
MicroTE: Fine Grained Traffic Engineering for Data Centers

Theophilus Benson†, Ashok Anand†, Aditya Akella† and Ming Zhang ⋆

† University of Wisconsin-Madison; ⋆ Microsoft Research

ABSTRACT

The effects of data center traffic characteristics on data cen-
ter traffic engineering is not well understood. In particu-

lar, it is unclear how existing traffic engineering techniques

perform under various traffic patterns, namely how do the

computed routes differ from the optimal routes. Our study

reveals that existing traffic engineering techniques perform
15% to 20% worse than the optimal solution. We find that

these techniques suffer mainly due to their inability to uti-

lize global knowledge about flow characteristics and make

coordinated decision for scheduling flows.

To this end, we have developed MicroTE, a system that
adapts to traffic variations by leveraging the short term and

partial predictability of the traffic matrix. We implement

MicroTE within the OpenFlow framework and with minor

modification to the end hosts. In our evaluations, we show

that our system performs close to the optimal solution and
imposes minimal overhead on the network making it appro-

priate for current and future data centers.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Network]: Modeling

and prediction

General Terms

Design, Performance, Reliability

Keywords

Data center network, traffic engineering

1. INTRODUCTION

Commercial corporations, private Enterprises, and univer-
sities heavily employ data centers to run a variety of appli-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM CoNEXT 2011, December 6–9 2011, Tokyo, Japan.

Copyright 2011 ACM 978-1-4503-1041-3/11/0012 ...$10.00.

cations and cloud-based services. These services range from
Internet-facing “sensitive” applications, such as, Web ser-

vices, instant messaging, financial applications and gaming,

to computationally intensive applications, such as, indexing

Web content, data analysis, and scientific computing.

The performance of these applications depends on effi-
cient functioning of the data center’s network infrastructure.

For example, a congested data center network, where inter-

nal traffic is routinely subjected to losses and poor through-

put, could lead search queries to take longer to complete,

IM message to get delayed, gaming experience to deterio-
rate, and POP mail services and Web transactions to hang.

Dissatisfied end-users and subscribers could choose alter-

nate providers, resulting in a significant loss in revenues.

In this paper, we identify the need for, and requirements

underlying, a data center traffic engineering mechanism. We
design and implement MicroTE, a fine-grained traffic engi-

neering scheme that works atop a variety of underlying data

center network topologies. Using real data center traces and

synthetic workloads, we establish the effectiveness of Mi-

croTE in accommodating various data center traffic patterns.
Data center traffic engineering is in a primitive state to-

day. Most operators tweak wide-area traffic engineering and

single-path routing mechanisms to perform traffic engineer-

ing in their data centers. This is only natural given that these
mechanisms come bundled with current switches and they

are well-understood. However, this naive approach is effec-

tive only if the traffic of data center networks and wide area

networks share basic similarities. Other recent proposals for

new data center interconnects adopt Equal-cost Multi-path-
based techniques; e.g., both Fat-Tree [1] and VL2 [9] rely on

ECMP to “spread” traffic across multiple candidate paths.

However, these proposals have not been evaluated under a

range of realistic traffic patterns and it is unclear whether

simplistic ECMP is sufficient for such situations.
First, we seek to understand the extent of the performance

gap between existing traffic engineering mechanisms and re-

cent ECMP-based proposals. Next, we plan to analyze these

techniques to determine the inefficiencies in their designs

that lead to sub-optimal performance. In order to answer
these questions, we conduct simulations using traces col-

lected from two data centers, a large cloud computing data

1

center and a university’s private data center. We find that ex-

isting mechanisms achieve only 80-85% of the performance

of an optimal routing mechanism that uses perfect knowl-

edge about instantaneous demands and generates routes that

minimize congestion. Thus, there is significant room for im-
provement. We find that existing techniques perform sub-

optimally due either to (1) the failure to utilize multipath di-

versity, or (2) the failure to adapt to changes in traffic load, or

(3) the failure to use a global view of traffic to make routing

decisions.
While centralized routing platforms [14] can be leveraged

to address the third shortcoming above, it is less clear how to

design techniques that can optimally accommodate dynamic

variations in data center network traffic to address the first
two shortcomings. One option is to use recent proposals for

traffic engineering in ISPs [4, 21, 15, 20] that aim to compute

routes offering robust performance under a range of traffic

matrices. However, these techniques function at the time-

scales of hours. In contrast, measurement studies [13, 5]
of data center traffic have shown that data center traffic is

bursty in nature, and unpredictable at such long time-scales

(especially at 100s or longer timescales), making these ISP-

oriented techniques inapplicable.

Through our analysis of traces from the two data cen-
ters, we find that, despite the traffic being bursty, a signif-

icant fraction of data center traffic is predictable on short

timescales of 1-2s. For example, upon examining the cloud

data center, we find that in 80% of the 1s time intervals we

measured, at least 30% of data center-wide traffic was con-
tributed by ToR pairs (i.e., pairs of Top-of-Rack switches)

whose traffic volume was roughly the same in the prior 1s

interval. We also found that for nearly 70% of the ToR pairs

the traffic remains stable for 1.5-2.5s on average. We found

very similar properties in the private data center.
Motivated by this, we develop a technique, MicroTE, that

leverages the existence of short-term predictable traffic to

mitigate the impact of congestion due to the unpredictable

traffic. MicroTE must operate at the granularity of seconds

making it a fine-grained technique. Intuitively, MicroTE
works as follows: it relies on a central controller to track

which ToR pairs have predictable traffic at a fine granular-

ity, and routes them optimally first. The remaining unpre-

dictable traffic is then routed along weighted equal-cost mul-

tipath routes, where the weights reflect the available capacity
after the predictable traffic has been routed.

Two challengesmust be addressed in employingMicroTE:

ensuring minimal modifications to data centers networks,

and achieving scalability. To address the former challenge,

we introduce careful end-host modifications coupled with an
upgrade to the firmware in existing data center switches to

use OpenFlow. To address the latter challenge, we intro-

duce a variety of heuristics to scale statistics gathering of

fine grained monitoring data and to minimize network-wide

route re-computation when traffic changes.
We conduct large scale experiments using real data cen-

ter traces to show the effectiveness of MicroTE in practice.

The key observations from our evaluation are as follows:

(1) MicroTE offers performance within 1–15% of optimal

for real traffic traces. The sub-optimality is due to the fact

that MicroTE operates at fine time-scales, but at a coarse
spatial granularity. (2) Modifying MicroTE to operate at a

fine spatial granularity, e.g., to monitor and route predictable

server-to-server traffic enables MicroTE to perform 1–5%

away from optimal. (3) When traffic predictability is very

high, MicroTE performs closer to optimal routing. When
traffic predictability is very low, MicroTE seamlessly shifts

to ECMP. For intermediate situations, MicroTE offers per-

formance between ECMP and optimal routing. (4) MicroTE

imposes low overhead in terms of control messages required
both to monitor traffic and to modify routing entries in Open-

Flow switches.

Thus, the main contributions of our paper are threefold:

(1) an evaluation and analysis of existing and recently-proposed

traffic engineering techniques under real data center traces;
(2) an empirical study of predictability of traffic in current

data centers; and, (3) a new, fine-grained, adaptive, load-

sensitive traffic engineering approach that virtually elimi-

nates losses and reduces congestion inside data centers.

The remainder of this paper is structured as follows: we
discuss background material on current TE approaches and

on DC measurement studies in section 2. In section 3, we

present a study of the performance of existing and proposed

data center traffic engineering approaches. In section 4, we

use our observations to list design guidelines for data center
traffic engineering. We apply these guidelines in designing

MicroTE in section 5. We present details of our implemen-

tation in section 6 and evaluate it in section 7. We present

other related work in section 8 and conclude in section 9.

2. BACKGROUND

In this section, we present a brief overview of current traf-
fic engineering techniques and the issues they face. Then

we discuss some recent measurement studies in data centers,

and their implications on traffic engineering.

2.1 Current TE Approaches

Most of the current data center topologies use Spanning

Tree or ECMP for routing. In Spanning Tree, all traffic tra-

verses a single tree, leaving many links unused. This ap-

proach avoids routing loops, but at the cost of efficiency.

At high traffic load, the Spanning Tree algorithm can suf-
fer high congestion and packet losses. ECMP mitigates

some of these issues by utilizing the underlying path diver-

sity. ECMP randomly splits flows across the available equal

cost paths. ECMP works well when short flows dominate

the network. However if there are “elephant” flows, then the
random placement of flows can lead to persistent congestion

on some links, while other links remain under utilized.

The problem with existing data center topologies is their

inability to provide enough capacity between the servers they

2

interconnect. This restriction exists because current data

centers are built from high-cost hardware and data center

operators oversubscribe the higher tiers of the tree to keep

the total cost low. Thus, data centers are prone to congestion

under heavy traffic workloads. Recent approaches (Fat-Tree
[1, 16, 2], VL2 [9]) have proposed better interconnects that

can, in theory, support arbitrary traffic matrices under the

hose model. Next, we review these approaches and their

routing methodologies.

Fat-Tree is built on top of commodity switches using a
Fat-Tree interconnection topology, which increases the ag-

gregate bisection bandwidth while keeping the cost of net-

working infrastructure low. In this approach, a centralized

scheduler places the long lived flows on distinct paths to re-
duce the likelihood of congestion. The design assumes that

most bytes are carried by long-lived flows, and thus care-

ful placement of long lived flows should be enough to avoid

congestion. However, if flow size distribution is more uni-

form and consists mainly of large flows, their approach could
lead to congestion and losses in network. For placing other

flows, Fat-Tree utilizes flow classification, which like ECMP

load balances flows across available paths. Since the flow

size is not known apriori, every 5 seconds, Fat-Tree exam-

ines traffic from each flow and shifts large flows unto alter-
nate links. With most of the flows lasting less than 1 sec-

ond [13, 5], it is not clear if flow classification at this granu-

larity is good enough. Moreover, their flow classification is

performed locally on the paths leading up the tree towards

the core, so it is likely for multiple flows to choose the same
downward path from the core, leading to congestion down-

stream.

VL2 calls for replacement of specialized switches with

commodity switches which are arranged in a Valiant load

balancing architecture. This provides similar benefits as Fat-
Tree: support for full bi-section bandwidth and cheaper net-

working infrastructure. VL2 provides similar guarantees as

oblivious routing by utilizing ECMP style routing over the

Valiant load balancing architecture. Although VL2 provides

bounds over the worst case, it does this at the cost of aver-
age case performance. Further, VL2 forces all paths in the

DC to be of equal length by inflating shorter paths. Ideally,

Valiant load balancing should be performed on the level of

packets to achieve the theoretical guarantees. However, to

prevent reordering, Vl2 load balances at the granularity of
flows, leaving it vulnerable to the same issues as ECMP (dis-

cussed earlier).

2.2 DataCenter Traffic Characteristics

Not much is known about the traffic characteristics in data

center. A few recent studies [13, 6, 5, 9, 12] have shed some

light. Here we review some of their findings and their impli-
cations on traffic engineering.

In [6, 5], Benson et al. evaluated several data centers and

discovered that losses occur primarily at the edge of the data

centers. In examining traffic at the edge of a data center, they

found that the arrival pattern for the traffic can be character-

ized as a log-normal arrival process having ON periods, OFF

periods, and inter arrival times drawn from 3 different log

normal processes. Thus, they found that the traffic follows

a heavy tailed distribution and is bursty. The implication
of those observations on traffic engineering is that we can-

not directly adopt traffic engineering techniques designed for

ISPs, which function at coarse time scales of several hours

and assume relatively smoother traffic patterns.

Both Kandula et al [13] and Benson et al [5] found that
most data center flows (80%) last less than 10 sec and in ge-

neral 100 new flows arrive every millisecond. They found

that there are few long running flows (less than 0.1% last

longer than 200s) contributing less than 20% of the total
bytes, while more than half the bytes are in flows that last

no longer than 25s.

The implications on traffic engineering is that, any traffic

engineering technique (1) must scale to handle a large num-

ber of flows and (2) must accommodate both short and long
lived flows without making assumptions on the size.

3. COMPARATIVE STUDY

In this section, we evaluate the effectiveness of various

traffic engineering techniques and data center network archi-

tectures at accommodating data center traffic patterns. We

perform an extensive study using simulations with traces
from a data center running MapReduce style applications

(We call this data center CLD). This data center is comprised

of 1500 servers and 75 ToR switches. We collected several

days worth of network events from the 1500 servers at 1s

granularity. From these network events, we extracted, us-
ing a mapping of servers to ToR switches, the ToR-2-ToR

traffic matrix. In our simulations of the various topologies

and traffic engineering techniques, we feed as input into our

simulator a sequence of per second ToR-2-ToR traffic matrix

representing traffic over a 2 hour period. We note that this
data center is identical to that studied by previous work [13].

We also repeated the analysis using similar traces col-

lected at 1s time granularity from a university’s private data

center. Although this data center has a 3-tier hierarchy with

2 core routers, it differs in terms of size and hosted appli-
cations. While the previous data center hosts a variety of

MapReduce style applications, the university data center (which

we call UNV) hosts a variety of 2-Tierweb-services and con-

sists of about 500 physical servers and 2000 virtual servers.

Our observations for UNV are qualitatively similar to CLD
and we omit them for brevity.

Canonical tree topology: We first examine a canonical

2-tier tree topology with two cores, similar to that used in

the cloud data center from which the data was gathered. On

this topology, we first examine the performance of single
path static routing, and then we examine the performance of

ECMP (where flows are spread across 4 equal cost paths).

In Figure 1, we present the cumulative distribution of the

maximum link utilization (MLU) every second for the tree

3

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Maximum Link Utilization

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

ECMP
Optimal
SpanningTree

Figure 1: Distribution of the MLU for optimal, ECMP

and Spanning Tree on a canonical tree topology. MLU

greater than 1 indicates loss.

topology over the 2 hour period, when employing Spanning

Tree, ECMP and optimal routing. Optimal routing is com-

puted assuming perfect knowledge of the traffic matrix ev-

ery second, where we formulate a linear program with the

objective of minimizing the MLU. In general, we evaluate
different TE techniques using MLU because it allows us to

better understand the general health of the network. Highly

utilized links are unable to accommodate traffic burst and

will in general lead to buffering and increased latency.
We observe that ECMP and Spanning Tree performworse

than the optimal algorithm. In certain cases with MLU val-

ues greater than 1 indicating periods of severe congestion,

we noticed packet loss for both ECMP and Spanning Tree.

As expected, ECMP achieves lower MLU than Spanning
Tree, because ECMP leverages multiple network paths and

thus a larger network bandwidth. We find that there is a

of 15-20% gap between optimal routing and ECMP under

heavy loads. This gap exists because ECMP does not em-

ploy a global view when it schedules flows. We examine
the impact of the lack of global view in the context of the

Fat-Tree topology next.

In general, we find that ECMP is a better fit for data cen-

ter networks, however, it is not perfect as it still results in a

substantial amount of loss. ECMP can not eliminate loss be-
cause it attempts to create even utilization across all links by

balancing the number of flows across multiple paths; how-

ever, ECMP does not take into account the instantaneous

load of each flow which is central to controlling network-

wide load and losses. Consider two source-destination pairs
whose traffic is highly bursty, but the average load due to

either pair is low. Nothing stops ECMP from assigning the

two sets of flows to a common set of network links. Since

ECMP does not re-assign based on observed load, it cannot

help overcome losses due to temporary over-subscription on
the path, which may happen when both sets of flows experi-

ence bursty transmission at similar times.

These analysis illuminate an interesting point, namely that

although traffic engineering techniquesmust exploit multiple-

path routing in existing data center topologies in order to ob-
tain better performance, simply striping traffic across multi-

ple paths is insufficient.

Fat-Tree: Next, we examine a recent proposal, the Fat-

Tree interconnect, that supports high bisection bandwidth [1,

16]. In [1], the authors leverage a fixed number of shortest

path routes between each source-destination pair, and use a

local heuristic to balance load across the shortest paths in

order to meet reduce congestion and ultimately loss. In par-

ticular, at regular intervals (say, every second), each switch
in the lower level of the topology measures the utilization of

its output ports (averaged over some period of time, say 10s)

and reassigns a minimal number of flows if the utilizations

of the output ports are mis-matched. Ideally, the Fat-Tree

topology should be able to ensure zero losses on all links.
In studying Fat-Tree we find that the local heuristic prevents

this goal from being achieved. As observed in [1], there is

a 23% performance gap between Fat-Tree and optimal due

to conflicts between locally optimal decisions and globally
optimal decisions. We omit the detailed results for brevity.

VL2: Although we have not evaluated VL2’s architec-

ture [9], we note the authors of VL2 perform a similar eval-

uation to ours. In evaluating VL2, Maltz et al. observed a

performance gap of up to 20% with respect to the optimal.
They attributed this performance gap to drawbacks in the un-

derlying ECMP technique on which VL2 is based, namely

the inability of ECMP to track and adapt to instantaneous

demand.

Hedera: We conclude by evaluating Hedera [2] an ap-
proach which utilizes ECMP for short lived flows but utilizes

a centralized approach to route large flows with over 100MB

of data. In evaluating Hedera with our traces, we found that

it performed comparable to ECMP as most of the contending

traffic belonged in flows with less than 100MB of traffic.
To summarize, using real traces from a cloud data center,

we have found that existing techniques fail to control losses

in the presence of bursty traffic in data centers for one of the

following reasons: (1) Not using multipath routing (2) Not

taking instantaneous load into account and (3) Not making
decisions on the basis of a global view of the network.

4. DESIGN REQUIREMENTS FOR TE

In summary, our evaluations show a performance gap of

15-20% between optimal routing and current routing prac-

tices. Even on recently proposed data center topologies such

as Fat-Tree, the gap is 23%. The primary reason behind this
gap is lack of global knowledge.

An ideal TE mechanism should configure routes dynami-

cally by taking a global view of the future trafficmatrix (TM)

and computing optimal routes for the future traffic matrix at

hand. One way to approximate this is to predict the future
TM by extrapolating it from a series of historical TMs gener-

ated from the global view. However, this approach can only

be used if the traffic matrix shows some predictability.

Recent measurement studies [13, 6] have examined the

predictability of traffic in data centers; these studies show
that data center traffic is bursty and that the traffic matrix

lacks predictability at times scales of 150 seconds or longer.

Furthermore, Benson et al. [6, 5], show that the arrival pro-

cesses for data center traffic follows an ON-OFF pattern whose

4

parameters can be explained by heavy tailed distributions,

which provides further evidence that traffic is bursty and un-

predictable on long time-scales.

4.1 Predictability

Given these results, initially it appears as though there is

no predictability for us to leverage and hence our exercise

in building an effective traffic engineering technique may
be moot. In what follows, we present preliminary results

to show that a significant amount of traffic is predictable at

short time-scales.1 We also examine the time-scales of pre-

dictability across different ToR pairs. To perform this study

we examine traffic from the two data centers, CLD and UNV.

4.1.1 Prevalence and Time-scales of Predictability

We examine the change in traffic exchanged between each
pair of ToR switch and find that across different time periods

approximately 35% or 0.35 of the total traffic exchanged re-

mains predictable. This is shown more precisely in Figure 2

(a), where we present the distribution of the fraction of to-
tal traffic demand contributed by those ToR pairs which had

no significant change in traffic over a 1 second time period;

we use > 20% change as a thresold for significant change.

From Figure 2 (a), we observe evidence of different stability

patterns across the different data centers. More specifically,
in the CLD data center we observe that for 80% of the 1s

intervals, more than 27% of the total traffic demand in the

1s interval remains predictable (i.e., does not change signif-

icantly) for at least 1 second into the future. For the UNV

data center, we observe that in over 65% of time intervals
100% of the traffic remains stable within the next 1s time pe-

riod. These results provides us with proof that a reasonable

amount of short-term stability exists in the traffic demands

of data centers.

Next, we attempt to more accurately determine the dura-
tion of the observed stability. To do this, we examine the

run-length of the sequence of seconds where change in traf-

fic for each ToR pair remains insignificant, i.e., less than

20% compared to the demand at the beginning of the se-

quence. In Figure 2 (b), we present the distribution of the
mean run-lengths for each ToR-pair from both data centers

studied. From this figure, we observe that in the CLD data

center 60% of the pairs remain predictable for between 1.6

and 2.5 seconds on average. We observe a wider range of

run lengths in the case of UNV: in nearly 35% of the ToR-
pairs, the traffic is predictable for 1.5s-5s on average. Taken

together, these observations prove, that for the predictable

traffic, we should be able to use routes based on historical

TM for the last 1 second to effectively route them. However,

the traffic engineering technique must also be able to deal
with ToR-pairs with much less or no predictability traffic.

4.1.2 Factors Causing Predictability

1Prior works implicitly rely on such predictability to augment data
centers with “flyways” [12, 19].

We observed that despite different purposes and sizes, pre-

dictability exists in both the data centers studied. We explain

the observed predictability by revisiting the nature of the ap-

plications running in these data centers.

As stated earlier, the CLD data center hosts MapReduce
style applications. InMapReduce, a master and several client

machines work together in a two-step process to accomplish

a task. In the first step the master maps tasks to various

clients by sending them a set of commands. In the second

step, the clients transfer the result of processing chunks of
data back to the master. The first step often requires little net-

work traffic, while the second step requires large network-

wide bandwidth to transfer Megabytes/Gigabytes of data.

In this particular data center, the MapReduce engine tries
to eliminate communication between different ToR by co-

locating clients and the master within the same rack. How-

ever, this is not always possible for large jobs, where the

MapReduce engine is forced to map clients to other racks,

leading to traffic between different ToR pairs. The stability
we observe, is due to the reduce step when clients in a dif-

ferent rack from the master return results to the master. The

amount and time-scale of predictable traffic is dependent on

the number and spread of external clients. The unpredictable

traffic is due to a mixture of different types of control traf-
fic, ranging from control messages between the MapReduce

engine and various clients, to data block replication between

different clients, which happens asynchronously.

The UNV data center hosts a variety of 3-Tier web appli-

cations. The front-end receives requests from users and load
balances along a set of business logic tier servers. These

business logic servers in turn maintain persistent connec-

tions with the backend servers: the business logic pulls and

pushes data to the backend. Unlike in CLD where care was

taken to restrict most of the traffic to within a ToR, in UNV
the applications are engineered in such a way that most of

the traffic is exchanged between different ToR. The servers

connected to any given ToR hosts application servers for one

particular tier. For example, a particular ToR would host all

HTTP web-servers for the front-end tier. To fulfill user re-
quests, application servers from different tiers and thus diffe-

rent ToR switches must communicate. Predictability arises

due to the tiered nature of the applications; front-end only

talks with business logic and the business logic only talks

with the backend. However, this predictability is short-lived
due to small size of messages exchanged and dependence on

request pattern.

4.2 Design Requirements

Pulling all of our observations from our study of TEmech-

anisms in data centers and from our study on the predictabil-

ity of data center traffic, we have established a set of three
design principles that a TE mechanism designed for data

centers must adhere to in order to effectively alleviate loss

and reduce the maximum link utilization:

(1) Multipath Routing: An ideal approach must take

5

0 20 40 60 80 100
Stability (Fraction of Traffic)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CLD
UNV

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Mean Running Length of ToR Stability (in Secs)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CLD
UNV

(a) (b)
Figure 2: (a) Distribution of the fraction of total traffic demand and (b) Distribution of the mean run-length for top 100

ToR pairs.

advantage of the path diversity available in the data center

topologies. Failure to do this will limit the available network
capacity and increase the likelihood of congestion.

(2) Coordinated Scheduling using a global view of Traf-

fic: An ideal approach must coordinate the scheduling of

traffic across the available network paths using global view

of the network. Failure to do this will lead to global subop-
timal scheduling of flows - the local optimal paths may not

satisfy the prevalent traffic demand leading to congestion.

(3) Exploiting short-termpredictability for adaptation:

An ideal approach must take into account short term pre-

dictability where applicable but must also adapt quickly to
variations in the underlying traffic patterns, while generat-

ing routes that closely approximate the performance of the

optimal routing TE. In worst case, such an algorithm should

perform no worse than existing approaches. If the approach

performs poorly, then it provides operators with no incentive
to adopt it.

Next, we discuss our TE proposal keeping these design

goals in mind.

5. MicroTE: ARCHITECTURE

In this section, we present the architecture for a frame-

work, called MicroTE, that satisfies the design requirements
laid out in Section 4. MicroTE is a TE mechanism with the

ability to adapt to variations in the underlying network traf-

fic patterns at the microscopic (per-second) level. MicroTE

works by logically isolating predictable traffic from non-

predictable traffic and taking appropriate routing decisions
for both during every 1s interval. Specifically, MicroTE

routes predictable traffic optimally within the network first,

by computing routes meeting some global objective (e.g.,

minimizing the MLU. Then, MicroTE uses weighted ECMP

to stripe unpredictable traffic (at the flow level) across the
left over capacity along candidate paths for the traffic. We

note that when traffic is not predictable, even prior proposals

for optimal oblivious routing [3] degenerate into a form of

weighted load-balancing (especially on highly regular topolo-

gies such as those in data centers). In contrast with these
oblivious routing schemes, however, our ECMP-based heuris-

tic is far simpler to implement, and as we will show, it is

quite effective in practice.

MicroTE is designed to gracefully deal with varying lev-

Figure 3: Architecture

els of predictability: when a large portion of traffic is pre-

dictable, MicroTE routes all of it optimally. When the op-

posite is true, MicroTE seamlessly shifts to using ECMP.

This intrinsic flexibility allows MicroTE to handle any type
of data center.

In Figure 3, we show the key components of our frame-

work and how they interact. MicroTE consists of three com-

ponents; the monitoring component, a kernel module that
monitors traffic patterns and determines predictability be-

tween racks; the routing component which calculates net-

work routes based on the aggregated information provided

by the network controller; and the network controller which

aggregates the traffic demands from the servers and installs
routes unto the network switches. Next, we discuss the de-

sign issues in each of these components in detail below.

5.1 Monitoring Component

The monitoring component monitors traffic demands, or

flow statistics, between the rack that it is attached to and

the other racks in the network. In terms of obtaining the

flow statistics, there are currently two design alternatives:

(1) the network controller periodically poll switches; many
switches allow such probes and the OpenFlow API provides

mechanisms to poll statistics for specific flows. The switches

respond to the network controller with byte counts for flow

entries for inter-ToR traffic, where the counts are aggregated

over the poll seconds between successive polls. (2) the servers
in a rack can perform measurements of their traffic sending

patterns to other parts of the data center, and inform the con-

troller of the demands, either at regular intervals or in a trig-

gered fashion.

6

We chose to instrument the monitoring component within

the server; the monitoring component is comprised of the

set of servers attached to the edge of the data center. Us-

ing the servers over the network devices directly provides us

with 3 advantages, namely: (1) it allows MicroTE to proac-
tively respond to changes in demand, (2) it allows MicroTE

to scale to a large network, and (3) it reduces the process-

ing overhead imposed by MicroTE on the network devices.

The server-based system offers these advantages in the fol-

lowing ways: (1) it allows triggered updates of traffic de-
mands to the controller (when traffic demands change signif-

icantly), while a purely switch based approach, at least in the

current implementation of OpenFlow, only supports polling

by the controller, which is far less flexible; (2) it prevents
the network controller from creating a significant amount

of control traffic on the network by constantly polling all

switches on nearly a per-second granularity; and (3) it shifts

the bottleneck of constantly generating flow statistics from

the switches to the endhosts.
Each of the servers in the monitoring components tracks

the network traffic being sent/received over its interfaces as

well as with whom these bytes were exchanged; however,

only one server per rack is responsible for aggregating, pro-

cessing, and summarizing the network statistics for the en-
tire rack. This server, called the designated server, is also

charged with sending the summarized traffic matrix to the

network controller. To fulfill its role, the designated server

must be able to perform the following tasks: (1) collect data

from other servers in the rack, (2) aggregate the server to
server data into Rack to Rack data, (3) determine predictable

ToR pairs and (4) communicate this information with the

network controller. Next, we discuss how each of these is

realized.

5.1.1 Bootstrapping a new server

In order to report flow statistics to the controller, a new

server must first register its address and location with the

controller. We leverage the OpenFlow control messages to
do this. In OpenFlow, whenever a new server attaches to a

ToR switch, the switch sends a message to the NOX con-

troller. Upon receiving this message, the controller records

the location and address of the new server. With this con-
trol message, the controller is able to: (1) determine which

ToR switch the new server belongs to; (2) delegate the first

server that connects to a ToR switch as the designated mon-

itor for the rack; (3) inform the new server of the location of

the network controller; and (4) inform subsequent servers of
the designated monitor for the rack.

In our current implementation, the network controller and

monitoring components are preconfigured to communicate

on a specific port.

5.1.2 Summarizing traffic data

The designated server in each rack receives traffic statis-

tics from other servers in the rack on host-to-host traffic in-

formation. To reduce network overhead, this information

should be compressed into ToR-to-ToR switch traffic infor-

mation before being sent to the controller. To perform this

compression, a server-to-ToR switch mappingmust be avail-

able to each designated server. In our current implementa-
tion, MicroTE disseminates this mapping to the designated

server when the controller registers the designated server’s

address (section 5.1.1). The controller then proceeds to pro-

vide updates to the mapping as changes occur. This allows

each designated server to compress the host-to-host traffic
matrix into a ToR-to-ToR switch traffic matrix.

5.1.3 Determining traffic predictability

Determining traffic predictability is one of the most cru-

cial tasks performed by the designated servers. To determine

predictable traffic, the server examines the ToR-to-ToR traf-

fic matrix received over time and calculates the mean on each
individual entry within the matrix. The traffic between a ToR

switch pair is considered predictable if the mean and the in-

stantaneous traffic being sent are within δ of each other. Mi-

croTE uses an empirically determined default value of 20%,

due to space constraints we exclude results of our evaluation.
In applying the mean, we need to choose the granularity

at which measurements are collected and the mean window

size. In Section 4, we found traffic between ToR switch pairs

is predictable on a 2-second time scale. MicroTE must col-

lect measurements and compute running average at a time
scale smaller than 2 seconds. In our current design, a kernel

patch is applied to each server in the DC to (1) collect the

server’s TM every 0.1 seconds (prior work [17] has shown

that the CPU overhead incurred in analyzing network state

for each connection at this rate is less than 4%) and (2) send
a set of the TMs to the designated server every second, and

(3) act as the designated server when informed by the net-

work controller.

5.1.4 Updating traffic statistics

The designated servers need to continually send the sum-

marized traffic data to the network controller. In a naive im-
plementation, a designated server would send the entire traf-

fic matrix to the network controller every time it is updated.

However, this unnecessarily increases the amount of con-

trol messages transmitted over the network and processed

by the controller. In our current implementation, the desig-
nated servers send updates to the controller only if the set of

predictable ToR-to-ToR entries changes or if the traffic vol-

ume of any predictable ToR-to-ToR changes by more than

δ.

5.2 Network Controller

The network controller is charged with the task of aggre-
gating the information from the monitors. Upon annotating

the network view with traffic volumes between ToR pairs

and traffic predictability, this view is passed up to the rout-

ing component for the creation of network routes.

7

In addition to receiving information from the monitors,

the network controller also relays routes received from the

routing component to the switches; the controller installs

the appropriate flow entries in the forwarding tables of each

switch in the network.
To successfully fullfill its role, the network controllermust

be able to accomplish a few tasks, namely; (1) aggregate

data from the monitors into a global view and (2) install flow

forwarding entries into the flow tables on network switches.

Next, we discuss how each of these is realized.

5.2.1 Aggregating monitoring data

MicroTE requires two pieces of global information about

the network: the ToR-to-ToR traffic matrix and the topology.

The controller can easily reconstruct the ToR-to-ToR traffic

matrix from the data submitted by the monitoring compo-

nents.
To create the network topology, the controller relies on a

class of OpenFlow control messages exchanged between the

switches and controller. This class of control messages are

exchanged whenever a link or a switch becomes active or

inactive. With these messages, the controller can determine
the status of the links and switches as well as the network

topology.

5.2.2 Recomputing flow entries

The routing component needs to periodically recompute

the network paths as it receives an influx of traffic matrix

updates from monitoring components. In fact, the network
paths should be recomputed upon any changes in the traffic

matrix, e.g., the set of predictable ToR pairs changes or the

traffic volume of any predictable ToR pairs changes by more

than δ. To guard against frequent re-computations triggered

by a burst of traffic matrix updates, we choose a minimum
re-computation interval of 1 second after the averages are

received. i

5.3 Routing Component

This component is charged with computing network paths

using the global view provided by the network controller. In

Figure 4, we present a flowchart of the actions performed
by the routing component. The routing component tracks

the predictable and unpredictable ToR-to-ToR entries in the

TM based on the available historical measurements of the

entries. The routing component computes network paths by

first routing predictable ToR-to-ToR traffic entries in the TM
and then relegating the unpredictable ToR-to-ToR traffic en-

tries in the TM to a weighted form of ECMP; the weight

on each paths reflects the amount of bandwidth already con-

sumed by the predictable traffic. By doing this, the rout-

ing component avoids the risk of performing worse than the
existing ECMP based approaches, thus satisfying the third

design requirement.

By taking into account the global view of traffic for gen-

erating routes that utilize all network paths, our first and sec-

Figure 4: Flow chart of the logic within the routing com-

ponent.

ond design requirements are fulfilled. Next, we explore a set

of routing algorithms that can be applied within the routing

components.

5.3.1 LP formulation

We represent a network as a graph G = (V, E), where
each vertex is either a server rack or a switch and each edge

is a physical link. Let fu,v,k be the fraction of traffic between

the pair (u, v) assigned to the kth equal hop length path (1 ≤

k ≤ K), Pu,v,k be the set of links on the kth path between

(u, v), and Tu,v be the traffic volume between (u, v).
We have two constraints in the LP formulation. First, all

the traffic between each (u, v) is routed along the K equal

hop length paths between (u, v).
∑

1≤k≤K

(fu,v,k) = 1

Second, the total traffic volume traversing an edge e does

not exceed its capacity Cape multiplied by the link utiliza-
tion limit we are targeting, util.

∑

∀u,v,k,e∈Pu,v,k

Tu,v ∗ fu,v,k ≤ util × Cape

The objective is to minimize util, the maximum link uti-
lization, under the two constraints above.

5.3.2 Bin-packing heuristic

Now, we present our bin-packing heuristic. We begin by

sorting the predictable ToR pairs in decreasing order accord-

ing to their traffic volume. For each ToR pair, we compute

the minimum cost path where the cost of each link is the re-

ciprocal of its available capacity. We only consider K equal
hop length paths between a ToR pair in finding the minimum

cost path. After assigning the traffic of a ToR pair to a path,

we update the cost each link along the path by deducting the

ToR pair’s traffic volume from the residual capacity of the

corresponding links. In this way, a highly utilized link is un-
likely to be assigned more traffic and the maximum link load

will be minimized.

Next, we analyze the time complexity of the heuristic. Let

N and E be the number of nodes and edges in the topology.

8

Computing a minimum cost path requires O(E + NlogN)
time. Suppose there are P predictable ToR pairs, the overall

complexity of the heuristic isO(PNlogN +PE+PlogP).
The third term is for sorting the predictable entries in traffic

matrix.
Althoughwe have considered only two routing algorithms,

MicroTE allows the plug-in of other algorithms to attain a

dedicate balance between speed and optimality.

6. IMPLEMENTATION

We implement MicroTE using the OpenFlow framework.
In OpenFlow, a logically-centralized “NOX” controller [18]

written in software can add and delete forwarding entries at

fine-grained time-scales. This enables low-level program-

matic control over the routing and forwarding of the entire

network. By sending appropriate commands to the switches,
the controller is able to gather global network view and de-

termine how flows traverse the network (by installing appro-

priate flow entries). We implement the network controller

and routing component as C++modules in the “NOX” frame-

work and implement the monitoring component in C as a
kernel module in Linux.

7. EVALUATION

In this section, we conduct a thorough trace-driven analy-

sis of the effectiveness of MicroTE. In particular, we answer

the following questions:

Performance: How well does MicroTE perform when
compared to optimal routing or to ECMP-based approaches?

Fidelity: How well does MicroTE perform under diffe-

rent levels of predictability?

Speed, Scale and Accuracy: How well does MicroTE

scale to large data centers? What overhead does it impose?
How fast does it compute routes and install state?

We use the traces describes in the earlier sections in an-

swering these questions.

7.1 Performing Under Realistic Workloads

We examineMicroTE’s performance by replaying the data

center traces on the canonical tree topology used for Fig-

ure 1. As before, in these simulations, ECMP is allowed to
split traffic over 4 equal cost paths. In Figure 5, we present

our results as CDF graphs of the MLU at various 1s time

intervals for running the MicroTE, ECMP, and Optimal al-

gorithms on the UNV(5 (a)) and CLD(5 (b)) data centers.

From Figure 5, we observe thatMicroTE outperformsECMP
in all 1s intervals, but it also performs poorly (1% to 15% for

UNIV) relative to Optimal.

Upon investigatingMicroTE, we found that the sub-optimal

performance is due to the coarse spatial granularity at which

MicroTE currently functions, namely, routing predictable
traffic at the granularity of the ToR pairs. As we observed

in Section 4, the predictability is largely due to the behav-

ior of individual applications. Thus, MicroTE can, in theory,

achieve better performance if it were to operate at an even

finer spatial granularity of application-level flows, or, even

simpler, server-to-server traffic.

Next, we evaluate a modified version of our algorithm

which operates at a finer spatial granularity by routing pre-

dictable traffic at the level of server-to-server. To emulate
this situation using our Tor-to-Tor traffic matrices, we as-

sume that: (1) traffic between a pair of servers in diffe-

rent racks is proportional to the “popularity” of the servers

(we assign popularity to servers at random from (0,1)) and

(2) if a ToR pair’s traffic is predictable then the traffic be-
tween all the constituent pairs of servers is also predictable

at the same time scales. In Figure 6, we present a graph of

the MLU for the various algorithms operating at the finer

spatial granularity. We observe that the gap between Mi-
croTE and Optimal is significantly reduced to between 1%

and 5%. The performance gains occurs because operating at

such a fine spatial granularity allows MicroTE to better bal-

ance predictable traffic across existing links. Furthermore,

we validate these performance gains by examining the good-
put across all flows in the data center. We find that, in com-

parison to ECMP, MicroTE results in a 65% reduction in

bytes lost overall and reduces the number of affected com-

municating pairs by 60% under heavy load situations (con-

sidering those instances when maximum utilization across
all links using ECMP is ≥ 90%). Although both MicroTE

and ECMP result in packet loss, MicroTE is able to reduce

the number of affected flows by taking global view and thus

result in a significant reduction in the amount of packets lost.

Employing the finer spatial granularity, while resulting in
better performance, does lead to greater amount of control

traffic and higher computational overhead. However, we be-

lieve that the optimizations we have proposed to summarize

traffic statistics (Section 6.1) and the bin-packing heuristic

(Section 6.3) help in eliminating these overheads. In Sec-
tion 7.3, we show that these overheads are indeed small in

practice.

7.2 Performing Under Different Levels of Pre-
dictability

Next, we examine the effectiveness of our techniques un-

der varying levels of predictability. Figure 7, shows the per-
formance of MicroTE and ECMP under two levels of pre-

dictability derived from the UNV traffic traces. The graph

on the left plots all time intervals (on the x-axis) where pre-

dictable traffic contributed between 0 and 75% of all bytes

and the one on the right plots all time intervals (on the x-axis)
where predictable traffic contributed betweenmore than 75%

of all bytes. In general, we observe that across the different

levels of predictability, MicroTE outperforms ECMP rela-

tive to the optimal algorithm.

When most traffic is unpredictable (left graph), we note
that MicroTE becomes ECMP. In fact, in the former case,

MicroTE also results in poorer performance than ECMP in

a small fraction of intervals, whereas this does not happen in

the latter case.

9

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Link Utilization

Micro
ECMP

Opt

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Link Utilization

Micro
ECMP

Opt

(a) (b)

Figure 5: Comparison of MicroTE, Optimal and ECMP for (a) UNV and (b) CLD. For CLD, Micro and ECMP curves

overlap.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Link Utilization

Micro
ECMP

Opt

Figure 6: Comparison of MicroTE, Optimal and ECMP

for UNV; ideal case with application level comparison.

In time instances when the traffic is more predictable (right
graph), we also observed an increase in the overall traffic.

Correspondingly, the averageMLU for the various algorithms

also rises. In Figure 7 (b), we observe that with higher traf-

fic the naive ECMP algorithm starts to drop a significant

amount of traffic with several peaks over 100 (and with a
few peaks over 110). MicroTE, like Optimal routing, is able

to utilize knowledge about the predictable traffic and route it

optimally to avoid most of the losses that ECMP incurs.

On the whole, we find that MicroTE is able to seamlessly

shift between performing like ECMP when predictability is
low and performing like Optimal when predictability is high.

7.3 Scaling to Large Data centers

Next, we examine the ability of MicroTE to scale to large
data centers. To do this, we examine several aspects of the

architecture. We examine the size of the control messages

exchanged between the network controller and the monitor-

ing component as well as the time it takes for the routing

component to computing network paths using the two rout-
ing algorithms described earlier. We evaluate MicroTE un-

der data centers of varying sizes; the largest data center we

consider has 10K hosts (a similar sized DC network as used

in the evaluation of prior works [13, 6, 9, 12, 2]).

Prior work [13] has shown that within a 10s time period, a
server in a data center communicates with 1-10% of servers

outside the rack, and 0.5% of server pair communications

are across the racks. As stated earlier, our CLD traces are

identical as those used by prior work [13], and for our UNV

traces we observe much more sparsity. We use the observa-

tions from the denser CLD DC as a model for studying the
scalability of MicroTE.

7.3.1 Control Messages

We start our evaluation by examining the burden placed

on the network by the control message between the ToR

switches, the monitoring servers and the controller. A low
network footprint is crucial for a TE mechanism because

a high network footprint will force the TE to contend for

network bandwidth and ultimately introduce new congestion

points within the network. MicroTE is composed of 4 types

of control messages: at server boot-up time the switch in-
forms the controller of the servers, the controller elects and

inform the servers of the designated monitoring server, the

designated monitoring servers tracks network demand and

informs the controller of this demand, and finally the con-

troller configures network paths into the switches.
Of the four control messages, only two messages are con-

stantly exchanged over the network, namely the message

transmitting the network demand to the switches and the

messages installing the network paths into the switches.

We first examine the footprint of the control messages car-
rying the traffic demand, which are transmitted every time

unit of granularity on which MicroTE operates (i.e. a sec-

ond). We assume that each rack in the data center has 25

servers. Each of the control messages carrying the network

demand from a designated server to the controller is based
on a compressed format requiring 8B of data per pair of com-

municating ToR switch (2B for source switch identifier, 2B

for destination switch identifier, and 4B for traffic volume).

When MicroTE operates in the finer grain server-to-server

mode, the worst case overheard can become much higher.
However, we notice that due to the sparsity of the communi-

cation matrix explained by Kandula [13], the actual control

messages are 4 MB or less than 0.5% of a server’s uplink

capacity.

Next, we look at the footprint of the flow installation mes-
sages. The format of the messages between the controller

and the switches is based on the OpenFlow protocol and

uses 100B per flow entry. MicroTE defines a flow as a pair

of communicating servers. In a network with 10K servers,

10

 20

 30

 40

 50

 60

 70

 80

 90

 0 20 40 60 80 100

M
LU

Time (in 1 secs)

MicroTE
ECMP

OPT

 50
 60
 70
 80
 90

 100
 110
 120

 0 20 40 60 80 100

M
LU

Time (in 1 secs)

MicroTE
ECMP

OPT

Figure 7: (a) Low and Medium predictability (between 0% and 75% of the matrix is predictable), and (b) High pre-

dictability (greater than 75% of the matrix is predictable). MLU greater than 1 indicates loss.

given the sparsity of the actual traffic matrix, we observed

that the combined overhead would be 50 MB, which is less
than 5% of a server’s uplink capacity and as such the impact

of these messages on the network will be minimal.

7.3.2 Reactiveness: Path Installation Speed

Now we compare the time required by the network con-

troller to install routes in a network under varying number

of average flows per server. To evaluate flow installation

time, we setup a testbed with 2 HP Procurve 5400 switches

running the OpenFlow firmware and a controller running an
Intel Core 2 Quad CPU running at 2.66GHz, with 3072KB

cache and 8GB of RAM. Each of the Procurve switches was

directly connected to the controller with a 1Gig link.

We observe that in the average case, MicroTE is be able

to install routes in a network where each server has on av-
erage 10 flows in less than 40 milliseconds. Similarly in the

worst case we observe that MicroTE is able to install routes

quickly, more specifically routes can be installed in under

150 milliseconds for a network wherein each server has on

average 80 flows. Given our evaluations of flow installation
time we believe that MicroTE should be able to install new

routes in sufficient time to take advantage of the predictabil-

ity within the underlying traffic.

7.3.3 Reactiveness: Routing Component Speed

Now we examine the time it takes to run the routing com-

ponent on networks of varying sizes. To evaluate the run

time performance of the various routing algorithms, we run

the algorithms on a machine with an Intel Core 2 Quad CPU
running at 2.66GHz, with 3072KB cache and 8GB of RAM.

Table 1 shows the runtime of just using the LP approach

for data centers of varying size and communicating pairs.

For small data centers with 50 ToRs, or those with 100 ToRs

but with few communicating pairs being predictable (up to
15%), the LP algorithm can be used for MicroTE. How-

ever, in a network with 100 ToR, an increase in number of

communicating pairs with predictable performance causes

a rapid degradation in the performance of LP — it takes

0.6 seconds to compute routes for the case where 50% of
ToR pairs send predictable traffic. Thus, the LP is not a

good choice in this regime, especially when the requirement

is compute routes to operate at a granularity of 1 second.

For larger data centers, the performance is worse across the

ToRs# LP Bin-Packing Heuristic
5% 15% 25% 50% 5% 15% 25% 50%

50 0.004 0.006 0.01 0.04 0.0007 0.002 0.004 0.007

100 0.03 0.17 0.22 0.6 0.007 0.015 0.026 0.055

200 0.52 1.55 3.05 6.85 0.025 0.08 0.12 0.25

400 4.47 28.07 - - 0.1 0.3 0.5 0.98

Table 1: Runtime (in seconds) of Algorithm for different

DC sizes

board: for a 200 ToR data center, it takes over 0.5 seconds

to compute routes when only 5% of the pairs are involved in
sending predictable traffic.

Table 1 also shows the runtime of the bin-packing ap-

proach. In contrast to the LP algorithm, bin-packing scales

much better across all situations. For example, for the data

center with 200 ToRs, it takes less than a quarter of a second
to compute routes for the case with up to 50% of communi-

cating pairs having predictable traffic. We note for 75% of

the traces bin-packing performs as well as the LP; however,

due to lack of predictability and the coarse grained nature

of the bin-packing heuristic it performs as good as or worse
than ECMP for 25% of our traces.

We next look at the runtimes of these algorithms for the

case of using server-to-server traffic matrix. The total num-

ber of all-possible communicating pairs for server-to-server

traffic matrix is quite large, however as indicated by earlier
study [13], the server-to-server traffic matrix is relatively

sparse in practice. We find that for 0.5% of communicat-

ing server pairs, the bin-packing algorithm takes close to 0.5

seconds for a data center with 3000 hosts. For very large

scale data centers, further scalability can be achieved by par-
allelizing both of these algorithms.

Our results show that for mid to large-sized data centers,

our bin-packing algorithm is appropriate because of its speed,

while for small data centers, or mid-sized data centers (100

ToRs) with few predictable communicating pairs, LP is ap-
propriate due to its greater accuracy.

To summarize, we find that MicroTE imposes a low over-

head on the network (§ 7.3.1) and is able to calculate(§ 7.3.3)

and install network paths (§ 7.3.2) in less than 1 second. We

showed that MicroTE is able to support networks of vary-
ing sizes. Furthermore, the server-to-server version of Mi-

croTE can scale in practice and provide better performance

benefits compared to using ToR-to-ToR matrix, however the

latter provides scalability even in the worst case communica-

11

tion patterns. In addition, we believe that work currently be-

ing done on the NOX controller and the OpenFlow firmware

will only lead to improvements of our framework by reduc-

ing both the time it takes to install routes and the size of the

control traffic required to install these routes.

8. OTHER RELATED WORK

Traffic Engineering. Traditional TE techniques, e.g., those
applied to WAN traffic in ISP networks, work with predicted

traffic matrices and operate on coarse time-scales of several

hours [4, 21, 15, 7]. These are inapplicable to data centers

because data centers traffic are predictable at much finer time

scales. Other more responsive TE proposals for ISP, such as
TEXCP [11], rely on local load balancing decisions which

our work shows to be suboptimal in the context of DCs.

New Architectures. Contrary to our approach of reduc-

ing congestion by reconfiguring the routing within the net-

work, others [9, 1, 10, 2] have argued for a forklift upgrade
of the DC’s network. They argue for the replacement of ex-

isting networks with a new substrate that can support a larger

bisection bandwidth. We argue that such techniques will

face slow adoption because a forklift upgrade will require

significant capital investment thus delaying deployment.
Augmenting Data Center Networks. Complementary to

our approach, is the use of techniques such as flyways([12,

19, 8]) that argue for adding extra links or devices as a means

of tackling hot spots. These extra links provide additional

capacities, where and whenever needed. Like us, they also
find the predictability of traffic demands at short time scales,

allowing flyways to keep up with the changing demand. Their

solution also relies on a centralized controller for adapting

flyways in dynamic manner. In contrast, our approach ar-

gues for fine grained TE with existing links while leveraging
short term predictability of traffic demands. Our approach is

more general and applicable to any DC topology, including

DC topologies with flyways.

9. CONCLUSION

In this paper, we studied the effectiveness of various traffic

engineering techniques and found that many of these tech-

niques are inadequate for today’s data centers for at least
one of three reasons: (1) lack of multipath routing, (2) lack

of load-sensitivity and (3) lack of a global view in making

traffic engineering decisions.

We develop the requirements for an ideal TE mechanism

for data centers based on empirical insights drawn from traf-
fic patterns within a cloud data center and a private campus

data center. In particular, we observe that data center traffic

exhibits short-term predictability that last on order of a few

seconds. Thus, we argue that a ideal TE mechanism: (1)

must utilize multipath routing, (2) must coordinate schedul-
ing of traffic, and (3) must adaptability to short term pre-

dictability.

To this end, we developed MicroTE, a new fine-grained

DC traffic engineering approach, that satisfies our design

goals. MicroTE uses a central controller to aggregate and

create a global view of network conditions and traffic de-

mands. Furthermore, MicroTE uses OpenFlow to coordi-

nate scheduling of traffic within the network. We describe

various options for routing and polling algorithms that allow
MicroTE to estimate and adapt to short term predictability as

well as to perform multipath routing. Extensive simulations

and experiments show that MicroTE offers close to the opti-

mal performance in practice when traffic is predictable, and

degenerates to ECMP when traffic is not predictable. We
note that ECMP is the best one can hope to achieve when

traffic is unpredictable. Our results show that MicroTE out-

performs recent proposals across a variety of settings.

10. ACKNOWLEDGMENTS
We would like to thank Srikanth Kandula and Dale Carder
for providing the data center traces. We would also like
to thank Chen-Nee Chuah (our shepherd) and the anony-
mous reviewers for their insightful feedback. This work is
supported in part by a Cisco gift and the following NSF
grants; CNS-0746531, CNS-1017545, and CNS-1050170.
Theophilus Benson is supported by an IBM PhD Fellowship.
Ashok Anand is supported by a Google Phd Fellowship.

11. REFERENCES
[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center
network architecture. SIGCOMM ’08, New York, NY, USA, 2008. ACM.

[2] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat.
Hedera: Dynamic flow scheduling for data center networks. In NSDI ’10.

[3] Y. Azar, E. Cohen, A. Fiat, H. Kaplan, and H. Racke. Optimal oblivious routing
in polynomial time. STOC ’03.

[4] B. Fortz and M. Thorup. Internet Traffic Engineering by Optimizing OSPF
Weights. In Infocom, 2000.

[5] T. Benson, A. Akella, and D. Maltz. Network Traffic Characteristics of Data
Centers in the Wild. In Proceedings of IMC, 2010.

[6] T. Benson, A. Anand, A. Akella, and M. Zhang. Understanding Data Center
Traffic Characteristics. In Proceedings of Sigcomm Workshop: Research on
Enterprise Networks, 2009.

[7] A. Elwalid, C. Jin, S. Low, and I. Widjaja. Mate: multipath adaptive traffic
engineering. Comput. Netw., 40:695–709, December 2002.

[8] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya,
Y. Fainman, G. Papen, and A. Vahdat. Helios: a hybrid electrical/optical switch
architecture for modular data centers. SIGCOMM ’10, NY, USA, 2010.

[9] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A.
Maltz, P. Patel, and S. Sengupta. Vl2: a scalable and flexible data center
network. In SIGCOMM, 2009.

[10] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu. Dcell: a scalable and
fault-tolerant network structure for data centers. SIGCOMM ’08.

[11] S. Kandula, D. Katabi, B. Davie, and A. Charny. Walking the tightrope:
responsive yet stable traffic engineering. In SIGCOMM, 2005.

[12] S. Kandula, J. Padhye, and P. Bahl. Flyways to de-congest data center networks.
In Proc. ACM Hotnets-VIII, New York City, NY. USA., Oct. 2009.

[13] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken. The Nature of
Data Center Traffic: Measurements and Analysis. In IMC, 2009.

[14] N. Mckeown, S. Shenker, T. Anderson, L. Peterson, J. Turner, H. Balakrishnan,
and J. Rexford. Openflow: Enabling innovation in campus networks.

[15] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and C. Diot. Traffic
matrix estimation: existing techniques and new directions. SIGCOMM ’02.

[16] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, V. Subramanya, and A. Vahdat. Portland: a scalable
fault-tolerant layer 2 data center network fabric. In SIGCOMM, 2009.

[17] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha. Sharing the data
center network. NSDI’11.

[18] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker. Applying nox to the
datacenter. In Proc. of (HotNets-VIII), 2009.

[19] G. Wang, D. G. Andersen, M. Kaminsky, M. Kozuch, T. S. E. Ng,
K. Papagiannaki, and M. Ryan. c-Through: Part-time optics in data centers. In
Proc. ACM SIGCOMM, New Delhi, India, Aug. 2010.

[20] H. Wang, H. Xie, L. Qiu, Y. R. Yang, Y. Zhang, and A. Greenberg. Cope: traffic
engineering in dynamic networks. SIGCOMM Comput. Commun. Rev.,
36(4):99–110, 2006.

[21] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker. Traffic Engineering with
Estimated Traffic Matrices. Miami, FL, Oct. 2003.

12

