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ABSTRACT
Over the last few decades, the networking community has
developed numerous techniques for understanding how real
networks behave through analyzing their data and control
planes. In this paper, we call upon the community to simi-
larly develop techniques to analyze the network management
plane, that is, activities that underlie network design and op-
eration. Such analytics can shed light on why a network be-
haves as observed and the relative merits of different man-
agement practices. While the management plane is often not
directly observable, we argue that many relevant aspects can
be inferred through data that most networks already gather
(e.g., snapshots of configurations). Using preliminary anal-
ysis of such data from many large networks, we demonstrate
the feasibility and the value of management plane analytics.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network management

Keywords
management plane; network configuration; analytics

1. INTRODUCTION
The networking community does not need to be reminded

about the value of measuring real networks. It has devel-
oped a suite of tools and creative techniques that discover
how the network functions even when the network does not
directly reveal that information. For instance, traceroute, a
bread and butter tool, is a clever ”hack” in which a basic
router functionality—dropping packets with expired time-
to-live (TTL) and sending an error message to the source—
is exploited to discover the paths that packets take to their
destination. Other examples include techniques to infer link
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Figure 1: The three network planes

characteristics [7], available bandwidth along a path [8], loss
rate and re-ordering [11], network topology [18], and so on.

However, the vast majority of the measurement work thus
far focuses on inferring aspects of the network’s data plane
(e.g., routing paths) or control plane (e.g., routing weights).
Little work has gone into measuring and understanding the
network’s management plane. Figure 1 illustrates the three
planes and their relationship. The data plane forwards pack-
ets. The control plane generates the data plane using con-
figuration files, or control programs in the case of SDN, and
control plane protocols such as OSPF and BGP. The man-
agement plane is composed of practices and protocols that
generate the control plane based on the network’s policies.

Despite the importance of the management plane to a well-
functioning network, we have limited insight into how real
networks are designed and operated today. Even basic facets
are unknown. For instance, how heterogeneous are the net-
works in the hardware and software they use; how often con-
figuration changes are made; what fraction of changes are
done manually versus automatically; what types of changes
are common (e.g., ACLs, routemaps, VLANs, etc.); or how
many devices are impacted by a typical change. While it is
well-known that network management is onerous and error-
prone, beyond broad reasons like configuration languages
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being low-level, it is not known which management prac-
tices in particular have a higher risk of causing failures.

In this paper, we call upon the research community to
make a concerted, systematic effort to analyze the manage-
ment plane of today’s networks. The high-level goals of such
management plane analytics are: i) infer a given network’s
management practices; ii) infer which practices lead to bet-
ter operational health (e.g., fewer failures); and iii) develop
a predictive model of a network’s operational health, based
on its management practices, to help with what-if analysis
and improve management practices.

Management plane analytics is key to designing a better
management plane, one that reduces the burden on operators
and reduces failures. We are inspired by how research into
software engineering practices, also called “empirical soft-
ware engineering,” has helped improve the quality of soft-
ware and reduced the number of bugs [4]. We expect a simi-
lar positive impact from research into network management
practices. Now is a particularly relevant time for this under-
taking because, in the form of SDN, the community is en-
gaged in re-architecting networks. A detailed understanding
of the strengths and weaknesses of the current management
plane will help inform the design of an SDN-based manage-
ment plane as well.

A primary hurdle in uncovering management practices is
that they are not directly logged by most networks. How-
ever, we posit that it is possible to infer them from other data
that is already logged by most networks. In particular, this
data is: 1) snapshots of device configurations that are taken
and archived using popular tools such as RANCID [16] and
HPNA [20]; and 2) logs of alerts and trouble tickets. This
data is indirect and noisy, but useful information can be ex-
tracted from it. This particular challenge is similar to what is
addressed by existing data- and control-plane measurement
tools, and it offers a pragmatic alternative to waiting for per-
fect data sources to become available.

Many of the largest networks today have been in oper-
ation for years, if not decades, and have well established
management processes. Given this fact, and that many of
these networks are mission critical, conducting management
plane analytics is both necessary and eminently feasible.

To demonstrate the value and feasibility of management
plane analytics using existing data sources, we conduct a
preliminary analysis across hundreds of data center networks.
We show that network heterogeneity and how often the net-
work is changed negatively contributes to its operational health,
while the size of the network and the extent of automation
appear to have minimal impact. We also show that more
research is needed to develop predictive models of network
operational health.

2. MANAGEMENT PLANE ANALYTICS
In this section, we first describe commonly available data

sources that can be used for management plane analytics,

and we then outline a simple framework for conducting this
analysis systematically.

2.1 Data sources
We focus on the following two data sources that in our

experience are commonly available today.

1. Configuration snapshots.
Network operators track changes in device configuration

for a variety of reasons, for instance, to help them debug
configuration errors by comparing current configuration to
older ones. They are aided in this task by network manage-
ment systems (NMS) such as RANCID and HPNA. NMSes
take configuration snapshots either periodically (e.g., every
night) or when device configuration changes. Many types of
devices send a syslog alert when their configuration changes;
NMSes subscribe to this feed and pull the latest configura-
tion when they see this alert. Snapshots are archived in a
database or a version control system. Each snapshot includes
the configuration text and additional useful information (also
extracted by NMSes), such as timestamps of configuration
changes, the login information of the entity that made the
change, device model and firmware version.

Configuration files are technically part of the control plane,
not management plane (Figure 1). But our observation is that
analyzing the information in successive snapshots allows us
to infer management plane activities.

2. Trouble ticket logs.
The second data source is the history of network alerts

and failures, also known as trouble ticket logs. Each log
entry has a mix of unstructured and structured information.
The former includes syslog details and communication (e.g.,
emails and IMs) between operators that occurred to diag-
nose the issue. Structured information can include aspects
of the issue such as the device that failed or the type of root
cause. While unstructured information is commonly present,
the presence and quality of the structured information varies
across networks.

Of course, other data sources exist that can provide in-
sight into management practices. For instance, some net-
works have documents that specify the desired network de-
sign, policies, and how changes should be made; similarly,
operators could be surveyed to gain insight into management
practices. We focus on the data sources above because they
can provide up-to-date, quantitative information (e.g., spec-
ification documents may be out of date, and surveys may
not provide quantitative information). However, when other
reliable sources of data are available, they may be used to
extract richer inferences or to cross-check inferences made
using data sources above.

2.2 An analysis framework
We outline a simple framework for management plane an-

alytics using the data sources above. This framework is only
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Management practices
Design practices

Number of devices and links
Topology characteristics

(e.g., whether a fat tree, network diameter)
Types of devices

(e.g., switches, routers, load balancers)
Hardware and software heterogeneity

Operational practices
Rate of change

Size of changes (#devices, #config lines)
Nature of changes

(e.g., adding nodes, editing ACLs)
Mode of change (automated, manual)

Operational health
Rate of alerts and tickets

Common root causes
(e.g., configuration error, h/w failure, s/w bug)

Impact of failures
(e.g., availability loss, duration)

Table 1: Example metrics for management plane analyt-
ics.

one possible way to analyze the data—it may not even be
the best way—but it has helped us narrow down the space
of possible analyses. The overall space is huge and there are
many other promising ways to slice it.

Our framework is based on inferring two categories of
metrics and then correlating them across time for a given
network or across different networks. The two categories of
metrics and example metrics for each are shown in Table 1.
Our goal here is not to be exhaustive, but rather to illustrate
the rich set of metrics that can be gathered and the rich anal-
ysis that this permits.

The first category is management practices, which we sub-
divide into two types based on the timescales of activities.
The first subtype, which we call design practices, represents
slower timescale activities of designing and provisioning the
network, selecting suitable devices, etc. It can be captured
using metrics such as the number of devices and links, levels
of hierarchy in the topology, network diameters, and hard-
ware and software heterogeneity. More advanced metrics
for capturing the complexity of a network’s design and con-
figuration, such as, the heterogeneity in reachability policies
imposed across end-point pairs [2] can also be considered.

While many networks do not explicitly log and track all
design practices, we can infer the metrics from configura-
tion snapshots. For instance, topology can be inferred from
interface configurations in device configuration snapshots;
layer-3 links can be inferred using subnet assignments of in-
terfaces (two ends of a link share a /30 prefix), and layer-2

interface configuration often has comments about which de-
vice they connect to. Richer information can be obtained by
constructing more descriptive models of a network’s con-
figuration; e.g., the number of configuration templates in
use [2] can shed light on hierarchy in the topology, and “rout-
ing process graphs” [13, 2] can illuminate the existance of
administrative divisions in the network [13]. While poten-
tially noisy, such inferences are good enough for the types
of aggregate analyses that we are proposing.

The second subtype of management practices, which we
call operational practices, represents day-to-day activities for
operating the network. These activities can be captured us-
ing metrics such as rate of configuration changes, size of
changes in terms of number of configuration lines or de-
vices, types of changes, and modality of changes. As we
show below, these metrics can be inferred from configura-
tion snapshots.

By studying the metrics above, we can meet the first goal
of management plane analytics, which is to infer and un-
derstand management practices. But it does not help meet
the second goal of understanding which practices are more
effective. For this goal, we leverage a second category of
metrics, which represents operational health of the network.
It can be captured using metrics such as the rate of tickets,
types of problems found, and the impact of experienced fail-
ures. These metrics can be extracted either directly from
trouble ticket logs if structured information is reliably popu-
lated or inferred by analyzing unstructured information [15].

Given both categories of metrics, we can now infer which
management practices can lead to better operational health
by correlating the metrics across space (different networks)
or across time for the same network. For instance, by corre-
lating the rates of change and rate of tickets across different
networks, we can determine if changing a network more fre-
quently correlates with more faults. A similar correlation
analysis can be done by slicing a network’s data temporally.
For example, we can compute the rate of change and rate
of tickets for different months in the past, and see if months
with more changes experienced higher failure rate in gen-
eral. Many such correlations are possible, each providing
valuable insight into the nature and impact of management
practices in today’s networks.

While valuable, the above does little to show causation:
we could infer that the configuration change rate is posi-
tively correlated with the rate of faults, but we cannot con-
clude from it that reducing change rate will reduce the fault
rate. Understanding causal relationships is key to develop-
ing accurate predictive models for a network’s susceptibility
to management issues or failures, which is the final goal of
management plane analytics. However, deriving such rela-
tionships and building suitable models is non-trivial. In par-
ticular, we must systematically control for various confound-
ing factors to establish causality with reasonable confidence.
Of course, we must also systematically identify all plausible
confounding factors.
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Figure 2: Is network size correlated to operational
health?

In the next section, we present an illustration of manage-
ment plane analytics. Via a preliminary study, we exemplify
the insights that it can offer and show empirically some of
the underlying challenges in developing predictive models.
We discuss richer analysis methods in §4.

3. PRELIMINARY ANALYSIS
Our study is based on data center networks owned and

operated by a large online service provider (OSP). The OSP
manages multiple data centers across the world. The devices
within a data center are organized into multiple networks (or
domains). Different networks host different applications and
have different sets of operators responsible for them. Each
network is built according to one of a handful of architec-
tures, where an architecture indicates the number of different
device roles in a network and the physical and logical inter-
connections to employ between devices within and across a
role. The networks range in size from tens to hundreds of de-
vices from several major vendors. In all, we study hundreds
of networks that are spread around the world.

For each network, we obtain trouble ticket logs over a
fourteen month period. We also obtain configuration snap-
shots of each device over the same period. The snapshots
were taken by a network management system (NMS), which
also tracks the role the device plays in the network and its
vendor and model.

3.1 Design practices
The first question we attempt to answer via our framework

is which design practices correlate well with the operational
health of a network? We use the number of tickets observed
for devices in a network, normalized by network size, as an
indicator of its operational health.

We first consider the network’s size. In Figure 2, we show
the expectation of the normalized number of tickets observed
for a network, as a function of size. Each bar represents a
fixed-size bin, and we show 95% confidence intervals. For
confidentiality, in this and other graphs in the paper, we do
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Figure 3: Is network heterogeneity correlated with oper-
ational health?

not show the absolute values of metrics that we study. But
correlations that we seek for our analysis are still visible.

We can see in Figure 2 that smaller networks in general
appear to have poorer operational health, but the weak nega-
tive correlation implies network size is not a good predictor.

Thus, we examine each network “one level deeper” using
a normalized entropy metric that indicates device-role het-
erogeneity. The metric is computed for a given network as
follows:

−
∑

i,j pij logNpij

logN , where pij is the fraction of de-
vices of hardware model i that play role j in the network,
and N is the size of the network. Higher values of this met-
ric indicate greater heterogeneity, where the heterogeneity
captures both the multitude of vendors used as well as the
number of distinct device roles in a network’s architecture.

In Figure 3, we show the expectation of the normalized
number of tickets observed for a network, as a function of the
normalized entropy binned in units of 0.33. That is, “low,”
“medium,” and “high” heterogeneity refer, respectively, to
normalized entropy in the range [0, 0.33), [0.33, 0.66), and
[0.66, 1]. When applied to all networks, we find a clear pos-
itive correlation between heterogeneity and poor network
health. To control for network size, we also show the re-
sults for small networks, and we observe similar evidence of
a positive correlation.

Thus, the degree of heterogeneity in a network is corre-
lated with, and potentially impacts, its operational health.

3.2 Operational practices
The next question we consider is which operational prac-

tices are correlated with operational health of a network?
We consider how often a network’s configuration is changed.
In particular, we group all configuration changes that occur
within a time window W of each other into a change event.
We then compute the number of change events a network
experiences per day, i.e., the change event rate.

To control for the impact of heterogeneity, we focus on
networks whose normalized entropy lies within a certain small
range. In Figure 4, we show operational health, as defined
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Figure 4: Is change event rate correlated with opera-
tional health?

earlier, as a function of change event rate. The bars corre-
spond to fixed-size bins. We see that within networks with
low degree of heterogeneity, those with a higher change event
rate see more trouble tickets. However, we do not see such
positive correlation in networks with a medium degree of
heterogeneity. One plausible explanation is that the extent
of heterogeneity in the latter case may already be contribut-
ing significantly to the network’s (poor) operational health.
Thus, change event rate is correlated with, and potentially
impacts, operational health for homogeneous networks.

Next we consider if a network’s change events were dom-
inated by “automatic” changes. These are changes made by
automation scripts or cron jobs, which we can determine
based on the user identifier included with each configura-
tion snapshot. To elaborate, if all configuration changes in
a change event were made by either a cron job or an au-
tomation account user ID, we consider the change event to
be automatic. We compute the fraction of all change events
that are likely to be automatic. This method underestimates
automatic change events as the operators tell us that many
changes that don’t include automation account user IDs may
also have taken place using other automation scripts.

Figure 5 shows operational health as a function of the frac-
tion of change events that were automatic (binned in units of
0.33). We see that within networks of a given degree of het-
erogeneity, there is no clear relationship between the frac-
tion of automated change events and the operational health.
Thus, unlike the rate of change, the extent of automation may
not be a good predictor for a network’s operational health.

3.3 Toward a model of operational health
The first step to building a model of operational health is

to identify the factors that matter. One way to judge if all
relevant factors are being considered is to determine if the
variability in the health metric (across time or across net-
works) can be collectively explained by the chosen factors.

For this analysis, we consider normalized ticket rate as
the metric of operational health, along with network size,
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Figure 5: Does extent of automation correlate with oper-
ational health?

entropy, change rate, and extent of automation as potential
factors. We then conduct analysis of variance (ANOVA) [1]
which partitions the variance of the response variable—the
operational health metric in our case—into components that
can be attributed to different factors and residual variance
that none of the factors capture. This analysis confirms the
results above; it shows that network heterogeneity is a key
contributory component (p-value < 0.05) and network size
and extent of automation matter less.

More importantly, it also shows that the set of factors we
consider is far from complete. They capture less than 95% of
the variance in the normalized ticket rate. Thus, we clearly
need to identify additional contributory factors. We then
added two more factors into the ANOVA analysis—mean
number of devices impacted by a change event and the ar-
chitecture type of the network. We find that the first factor
contributes but, surprisingly, the second one does not. How-
ever, much of the variance in normalized ticket rate still re-
mains to be explained. We are in the process of identifying
more contributing factors, starting with some of the metrics
that we proposed in §2.

4. RESEARCH AGENDA
Our analysis above merely scratches the surface of what

is possible through management plane analytics, and signifi-
cant more work is needed before the promise of management
plane analytics can be realized. We identify three broad ar-
eas of investigation.

New inference techniques.
So far, we have only made simple inferences from our

data. But the data sources are much richer, and more valu-
able information can be extracted. A particularly promising
direction is deeper analysis of successive configuration snap-
shots to infer the intent that underlies a configuration change.
This requires reasoning about both changes within a device
and across devices.

Further, while techniques exist to automatically classify
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trouble ticket logs into likely root causes [15], little work
has thus far gone into mapping faults to specific changes
in the control plane made by the management plane. The
challenge here is that faults due to a change can occur well
after the change was applied (which is why we conducted
a coarse-grained analysis to correlate changes to faults). A
better understanding of the nature of changes and faults can
help attribute faults to individual changes.

Making inferences from the outside.
Much of our focus above is on mining the two data sources

described in §2. However, it may be possible to make useful
inferences without direct access to that data by leveraging
existing techniques that measure networks’ data and control
planes from the outside. Many techniques already exist to
infer network characteristics such as topology (e.g., Rock-
etfuel [18]) and device types (e.g., nmap [14]). Operational
health of the network too can be observed externally, e.g.,
by regularly probing for failures (e.g., Hubble [9]) and ob-
serving the control messages that a network sends (e.g., BGP
announcements [12]).

That leaves us with the challenge of inferring manage-
ment practices. These practices may be inferred by observ-
ing changes in the network’s control plane. For instance,
techniques exist to infer a network’s control plane (e.g., rout-
ing weights and preferences) using data plane measurements
and BGP announcements [17]. By repeatedly inferring the
control plane, we can observe changes that the management
plane makes to it.

The inferences above may not be perfect, but we believe
that they can be done with usable reliability. If we succeed,
it would mean that researchers would be able to conduct
management plane analytics for commercial networks with-
out active cooperation from the operators of those networks,
greatly expanding the set of networks that can be studied.

From correlation to causality to practice.
While correlations that we suggest above are useful for

gaining insights, they do not imply causality. It is not nec-
essarily the case that a given network’s operational health
will improve if a management practice that is found to be
correlated with poor operational health is changed. We need
to establish causality before we can confidently recommend
changes to certain management practices. For this goal of
impacting practice, the networking community needs to de-
velop a different set of scientific methods. There are two
potential models.

The first one is observational studies in a large population.
If data from such a large number of networks is available
such that we can control for various confounding factors and
conduct a counterfactual analysis [5], then we may be able to
establish causality with (statistical) confidence. Implement-
ing this model will likely require a shared repository of in-
formation on the three types of metrics from many networks;
actual raw data is not necessarily needed. With community

support, it is feasible to create such a repository, as was done
for wireless traffic traces [6]. A key challenge here is under-
standing if all confounding factors have been accounted for.
As shown above, techniques such as ANOVA [1] can prove
useful here. Another key challenge is to normalize data con-
tributed by different, independently-administered networks.
For example, trouble tickets likely have different meanings
across organizations; one way to normalize them is associate
some uniform measure of impact with each ticket (e.g., some
normalized duration of outage).

The second model is controlled trials, where a network
changes a particular management practice without chang-
ing anything else. By repeating with multiple networks and
observing the impact on operational health, we can estab-
lish causality with (statistical) confidence. University and
research networks are good candidates for such trials given
their close relationship with the research community.

5. RELATED WORK
We are not the first to express interest in network manage-

ment practices. Other researchers have investigated specific
aspects of network management. For instance, references [3,
10, 19] study network configuration snapshots from a hand-
ful of campus and ISP networks to understand how config-
urations are changed over time when realizing various high-
level tasks and/or as networks grow over time. These and
other similar studies focus mainly on the first aspect of man-
agement plane analytics (inferring a network’s management
practices), and as such they do little to help improve man-
agement practices.

Researchers have also studied the network trouble ticket
logs to infer root causes and common failure modes [15].
We advocate using such inference methods and correlating
their inferences to management practices, to gain insight into
which practices lead to fewer network faults.

6. CONCLUSIONS
We argued for systematic analysis of the management plane

of today’s networks to understand which practices are com-
mon and which ones lead to better outcomes (e.g., fewer
faults). We observe that such analysis can be enabled by
mining data sources that are already available, and we demon-
strate its feasibility by conducting a preliminary analysis across
hundreds of data center networks. Our analysis shows that
the operational health is lower for networks that are more
heterogeneous and for network where configuration changes
are more frequent.
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