. This is a separable function in(xd

1, y
d
1)

and(xd
2, y

d
2). We now solve the dual problem of problem (5),

given by
minimize g1(λ

d) + g2(λ
d), (6)
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whereg1 is given by the optimization problem

maximize ln(u1) +
∑

d(λ
d)T yd

1

subject to A1

[

xd
1

yd
1

]

= sd
1,

xd
1 ≥ 0, yd

1 ≥ 0,

(7)

andg2 is given by the optimization problem

maximize ln(u2) −
∑

d(λ
d)T yd

2

subject to A2

[

xd
2

yd
2

]

= sd
2,

xd
2 ≥ 0, yd

2 ≥ 0.

(8)

We note that the optimal value of the dual problem (6)
will be equal to the optimal value of the primal problem (5),
since problem (5) is a convex problem with a strictly feasible
point, and strong duality holds by Slater’s condition [14].
We can readily recover the optimal flow allocation from
the solution of the dual problem by ensuring, using a small
regularization term, that the objective functions are strictly
convex (or concave) [14,§5.5.5].

The dual problem (6) is also referred to as themaster
problem. We can solve the master problem using various
iterative methods. We choose the subgradient method [16]
since it requires very little coordination between problems
(7) and (8) and allows encapsulation of the internal data.

The subgradient method requires subgradients ofg1 and
g2. A subgradient ofg1 is evaluated as follows. We first find
x̄d

1 and ȳd
1 that minimize

ln(u1) +
∑

d

(λd)T yd
1

overxd
1 andyd

1 . Then a subgradient ofg1 at λd is given by
ȳd
1 . Similarly, a subgradient ofg2 at λd is given by−ȳd

2 .
Thus, a subgradient of the dual functiong = g1+g2 is given
by ȳd

1−ȳd
2 , which is nothing more than the consistency check

for the coupling constraint.
Dual decomposition, using the subgradient method for

solving master problem, then gives the following algorithm:

repeat

1. Solve the subproblems(7) and (8). Obtain ȳd
1 , ȳd

2 .
2. Update master(6) subgradient:g := ȳd

1 − ȳd
2 .

3. Update master(6) prices: λd := λd − αkg.

Here αk is the step size at thekth iteration. We use a
constant stepsize, which guarantees convergence to anε-ball
around the optimal solution, e.g., see [16] for more details.
The subgradient method does not have a good stopping
criterion, and in practice it is often terminated when there
is no additional progress in the minimization.

We note the following about the proposed procedure:
1) The sub-problems in Step 1 are independent and can

be solved by the ISPs independently of each other.
Thus, we achieve our objective of not revealing critical
information about the internal networks.

2) The updating of the Lagrange multipliers in Step 3
can happen in many ways. One way is for the ISPs
to announce the local versions of the coupling flows,

i.e., yd
1 andyd

2 . Now, they can both calculate the new
Lagrange multipliers.

3) In our simulation experiments over real ISP topolo-
gies, we find that this process typically converges in
50-100 iterations to well within the optimal solution
using a fixed step size.

III. PRACTICAL ISSUES

A. Implementation and Deployment

We observe that the easiest path to the adoption of our
approach is when individual ISPs employ it in conjunction
with centralized routing platforms such as rcp [17] or
4d [18]. In this set-up, the centralized routing controller
of an ISP executes the protocol in conjunction with the
controllers of its neighbors. The controllers exchange prices,
and negotiate flow splits. Each controller then converts the
negotiated solution into appropriate forwarding table updates
on ISP routers. While it may be possible to implement our
approach in a completely distributed manner (e.g. where
individual routers participate in negotiation), we believe that
the above approach is a simpler alternative.

B. Communication Complexity

The master problem (6) in our protocol is solved using
the subgradient method which typically takes50-100 iter-
ations to converge (see section 10.3.2 in [19]). Denoting
the number of subgradient method iterations asIs, the
number of peering links asp, and the maximum number
of flows asdmax = n1 + n2, whereni, i ∈ {1, 2} are the
number of nodes in ISP1 and ISP2, respectively, we need
to communicateO(p × dmax) real numbers per iteration,
or O(Is × p × dmax) real numbers total. These can be
converted to bits assumingB (typically 32 or 64) bits per
real number. Plugging in values, we see that the protocols
requires a total of about8MB of communication for a pair
of ISPs with a total of500 nodes and20 peering links.

C. Computational Complexity

The subproblems (7) and (8) in our protocol are solved
using interior-point methods [14], [19]. Theoretically, these
methods have polynomial complexity in the number of
variables , i.e., in(p+max(l1, l2))×dmax, wherep anddmax

are as defined in the previous subsection andli, i ∈ {1, 2}
are the number of internal links in ISP1 and ISP2, respec-
tively. In practice, however, since we can exploit inherent
structure in our problems, these methods can be efficiently
implemented to solve the subproblems in constant time even
for large ISP networks. For example, our implementation
takes about1 second to solve a subproblem withp+l = 100
links andd = 100 destinations, which translates to10, 000
variables.

IV. PROTOCOL EXTENSIONS

In this section, we discuss simple extensions to our basic
framework that show: (1) how our framework can apply to
multiple peering ISPs; (2) how to accommodate single link
failures; and (3) how to react quickly under arbitrary failures
and changes in traffic demands.
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A. Multi-ISP Extension

So far, our discussion has focused on a pair of neighboring
ISPs. How do we extend this to multiple ISPs peering in a
pairwise manner? We note that this is a non-issue if peers
are not used for transit. In that case, our basic framework
simply applies pairwise to multiple ISPs.

It becomes more interesting when peers can be used for
transit (this can be arranged through explicit agreement).As
an example, consider three ISPs – ISP1, ISP2 and ISP3 –
with the agreement that ISP1 can send traffic to destinations
in ISP3 either via direct peering links or through ISP2 (as
transit). The key hurdle in facilitating this setting is that our
framework requires all destination demands to be known
between any pair of ISPs for computing the shadow prices
on peering links.

We outline a simple way to tackle this: ISP1 determines
a-priori the demand splits – between direct and transit routes
– for each destination in ISP3. These direct and transit
demands are then used in our protocol as actual demands
between ISP1-ISP3 and between ISP2-ISP3, respectively. As
for ISP1-ISP2, the total transit demand (that is, the sum of
transit demands) is destined to a virtual node that is a-priori
agreed upon by ISP1 and ISP2. This virtual node is assumed
to reside behind the ISP2-ISP3 interface and represents all
the peering link on this interface - thus, ensuring that all
transit traffic destined to ISP3 is eventually routed to one of
these peering links.

We note that this scheme, while practical, is not flexible
enough: e.g. ISP1 cannot dynamically change traffic vol-
umes between transit and direct links for specific destina-
tions. We hope to address this issue in future work.

B. Making the Protocol “Incremental”

In the general case, ISPs would run our protocol at
certain times of the day in a somewhat semi-static manner
(this might correspond with the time granularity at which
demand information is collected). However, traffic demands
may change suddenly due to phenomena like denial of
service attacks, flash crowds, etc. In addition, links may
fail, requiring the ISP to reroute its traffic. How can we
extend our protocol to react to incremental changes in
internal topologies and in traffic demand? We look at various
scenarios below.

1) Single Link Failures:We now show how our frame-
work can deal with single link failures in real time, elimi-
nating the need for dynamic re-negotiation of flow splits.
ISPs can identify small lists of links that may fail with
high probability (e.g. planned outages, or based on historical
data). Say ISP1 and ISP2 identify NF1 andNF2 number of
links, respectively. Assuming the probability of simultaneous
multiple link failures to be very small, only a single link
would fail at a time in either of the domains. Thus, the ISPs
would need to run the basic algorithmNF1+NF2+1 times
– once for the default (no failure) case andNF1 + NF2

times to cover each of the single link failures – and store
the resulting flow splits for each. These could be indexed
using previously agreed upon unique keys. Upon failure of
one of these links, the ISP with the failed link can notify
the other ISP that a link has failed and that they need to

switch to the flow splits corresponding to the failure. They
can then switch to the new flow splits as soon as possible,
preferably in a coordinated fashion. There is no need for
re-negotiation.

2) Dealing with Arbitrary Failures or Changes in De-
mand: We now show how to accommodate any link failure
and significant shifts in traffic demands. Say a link fails in
ISP1. How should the ISP modify its local routing to deal
with this, while minimizing its own cost and not impacting
the other ISP adversely? A similar issue arises when traffic
volumes for certain ingress-egress pairs change suddenly
(e.g. due to flash crowds).

The answer lies in using the equilibrium shadow prices
arising out of our protocol. These indicate how expensive (or
cheap) it would be for the receiving ISP if the corresponding
flow splits are changed. When sudden internal changes
occur, the sender can use this information to check if local
changes may be performed in order to accommodate the
change and yet not impact the neighbor in any significant
manner. If the impact is likely to be low, the sender can
make local changes. If the impact is likely to be high, the
sender will have to re-negotiate or bargain the prices.

C. A Note on Incentive Compatibility

It is well known that Nash Bargaining is not incentive
compatible [20]. Therefore our approach is susceptible to
cheating. However, we believe that this will not hinder
ISPs from adopting our approach, for two reasons. First,
we believe that the real world is more cooperative than
often depicted in the non-cooperative game theory setting,
and ISPs are honestly trying to improve their performance.
Second, since our approach guarantees that ISPs see non-
negative improvement when compared to their default strate-
gies (e.g. hot-potato routing or Nash equilibrium), a cheating
ISP may be able to gain unfair advantage but itcannot
degradethe performance of an honest neighbor compared
to the neighbor’s default (that is, the breakdown point).
Nevertheless, we hope to address incentive compatibility in
future work.

V. EXPERIMENTAL RESULTS

We conduct simulation experiments to evaluate our pro-
tocol. We use Rocketfuel ISP maps which contain PoP-
level connectivity information [21]. The links in each map
are annotated with the propagation latency, as well as the
inferred OSPF link weights employed by the ISP for its
internal routing [22]. The maps also include information on
the peering locations of neighboring ISPs.

Two key components which are missing from the maps
are the traffic demand matrix (both intra, and inter-domain),
and the link capacities. For the former, we use gravity-based
models [23] where the demand between a pair of cities (or
PoPs) is proportional to the product of their populations (the
populations can be obtained from public databases). Also,
we assume that the demand matrix is symmetric. This model
applies to both intra- and inter-domain traffic4.

For the latter, we assume that all links in an ISP have the
same capacity, where the capacity is computed as follows:

4We use a lower proportionality constant for inter-domain traffic.
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(a) Load/Load (b) Latency/Load
Fig. 3. Nash bargaining compared with hot-potato routing. The top (bottom) graph plots thepercentage improvementin the optimization objective for
ISP1 (ISP2) on the y-axis for each ISP pair. The ISP pairs are shown on thex-axis.

we use the ISP link weights to compute the best routes
between different PoP pairs (breaking ties randomly). We
then identify the most heavily loaded link and set its capacity
to be twice the total demand carried by it. We use the same
capacity for all other links. We tried with other link capacity
assignments (such as a bi-modal distribution), but found
the results are qualitatively unchanged. In all, we conduct
simulations over212 ISP pairs.

We simulate two different ISP optimization objectives:
(1) Load: the goal of the ISP is to minimize the maximum
link load in its network. Here, the load of a link is the
traffic volume it carries divided by its capacity; (2)Latency:
the goal of the ISP is to minimize the maximum latency
incurred by the traffic it carries. When a traffic demand
is split between multiple paths, we compute the weighted
latency for the demand-split, where the weight is simply
the fraction of the demand routed on a path.

Our simulations compare the Nash bargaining protocol
with three other approaches: hot-potato and Nash equilib-
rium are myopic routing approaches described in Section II-
C.1. The third one isGlobal optimumrouting. Under this
approach, we assume that both the domains are under
the control of a central arbitrator who optimizes for a
“global” objective. This applies to the specific case where
the neighboring ISPs have similar optimization objectives.
As an example, if both ISPs want to minimize the maximum
load on their internal links, the central arbitrator minimizes
the maximum load on links in either ISP. Note that in this
approach, one ISP may be penalized while the other ISP
benefits.

A. Nash Bargaining vs Hot-Potato Routing

In Figure 3, we compare the performance of our approach
against the case where the ISPs employ hot-potato routing.
Here, we consider two situations: one where both ISPs
employ the same utility -Load - shown in (a), and the other
where ISP1 employs Latency while ISP2 employs Load,
shown in (b).

We make the following observations: First, the objective
of either ISP always improves, irrespective of whether the
ISPs are optimizing similar objectives or not. In some cases,
the value of the objective for one of the ISPs improves two-
fold – this can be observed in both 3(a) and (b). In other
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Fig. 4. Nash bargaining compared with Nash equilibrium. Theoptimiza-
tion objective for ISP1 is Latencyand for ISP2 is Load.

cases both ISPs see> 50% improvement each. These results
show that, in practice, peering ISPs can both gain signif-
icantly from shedding their unilateral TE approaches and
adopting the cooperative Nash bargaining-based approach
we propose.

Second, we note that the percentage improvements for the
two ISPs are not necessarily equal. In some cases, one ISP
gains significantly while the other sees no improvement at
all – see 3(a) around ISP-pair 150. This effect is especially
pronounced for 3(b) where the ISP utilities are different.
The asymmetry in the gains arises due to two reasons: (1)
The default strategy (hot potato) may already be offering
fairly good performance to one of the participants. Nash
bargaining offers incremental benefits. This is in agreement
with the observations in [5]. (2) When utilities are dissimilar
and therefore not directly comparable, we cannot expect
identical percentage improvements anyway.

Nevertheless, as mentioned in Section II, our approach
offersproportional fairness, a highly desirable property. We
illustrate this in Section V-C.

B. Nash Bargaining vs Nash Equilibrium

In Figure 4, we compare the performance from Nash
bargaining against Nash equilibrium when ISP1 optimizes
theLatencyobjective and ISP2 optimizes theLoadobjective.
As explained above, Nash equilibrium arises when each ISPs
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optimizes its local objective while playing best responses
to its neighbor. We note that the Nash equilibrium reflects
the behavior of selfish (myopic) and smart ISPs, while hot-
potato is a naive greedy strategy. However, unlike hot-potato
routing, the Nash equilibrium may be hard to realize in
practice, since convergence in finite time is not always
guaranteed. In our simulation of Nash equilibrium, we
simply ignore cases where the equilibrium is not found after
a threshold amount of time.

As with hot-potato routing, we note that Nash bargaining
offers superior performance to both ISPs when compared
to the performance at the Nash equilibrium. This further
establishes the benefit of bi-lateral co-operation in inter-
domain traffic engineering.

We note another interesting fact from Figures 3 and 4:
the performance of the ISPs at Nash equilibrium seems
better than that from hot-potato routing (we did find a
negligible fraction of cases where hot-potato performed
better than Nash equilibrium). This points to the fact that
even among myopic unilateral approaches, the commonly-
used hot-potato routing is not the optimal!

C. Efficiency and Fairness

We illustrate the fact that our approach yields a Pareto-
efficient and fair solution using a spot-study of a pair of
peering ISPs with AS numbers 1 and 5650. ISP1 has110
bi-directional links and42 nodes, whereas ISP2 has54 bi-
directional links and22 nodes. In addition, there are4 bi-
directional peering links. Figure 5 shows the feasible region
(shaded gray) when both ISPs employ theLoad utility. It
also shows the indifference curves foru1u2 as well as the
Nash equilibrium and hot-potato points. Our Nash bargain-
ing approach finds the unique solution denoted by pointC,
with (uNB

1 , uNB
2 ) = (1205.4, 1314.0). This is clearly Pareto

efficient since we can’t improve the performance of one ISP
without hurting the other one.

As a further testament to the quality of the solution
found by Nash bargaining, we compare the performance of
our approach to that obtained by globally optimal routing,
when the objectives of both ISPs areLoad. Specifically, we

compare the load on the maximum loaded link in the global
routing case, against the higher among the loads on the most
loaded links in the two ISPs when Nash bargaining is used.
For all ISP pairs, we found these to be identical!

We next illustrate that the Nash bargaining solution
(uNB

1 , uNB
2 ) is proportionally fair, as defined by (1). This

is clearly satisfied for(u∗
1, u

∗
2) on line segment[C, D] since

u∗
1 − uNB

1 = 0 and (u∗
2 − uNB

2 )/uNB
2 ≤ 0. We next show

that (1) is satisfied for(u∗
1, u

∗
2) on line segment[B, C].

These points satisfyu∗
2 − uNB

2 = −0.95(u∗
1 − uNB

1 ).
Plugging this in (1), we get

(u∗
1 − uNB

1 )

uNB
1

+
(u∗

2 − uNB
2 )

uNB
2

=
(u∗

1
−uNB

1
)

uNB

1

+
m(u∗

1
−uNB

1
)

uNB

2

≈ 0.001(u∗
1 − uNB

1 ) ≤ 0.

Similarly, it can be shown that (1) is satisfied for(u∗
1, u

∗
2)

on line segment[A, B].

VI. RELATED WORK

Inter-domain TE: A single ISP’s view point: Several
papers on Inter-domain traffic engineering have focused on
studying the problem from the point of view of one of
the participants (See for example [24], [25], [26]). These
papers address issues such as tweaking OSPF weights to
achieve fine-grained control over egress points for inter-
domain traffic [24], AS-path pre-pending to control the
ingress points of inter-domain traffic [26], and best common
practices for achieving predictable and stable route selection
for inter-domain traffic [25]. These papers differ from our
paper in the key aspect that we focus on the benefits of
bi-lateral cooperation among ISPs, while the above papers
focus on tweaking the unilateral decisions of a single ISP.
We do note that our technique can operate in conjunction
with the above approaches: once our technique determines
the traffic volumes to route via different exit points, the
above approaches can be used to tune the configurations
of routers in order to achieve the desired effect.
Inter-domain TE based on cooperation:The paper that
is perhaps the closest in its goal to our work is Mahajan et
al.’s “negotiation-based routing”. In [5], [6], Mahajan etal.
propose an approach where peering ISPs use a “negotiation
protocol” to exchange opaque preference classes for inter-
domain flows. Using these opaque preference classes, an ISP
can indicate the preferred entry points for traffic arriving
from its neighbor. No other internal information is exposed.
The negotiation protocol proceeds in iterations, with ISPs
taking turns in stating their preference for each inter-domain
flow, until they arrive at mutually acceptable mappings
of all inter-domain flows to network entry points. Thus,
cooperative traffic engineering is achieved.

This approach was shown to work well in practical
settings. However, it suffers from the following limitations:
it is heuristic-based and, so, does not offer any provable
guarantees. First, it does not guarantee that the mutually
acceptable outcome lies on the Pareto frontier. Second, it
does not make the idea of fairness concrete. For example,
if the ISPs are optimizing directly comparable objective
functions then the final outcome should satisfy the well-
known min-max criteria which guarantees equal gains from
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cooperation. Fairness becomes even harder to provide when
the ISPs are optimizing different objective functions. Our
work directly addresses the above issues.
Optimization-based TE approaches:A few research stud-
ies have explored the applicability of optimization tech-
niques to traffic engineering problems. Representative ex-
amples include [15], [27], [28]. The focus of these papers
is on intra-domain traffic engineering. [15] shows how to
cast network-wide traffic engineering goals as optimization
problems, and how to transform the results into OSPF
weights. [27], [28] show how to jointly optimize multiple
objectives in traffic engineering (such as congestion control
and routing, or pricing and routing). Our paper extends this
body of work in a new direction: joint-optimization of traffic
engineering objectives of multiple ISPs. Our contributionis
in showing that this optimization is separable, and therefore,
can be performed in a distributed fashion without requiring
the participants to reveal any sensitive internal information.
Nash Bargaining in Other Applications: The application
of Nash bargaining to multi-criteria optimization is not new.
It has been applied to many problems in networking. [29]
applied it to ensure fairness in a network flow control
problem. [30] applied it to allocate bandwidth fairly. It
has also been shown in the influential work of Kelly [12]
that Nash bargaining ensures proportional fairness in a TCP
setting. To the best of our knowledge, ours is the first work
to apply Nash bargaining to inter-domain traffic engineering.

VII. SUMMARY

In this paper, we presented a new inter-domain traffic
engineering protocol that is Pareto-efficient, fair and does
not require ISPs to reveal internal information. Our approach
uses ideas from co-operative game theory (specifically, Nash
bargaining) as well as a host of tricks from non-linear
optimization (such as, dual decomposition and the sub-
gradient method) to achieve the above desirable properties.

We simulated our approach over real ISP topologies and
traffic demands. We found that our approach can offer sig-
nificant improvement both relative to prevalent approaches
such as hot-potato routing, as well as more sophisticated
selfish inter-domain TE approaches. We also empirically ver-
ified the fairness and efficiency properties of our approach.

Our solution provides provable guarantees that are miss-
ing from the state-of-the-art in inter-domain traffic engineer-
ing. Therefore, our approach is very amenable to adoption
by ISPs today.
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