Loom: Flexible and Efficient NIC Packet Scheduling

Brent Stephens
University of lllinois at Chicago

Abstract

In multi-tenant cloud data centers, operators need to ensure
that competing tenants and applications are isolated from
each other and fairly share limited network resources. With
current NICs, operators must either 1) use a single NIC queue
and enforce network policy in software, which incurs high
CPU overheads and struggles to drive increasing line-rates
(100Gbps), or 2) use multiple NIC queues and accept im-
perfect isolation and policy enforcement. These problems
arise due to inflexible and static NIC packet schedulers and
an inefficient OS/NIC interface.

To overcome these limitations, we present Loom, a new
NIC design that moves all per-flow scheduling decisions out
of the OS and into the NIC. The key aspects of Loom’s
design are 1) a new network policy abstraction: restricted
directed acyclic graphs (DAGs), 2) a programmable hierar-
chical packet scheduler, and 3) a new expressive and efficient
OS/NIC interface that enables the OS to precisely control how
the NIC performs packet scheduling while still ensuring low
CPU utilization. Loom is the only multiqueue NIC design
that is able to efficiently enforce network policy. We find
empirically that Loom lowers latency, increases throughput,
and improves fairness for collocated applications and tenants.

1 Introduction

Many large organizations today operate data centers (DCs)
with tens to hundreds of thousands of multi-core servers [54,
47, 24]. In virtualized DCs, there are many competing ten-
ants, and operators need to ensure that these tenants are
isolated from each other and share resources according to
what they are allocated. With VMs and containers, it is
currently possible to ensure that tenants fairly share CPU
and memory. However, providing network isolation for
competing tenants on a server continues to remain a prob-
lem [50, 30, 10, 32, 29, 41, 57]. Further, each tenant may run
a variety of applications with different performance needs,
ranging from latency-sensitive applications such as web ser-
vices, search, and key-value stores, to throughput-sensitive
applications such as Web indexing and batch analytics. It is
similarly difficult to ensure that tenants’ applications do not
harm each other’s network performance objectives [34].
Network isolation is hard because more functionality is
moving to the network interface card (NIC), including packet
scheduling. Data center operators are upgrading server NICs
from 10Gbps to 100Gbps and beyond. To drive these high
line-rates, NICs provide function offloading to reduce CPU
load and multiple queues to enable parallel processing of
packets [51, 52, 57, 43, 29]. Without these optimizations,
applications struggle to drive line-rates. However, with them,

Aditya Akella
University of Wisconsin-Madison

Michael M. Swift
University of Wisconsin-Madison

it is not always possible to ensure suitable isolation among
competing applications/tenants/flows. System software multi-
plexes applications and tenants into a small number of queues,
and the NIC schedules packets from queues with coarse grain
policies. As a result, the on-NIC packet scheduler, and not the
OS, is now ultimately responsible for deciding which packets
to send and when to send them.

The main goal of our work is to enable rich hierarchies
of application-, tenant-, and DC operator-level policies to be
realized on NICs while driving high line rates. This helps to
simultaneously ensure that applications’ network SLOs can
be met, that tenants can be isolated from each other on the
data center network, and that operators’ network performance
objectives are satisfied.

To solve this problem, we created Loom, a new NIC design
that moves all per-flow scheduling decisions out of the OS and
into the NIC. Loom provides a customizable, hierarchical on-
NIC packet scheduler and an efficient OS/NIC interface with
a queue per flow. This enables Loom to implement a variety
of scheduling algorithms while also enabling the OS to drive
line-rates (100Gbps). Loom takes inspiration from recent
advances in switch design such as PIFOs and others [12, 55,
15, 56]. These switches utilize a programmable match+action
pipeline and generic scheduling queues to support a variety
of hierarchical scheduling algorithms. However, NICs are
a fundamentally different environment than switches, and
these existing approaches are not immediately applicable.
Loom addresses the problems that arise when implementing
programmable scheduling on NICs.

There are three key components to Loom. First, Loom in-
troduces a new network policy abstraction: restricted directed
acyclic graphs (DAGs). Existing abstractions, such as flat traf-
fic classes or strict hierarchies cannot express a common type
of end-host network policy. Specifically, hosts may want to
rate limit aggregated traffic by destination, such as over intra-
DC or WAN links (e.g., BWE [32] or EyeQ [30]). Loom’s new
DAG policy abstraction allows for per-destination rate-limits
to be expressed independently of the traffic classes used to
determine how tenants and applications share bandwidth.

Second, Loom introduces a new programmable packet
scheduling hierarchy designed for NICs. In switches, packet
headers are available to make scheduling decisions. How-
ever, NICs have limited on-NIC SRAM, so they must make
scheduling decisions prior to reading packet headers from
main memory via DMA. In Loom, the OS enqueues schedul-
ing metadata along with the descriptors used to notify the
NIC of new packets, and the NIC only fetches packet content
when it is scheduled to be sent.

Third, Loom contributes a new expressive and efficient

OS/NIC interface that utilizes batching and metadata in-lining
to reduce the CPU overheads of communicating the network
policy to the NIC. Specifically, Loom uses a doorbell queue
per core to efficiently aggregate both multiple packets and
policy changes into a single PCle write.

We build a software Loom prototype based on BESS [1],
and conduct experiments at both 10Gbps and 40Gbps. We
find that Loom is able to enforce complex hierarchical net-
work policies. Also, we show that Loom is able to enforce
policies that are not expressible in existing policy abstrac-
tions. In contrast, we find that it is not possible to enforce
even simple policies with existing multiqueue NICs. Further,
we demonstrate that improving network isolation translates
into reductions in latency, increases in throughput, and im-
provements in fairness for competing tenants and applications
that are collocated on the same servers. Through an anal-
ysis of worst-case behavior, we argue that Loom can still
operate at 100Gbps line-rate, even with minimally sized pack-
ets. Finally, we evaluate the overheads of our new OS/NIC
interface and find that Loom can reduce the number of gener-
ated PCle writes by up to 43x when compared with existing
approaches [43, 35].

2 Motivation

Different DC applications and tenants have different perfor-
mance requirements and service level objectives (SLOs). Ide-
ally, DC operators would be able to ensure that competing
applications and tenants are isolated according to some high-
level policy, and that application- and tenant-specific SLOs
are met [30, 10, 41, 11, 34]. Unfortunately, today, this is not
always possible. A key part of the reason is static and inflexi-
ble packet scheduling on server NICs today. We elaborate on
this issue in the rest of this section.

2.1 High-Level Network Policies

Multi-tenant DCs run different classes of applications, each
with their own performance objectives. Different applications
can benefit from customized scheduling algorithms [16, 18,
19, 17, 42, 59]. At the same time, cloud providers need to en-
sure that tenants on the same server fairly share resources, and
operators want high infrastructure utilization [34]. Meeting
these performance goals amounts to specifying and enforcing
a policy that determines how packets from all flows, applica-
tions, and tenants on a server are scheduled.

Figure 1 shows a possible high-level network policy for a
server. This policy should be enforced no matter how applica-
tions access the NIC, such as with SR-IOV that bypasses the
hypervisor and/or kernel. Our example is motivated by recent
work which demonstrated that there is significant potential for
increasing infrastructure utilization by collocating big data
applications with latency sensitive applications like key-value
stores (KVS) [34]. In this policy graph, the “leaves” shown
at the top are packet sources (e.g., different flows). Nodes
in this figure determine how packets from different flows are

\
Server &

Monitoring VM 1 °) VM N
and . N , .
Mgmt i I

Dst-1 - Dst-N ' '

Port) e |]

“a I i

' I

'

Policy
Node

y Wire (Logical)

Figure 1: A scheduling hierarchy for a server. Different parts
of this hierarchy are specified by different entities (Section 3).
The OS is responsible for dynamically enforcing this policy.
scheduled. Policies at different levels of the graph come from
different entities (e.g., operator, tenant, application).

In VM I in Figure 1, first, all the flows from an application
are aggregated. Each application can specify the scheduling
algorithm used for its own flows. Next, the tenant that owns
VM 1 specifies how traffic from its applications is scheduled.
Node (1) specifies that the competing flows from Hadoop
and Spark should use weighted fair queuing (WFQ) to fairly
share bandwidth. Node (2) then specifies that traffic from the
key-value store (KVS) should have strict priority over both
Hadoop and Spark traffic. Together, these nodes specify a
work-conserving policy for how competing traffic from VM
1 should share limited NIC bandwidth.

Additionally, some network operators may want to specify
per-destination rate limits that are enforced at hosts. This
is useful for ensuring network isolation across intra-DC and
wide-area links (e.g., BWE [32] and EyeQ [30]). In the exam-
ple, an operator specifies separate per-destination rate-limits
to all the traffic created by VM 1 with the Dst-1 through
Dst-N nodes (3), which may be replicated for other VMs.

Finally, an operator specifies how traffic from competing
tenants is scheduled. Node (4) specifies that different ten-
ants should use weighted fair queuing to share bandwidth
in proportion to the resources they are allocated (w:1, w:2,
w:4). Node (5) then specifies that management and hypervisor
traffic have strict priority over tenant traffic.

2.2 Issues with Multiqueue NICs

As the above illustrates, it is desirable to schedule traffic leav-
ing a server according to a high-level policy. However, the
principle challenge in doing this is in ensuring that applica-
tions with competing network objectives (e.g., bandwidth-
hungry vs. latency sensitive) do not impact each other’s
network performance. This is currently not always possible
because OSes need to use many independent NIC transmit
queues to drive line-rate!. As a result, the NIC and not the OS

'Erom our own experiments, we have found that, even with batching [7, 2]
and TSO, single core throughput in Linux is limited to around 36-40 Gbps.

Throughput (Gbps)
OFRNWAUIO N

SQ 16Q 16Q
(2Gbps) (2Gbps per-Q) (125Mbps per-Q)
Figure 2: Achieved rate for memcached with 16 threads when
trying to enforce a 2 Gbps rate-limit.

is now ultimately responsible for deciding which packets to
send and when to send them. Unfortunately, current on-NIC
packet schedulers are static, inflexible, and only support a lim-
ited number of traffic classes and scheduling algorithms [57].

2.2.1 Background

Modern NICs provide multiple transmit/receive queues and
interrupt lines. This reduces overhead by allowing multiple
cores to simultaneously send and receive packets. Current
best practices are to configure a separate transmit queue for
each core. By default, most NICs service queues using simple
deficit round robin scheduling [53].

Many NICs support a few additional features for control-
ling the packet scheduler. NICs with DCB support [21] pro-
vide priority scheduling and partition the queues on a NIC into
a different pool of traffic for each of 8 DCB priorities. Some
advanced NICs allow the OS to set per-queue or per-priority
rate-limits [35, 43]. A few NICs support a one-queue-per-flow
(QPF) model [43, 35]. These NICs only provide rate limits,
deficit round robin [53], and a small number of priorities.

While these scheduling features provide a limited ability to
implement fair scheduling, today’s NICs are unable to enforce
many other useful, rich network policies.

2.2.2 Inflexible NIC Packet Schedulers

To illustrate the problems with enforcing network policy on
multiqueue NICs, we performed a few experiments with
Linux and an Intel 10 Gbps NIC [27]. For each transmit
queue, we configure Linux Qdi sc to classify and schedule
packets according to a network policy. We find that this can
enforce policy when only a single transmit queue (SQ) is
used, but that network policy is violated when multiple NIC
queues (MQ) or a queue-per-flow (QPF) are used. Although
we use XPS [9] to pin transmit queues to cores in these MQ
experiments, we see similar results without XPS.

First, Figure 2 illustrates the difficulty in enforcing a rate-
limit for all traffic from a single multi-threaded application.
In this experiment, the policy is that the sum of all traffic from
a 16-threaded memcached application should be rate-limited
to 2 Gbps. Because network traffic is not uniformly spread
across application threads, it is not possible to configure a
per-queue rate limiter. Setting a rate-limit of 2 Gbps per-
queue leads to over-utilization, while setting a fair rate-limit
of 125 Mbps (2 Gbps/16) leads to under-utilization.

1.0
0.8

W 06

o

© 04
0.2

Throughput (Gbps)
OFRNWAUIONO®®

Throughput (Gbps)

o N A O ®

[(T |
024 68101214
Time (seconds)
—Jobl - Job2 —Jobl - Job2 —SQ - MQ - QPF

0.0k

|
024 6 81012

Time (seconds) FM = |TPUT), — TPUT ;| (Gbps)

(@) (b) ©
Figure 3: Unfairness when two Spark jobs are allocated equal
bandwidth shares. (a) Time series of the achieved throughput
for two competing Spark jobs with the MQ configuration. (b)
Throughput with the QPF configuration. (¢) CDF of the differ-
ence in aggregate throughput for two competing jobs.

CDF
ooooor

~N0OOOO
oo uvo

“00 25 50 75) 2500 5000
FM (Gbps) Avg Latency (us)
—SQ --MQ —-MQ-Pri —MQ-ETS —S8Q ---MQ —-MQ-Pri —MQ-ETS
(@) (b)
Figure 4: Hybrid approaches that combine DCB and software
to enforce a policy. (a) Difference in Spark throughput for two
competing tenants. (b) Memcached latency for 32KB values.

Next, Figure 3 shows an experiment where the network
policy is that two Spark jobs (each with multiple tasks) should
share network bandwidth equally, and each task is allocated
its own CPU core. Figure 3a and 3b plot a time series show-
ing unequal throughput achieved by each job for the MQ
and QPS configurations, respectively, and Figure 3c plots a
CDF of a fairness metric FM = |[TPUT;; — TPUT)|, i.e., the
difference in achieved throughput for the two jobs when they
are both active. Even though each job has the same number
of queues, it is still not possible to enforce network policy in
MQ because the active flows are not uniformly spread across
the cores. Similarly, because the NIC performs per-queue fair
scheduling and each job does not have the same number of
active flows, QPF does not fairly schedule traffic (Figure 3b).
In contrast, the OS can ensure a fair bandwidth distribution
when using a single queue (SQ). This is shown in Figure 3c.

With DCB, it is reasonable to try to enforce part of a net-
work policy in hardware, such as prioritizing latency sensitive
traffic, and then enforce the rest in software. Figure 4 shows
the results from two hybrid approaches. In this experiment,
there are two tenants who should fairly share the link band-
width. The first only runs Spark. The second runs both
memcached and Spark. The second tenant’s local policy is
that memcached traffic should have strict priority. First, the
MQ-Pri approach assigns memcached traffic to a DCB traffic
class given strict priority over other traffic, while the traffic
from both Spark applications share a traffic class and the
cross-tenant fairness policy is enforced by software. Second,
the MQ-Fair approach does the opposite and assigns traffic
from each tenant to different DCB traffic classes, with each

class being given a equal share of bandwidth, and enforces
the priority policy for memcached traffic in software.

Figure 4a shows that MQ-Pri is unable to fairly share band-
width between the competing tenants but achieves low mem-
cached latency in Figure 4b. Conversely, MQ-Fair has good
fairness, but very high latencies. This demonstrates that it
is not possible to have an OS or hypervisor both use multi-
ple queues and enforce only part of the network policy in
software with the NIC enforcing the rest in hardware.

2.2.3 Inefficient OS/NIC Interfaces

It is possible to use a dynamic approach to enforcing network
policy by collapsing it into appropriate per-queue weights,
rate limits, and priorities. However, here, scheduling metadata
for each queue needs to be updated as flows start and stop.
We find two performance problems to this approach. First,
with current NIC interfaces drivers must write a per-queue
PCle doorbell register after adding data to a queue; for small
flows across many queues, this can lead to many PCle writes.
Each update requires a separate PCle write, taking up to
900ns [23]. During this time, the CPU is otherwise unavail-
able. Furthermore, past research shows that when two cores
send data on different queues and write a doorbell for each
packet they are unable to achieve a 40 Gbps line rate [46].
Second, updating policy also requires expensive PCle
writes. These overheads are prohibitive, especially if many
different flows/queues must be updated simultaneousy, and
they directly undermine the benefits of offloading packet
scheduling to NICs. In this case, it may not be possible to
both drive line-rate and update the NIC’s packet scheduler.
To illustrate this problem, we measured the overheads of
configuring per-queue rate-limiters on a Mellanox ConnectX-
4 NIC [35]. Installing a new limit takes a median of 2.07ms.
Setting a queue to use an existing limit takes a median of
64us to complete. We also modified the driver to apply an
existing rate asynchronously, and not wait for completion
events (and errors). Even so, the median update takes 950ns!

3 DAG Policy Abstraction

Loom is a NIC design with a programmable packet scheduler
that offloads the enforcement of high-level network policy.
This section describes the design of the Loom policy DAG.

The key aspects of the policy DAG in Loom are: (1) what
scheduling algorithms can be expressed at each node in the
DAG, (2) how nodes in the DAG can be connected, (3) how
different sub-policies from individual applications and tenants
are composed, and (4) how traffic is classified into different
leaf nodes in the hierarchy.

Node Types. There are two types of non-leaf nodes in the
policy: work conserving scheduling nodes that determine the
relative ordering of different packets, and rate-limiting shap-
ing nodes that determine the timing of packets. Every node in
the policy is annotated with the specific scheduling or shaping
algorithm that should be used. All scheduling algorithms in

Leoend: ™ @
Shaping : i é é
Node |

]

Ol v
l (@)
Figure 5: An illustration of the relationships allowed between
scheduling and shaping nodes in Loom. A check indicates that
the relationship is allowed ((a) and (c)), while an ‘x’ indicates
the relationship is forbidden ((b) and (d)).

]]]
]]]
]]]
]]]
]]]
DN CTD R
]]]
]]]
]]]

Loom are expressed by enqueue and dequeue functions that
compute a priority (rank). For convenience, Loom provides
default implementations of common algorithms including
strict priority scheduling (Pri), rate-limits (RL), weighted fair
queuing (WFQ), and least slack time first (LSTF) schedul-
ing [38]. However, Loom also allows for installing custom
scheduling algorithms at a node.

Restricted DAG Hierarchy. Network policies in Loom
are expressed as a restricted DAG like what is shown in Fig-
ure 1. The restriction is that the policy graph forms a tree if
all shaping nodes are removed. Each shaping node may op-
tionally be a nested set of parallel shaping nodes. Once traffic
is aggregated for scheduling, it may only be separated again
for shaping. This prevents scheduling nodes from reorder-
ing packets that were already ordered by a child while still
allowing for separate per-destination and per-path rate-limits.

Ideally, an operator would be able to compose a network
policy that specifies both a work-conserving policy for shar-
ing the bandwidth of the local NIC port and separate rate-limit
classes to manage bandwidth in the network core and over
WAN links. Unfortunately, such policies are not expressible
as a tree because once flows for different destinations have
been aggregated, they cannot be disaggregated and have sep-
arate rate-limits applied. The Loom policy DAG, however,
allows for policies where the traffic classes used to order
competing requests (i.e., work-conserving scheduling classes)
may be different than the rate-limit classes used to shape traf-
fic. In contrast, such policies are not expressible via Qdisc.

In more detail, the DAG is restricted in the following way:
if a node N’s parent is a scheduling node, then N may have at
most one parent (and outgoing edge). Loom imposes the re-
striction that a node may have multiple parents (and outgoing
edges) only if the parents are all shaping nodes. Further, all
sibling shaping nodes must share a single FIFO parent. This
ensures that scheduling nodes closer to the root do not reorder
packets that were already ordered by a child node.

These DAG restrictions are illustrated in Figure 5. Fig-
ure 5(a) and Figure 5(b) show that each node may have only
one parent if the parent is a scheduling node. Figure 5(c) and
Figure 5(d) show that all parallel shaping nodes must share
the same parent and child.

Traffic Classification. When packets are sent to the NIC,
the OS tags them with the appropriate metadata, and the NIC
then uses lookup tables to map the packet to the appropriate

leaf nodes in the policy DAG. This happens before Loom
enqueues the packet. Example metadata includes per-socket
priorities, socket IDs, process IDs, users, cgroup names, and
virtual interface IDs. Policies may also be expressed in terms
of network addresses (e.g., IP destination). For example, this
is the case with per-destination rate-limits.

Composing Sub-Policies. As Figure | illustrates, different
sub-graphs of the network policy need to come from different
entities. For example, each application may have its own
local scheduling algorithms. In Loom, each entity expresses
its own local policy as a separate policy DAG. These sub
graphs are composed at each level, such as the OS or VM,
by attaching the root node of each sub-graph to a leaf node
in the next level of the policy. Finally, the VMM passes the
final graph to the Loom NIC. When policies are not specified
(e.g., when a legacy application does not specify how its flows
should be scheduled), Loom uses FIFO packet scheduling.

Policy Limitations. Although our DAG policy abstraction
addresses a key limitation with applying rate-limits in prior
work [56], there are still some limitations to this abstraction.
One limitation is that polices are local to a node. In a cloud
data center, it may be desirable to express network-wide poli-
cies across a cluster of servers [50, 30, 10, 32, 29, 41, 44],
e.g., “All of the servers for Tenant A and Tenant B fairly share
network bandwidth.” However, such a policy is not directly
expressible in our abstraction. It would have to be imple-
mented by (dynamically) mapping this high-level policy onto
a collection of per-server and possibly per-switch policies.
To enforce such policies, rate-limiters need to be updated
whenever either VMs [29] or flows [44] start and stop.

Another limitation is that Loom does not guarantee that
the algorithms expressed as part of a policy DAG are efficient
or that a policy will map well onto the underlying hardware.
Providing default implementations of common algorithms
helps overcome this limitation. We also allow the NIC to
reject policies when it cannot efficiently compute the enqueue
and dequeue functions or when the DAG is too large. This
avoids poor NIC performance from inefficient policies.

4 Loom Design

There are two key components to the Loom programmable
NIC design: (1) a new scheduling hierarchy, and (2) a new
OS/NIC interface that enables the OS to efficiently and pre-
cisely control how NICs perform packet scheduling while
still ensuring low CPU utilization. This section first provides
background on programmable scheduling for switches and
then discusses these two components.

4.1 Programmable Scheduling Background

Loom’s design leverages recent advances in switch design
for programmable and stateful match+action forwarding
pipelines [12, 55, 15], and programmable hierarchical packet
scheduling [56]. In these systems, lookup tables arranged in a
pipeline map packet headers to logical queues and scheduling

D1 D2 (@TDQ)
To v T2 T3 -T2 —TD2+1

$—1

v
v

]
QT Shaping

Q1.Shaping Q1.Shaping

‘m‘DZ‘

Qt.Sched Qf.Sched Q1.Sched
»

{ Ruo(.Sched} [Ruo(Sched] [Roulsahed J

Figure 6: An illustration how a prior PIFO-based sched-
uler [56] operates that also shows how rate-limiters will be in-
correctly applied when only some of the packets at a scheduling
node should be rate-limited. Although the packet for D2 should
be rate-limited, the packet for D1 is incorrectly rate-limited be-
cause D2 has a higher rank than D1.

g

_-»

ol l--

2

2
P
2
4
P
3
g

ol
ol
¢
g
g

D2

metadata. For example, the NIC needs the leaf traffic class
for the packet. Similarly, WFQ tracks virtual time and the
number of transmitted bytes per class. Once scheduling meta-
data for a packet has been found, packets are enqueued into a
logical scheduling hierarchy implemented by a tree of priority
queues, also known as push-in first-out queues, or PIFOs.
Scheduling: Because all policies in both these systems and
Loom are expressed by computing a priority (rank), many
policies can be implemented with a common tree of PIFOs.
Different scheduling algorithms are implemented by changing
how the rank is computed (e.g., priority, deadline, virtual time,
slack, etc.). In general, within a single node, this model is
sufficient to emulate any scheduling algorithm [38].

A scheduling algorithm is expressed through an enqueue
function, a dequeue function, and the state maintained across
function calls. The enqueue function runs when packet is
enqueued at a node in the DAG. Using the local state and
metadata associated with a packet, this function then com-
putes and returns a rank (priority). On dequeue, the node
returns the lowest rank packet and a dequeue function updates
local state. For example, an implementation of fair queuing
would update a global virtual time in the dequeue function.
Shaping algorithms behave similarly, but they compute a
transmit time as a rank. This enables Loom to implement a
wide range of scheduling and shaping algorithms.

For example, strict priority scheduling is implemented by
computing a priority on enqueue. WFQ is implemented by
computing a virtual time for the packet on enqueue and updat-
ing a global (to the node) virtual time on dequeue. Both strict
and token bucket rate-limits can be implemented by comput-
ing a wall clock transmit time on either enqueue or dequeue.
Other scheduling algorithms can also be implemented (e.g.,
for LSTF [38], we compute a slack time on enqueue).

Enqueuing and dequeuing from different nodes in the hi-
erarchy operates as follows. First, a match+action pipeline
finds all necessary metadata from the leaf traffic class. Then,
enqueuing starts at the leaf node. The enqueue function for
this node is used to compute a rank and enqueue a pointer
to the packet. Traversing the hierarchy from the leaf node to

the root, the local enqueue function at each node computes a
rank, and the NIC enqueues a pointer to the appropriate child
node at each parent.

The leftmost picture in Figure 6 illustrates this behavior.

When a new packet arrives at T, it is first pushed into Q1, and
then a pointer to Q1 is pushed into the Root PIFO. Conversely,
when the transmit port is ready to transmit a packet, it starts
by dequeuing the element at the head of the root of the PIFO
tree, which will be a pointer to a child PIFO. After running
the dequeue function, dequeuing then continues to follow
this pointer chain (e.g., Q1 and Q» could have other pointers
enqueued) until a leaf node is reached and the original packet
is ultimately dequeued.
Rate Limiting: To implement rate-limiting, each node in the
prior PIFO design uses both a shaping queue for rate-limiting
and a scheduling queue for ordering packets. When the en-
queue function at a node determines that a packet should be
rate-limited, its transmission time is pushed into the shaping
queue for the node and the packet is added to the scheduling
queue. However, no pointers are enqueued at subsequent
parent nodes. Then, only once the computed transmit time
has expired, is the packet enqueued at the rest of the parent
nodes and it will eventually be scheduled.

Unfortunately, this design cannot apply rate-limits to only
some of the packets sharing a PIFO node in the hierarchy
(e.g., those going to specific sets of destinations).

Figure 6 illustrates this behavior and the problem that it
causes. In this example, there are two queues in the hierarchy,
the Root queue, and Q1. At time 77, a packet for D1 that
should not be rate-limited is enqueued in the tree. Then at
T, a high-priority packet for D2 that should be rate-limited
until time Tp, arrives. Because of its priority, it is ordered
in Q1 ahead of D1, but it is not enqueued higher up the tree
(per the PIFO rate limiting description above). Then, because
there is still a reference to Q1 at the root, the next time a
packet is dequeued from the root, the packet at the head of
the scheduling queue at Q1 will be returned. However, in this
case, the packet for D2 is dequeued because its rank in the
scheduling queue at Q1 for D2 is higher than the rank for D1.
At this point, there are no pointers to Q1 at the root, so D1
will not be sent. Later, at time Tp; a pointer to Q1 will be
enqueued at the root and D1 will eventually be sent. In effect,
the packet for D1 is rate-limited when it should not be, while
the packet for D2 is not rate-limited when it should be!

This problem occurs because the existing design does not
distinguish rate-limited from non-rate limited packets at a
node. For the same reason, having different rate limits at a
node can also lead to packets being sent at the wrong time.

4.2 Programmable Scheduling for NICs

NICs provide a different environment than switches, so exist-
ing approaches for programmable scheduling on switches are
not immediately usable on NICs. Switches have buffer space
to hold complete packet contents. In contrast, NICs perform

PCle Bus
|

Main Memory: Loom NIC:

i
[
/ Reconfigurable and Stateful i
Match+Action Table Pipeline

Wire

Reconfigurable Scheduling
Hierarchy (PIFO mesh)

'
LS T S |

Figure 7: A breakdown of the different components of Loom.
Note that descriptor queues are per-flow while the doorbell
queues are per-core.

scheduling over packet descriptors, and defer reading pack-
ets from main memory as long as possible to keep memory
requirements small. Reading just the headers is infeasible
because it would require two DMA operations per packet.
Instead, NICs must perform scheduling in advance of reading
a packet from main memory.

4.2.1 Scheduling Operations

To overcome this challenge, Loom relies on the OS to com-
municate any necessary scheduling metadata to the NIC. This
metadata may be explicitly set for each packet by includ-
ing scheduling information in-line with transmit descriptors
and doorbell writes. This metadata may also be implicitly
determined by the queue the OS uses to send a packet.
Figure 7 illustrates the design of our Loom prototype.
The OS assigns each flow its own descriptor queue. After
writing descriptors, the OS then rings an on-NIC doorbell.
Doorbells are then parsed and processed by an on-NIC state-
ful match+action pipeline. This pipeline is used to lookup
scheduling metadata (Section 4.3.2) and per-queue DMA
state (e.g., descriptor ring buffer address). Next, pointers to
descriptor queues are enqueued in a PIFO tree that is used
to schedule competing packet transmissions. At this step,
all scheduling ranks are computed using information from
the OS. When the request is dequeued, it is sent to the DMA
engine. Once the DMA engine has read the necessary de-
scriptor and packet data from main memory, packets are then
parsed and processed by the match+action pipeline before
being transmitted. For example, packet headers are updated
as needed to support features like segmentation offload (TSO)
and network virtualization in the match+action pipeline.
Regardless of whether metadata is explicitly in-lined with
descriptors and doorbells or implicitly associated with queues,
with this division of labor, it is possible to schedule the pro-
cessing of different transmit requests from different transmit
queues without already having access to the packet data. The

2
To D* - T4 —T5 —Tpo
|

[ﬂ) —

| | |

| | |

: : : Shaping Shaping
| | | |

E=E e et 'M3]
QT.SCHED | | Q1.SCHED || | Q1.SCHED || Q1.SCHED

| | |

] A]

| | |

| | |

| |

| |

\ I \
\ R \ |
[Q‘l [m[ml Iﬂ Root. SCHED |
| |
Root.SCHED RootSCHED) | Root.SCHED | Root SCHED

Figure 8: An illustration how Loom enforces different rate-
limits for different packets sharing the same PIFO. When a
packet is dequeued before its computed transmission time, it
is instead pushed into a separate global shaping queue. After
its transmission time, it is re-enqueued in the hierarchy.

[o]
Q1.SCHED

[L)
[]

H
R

trade-off between these two approaches is that including meta-
data in descriptors and doorbells increases the descriptor and
doorbell size while using implicit per-queue metadata con-
sumes additional on-NIC SRAM.

4.2.2 DAG Rate-Limiting

To implement the rate-limiter DAG abstraction in Loom, we
created a new design for rate-limiting with PIFOs that allows
multiple rate-limiting classes to be applied at the same PIFO
node. Crucially, this design uses a global shaping queue
to implement rate-limits instead of per-node shaping queues.
This overcomes the limitations of previous designs that cannot
support separate scheduling and shaping queues.

When no rate-limits are exceeded, packets are enqueued
into the PIFO hierarchy as if no rate-limit were applied. In-
stead of pro-actively enforcing rate-limits, transmission times
are computed and stored. Then, on dequeue, if the transmis-
sion time is in the past, dequeuing continues as normal.

However, if the transmission time is in the future on de-
queue, the request is enqueued in a separate global shaping
queue. Because all shaping is done with respect to wall-clock
time, independent shaping queues are not needed for each
node in the hierarchy. Next, after the computed (rate-limited)
transmission time expires, the request is then re-enqueued
according to its previous ranks in the scheduling queues, after
which it will be transmitted according to the policy as normal.
This ensures that subsequent high-priority traffic can bypass
rate-limited traffic. In contrast with previous designs [56],
Loom can correctly enforce rate-limits even when different
transmission times are computed for different requests other-
wise sharing the same scheduling queue in the hierarchy.

Figure 8 illustrates this design with an example. At time
TO, a packet for D2 shows up that should be rate limited until
time Tp,. However, at time T1, it is initially only enqueued
in the scheduling queues. Then, when it is dequeued from the
root PIFO at T2, it is re-enqueued in a global shaping queue
until its reaches its transmission time of TD2. At this point, it
is then re-inserted into the hierarchy.

4.2.3 Line-rate (100Gbps) Operation

An apparent trade-off of this design is that it can increase
the number of enqueue and dequeue operations performed
per packet. In the worst case, a packet in Loom may be
enqueued and dequeued two times from the PIFO hierarchy.
However, this does not prevent Loom from operating at line-
rate. Although our design, like prior work [56], uses PIFOs
that only support a single enqueue and dequeue operation per
cycle, a Loom NIC does not need to schedule a unique packet
every cycle to still be able to forward at line-rate.

Consider the following analysis: Assume a 100Gbps
NIC that operates at a frequency of 1GHz. The OS sends
minimum-sized 64-byte packets, and each packet requires the
worst-case 2 enq/deqs per packet. Even in this case, the NIC
can still schedule a packet every 2ns. Achieving line-rate only
needs to send a packet every 5.12ns. Further, we note that
this worst-case analysis is far from the common case. For
example, packets are often bigger, and only some rate limited
packets need multiple eng/deqgs.

We employ other optimizations to further reduce opera-
tions. One such optimization is that we include a flag in
scheduling metadata that indicates whether a rate-limit class
is currently being rate-limited. This allows for packets to be
immediately enqueued in the shaping queue, reducing the av-
erage number of operations per packet. Second, to bound the
number of subsequent dequeue operations that do not yield
a transmittable packet, we limit the number of outstanding
packets from each traffic class.

However, deep policy hierarchies can require multiple aver-
age cycles per dequeue, preventing 100Gbps operation. While
different stages of the hierarchy can be pipelined, if the depth
of the hierarchy exceeds the number of PIFO blocks, again it
may not be possible to guarantee an average rate of 1 eng/deq
per cycle. We expect policies in practice to be not arbitrarily
deep. For example, the graph in Figure 1 is quite rich, yet
it is uses < 5 PIFOs. A deeper policy graph is unlikely to
need more than 10 PIFOs. Thus, we believe we can support
100Gbps for practical policies.

4.3 OS/NIC Interface

Loom introduces an efficient and expressive OS/NIC interface
for notifying the NIC of new segments and communicating
network policy updates. Loom minimizes the fotal number of
PCle writes needed by the OS. This is accomplished through
two mechanisms: First, the OS uses batched doorbells to
notify the NIC of new segments. Second, scheduling and
metadata updates are passed in-line with packet descriptors
to avoid generating additional PCle writes.

4.3.1 Batched Doorbells

To efficiently support a large number of transmit queues,
doorbells are separated from (per-flow) transmit descriptor
queues in Loom (Figure 7). Instead of writing to a separate

doorbell for each queue, in Loom, doorbells are written in-
directly through doorbell queues. When the driver needs to
notify the NIC about new segments from different flows it
writes a batch of doorbell descriptors (16-bit integers) to a
per-core doorbell queue. These queues are stored on the NIC,
and, with write-combining, 32 doorbells (1 cacheline) can
be written in a single PCle write. This design builds on top
of the fact that modern OSes already send segments to the
NIC in batches [7, 2]. Unlike existing NICs that generate a
PCle write per queue to ring per-queue doorbells, Loom only
generates a single PCle write per batch.

Figure 7 illustrates this design by showing the different
types of queues that are used in Loom for OS/NIC commu-
nication and where they are located in memory. The control
flow when the OS needs to send a batch of packets in Loom
is as follows: first, descriptors for individual packets and con-
figuration updates (described below) are written to per-flow
descriptor queues. These are fast writes to main memory. Ad-
ditionally, descriptors for all of the packets in the batch that
belong to the same flow are created in a single write. Next,
the OS writes a batch of doorbell descriptors to a doorbell
queue. The NIC detects the write, finds the queues from the
doorbell descriptors, and processes the segments in the batch.

Although Loom relies on batching to reduce the number of
PClIe writes, it still provides low latency. If there are fewer
packets than can fit in a batch, the OS and/or application
need not wait before ringing a doorbell. If new packets are
generated in the interim, they will be part of the next batch.
Similarly, due to per-flow queues and on-NIC scheduling,
high-priority packets in later batches are not blocked by pack-
ets in earlier batches.

4.3.2 Scheduling Metadata

In Loom, the OS provides the NIC with the necessary meta-
data to compute scheduling ranks before the NIC has read
segment data. This is accomplished in one of two ways. First,
when the metadata applies to all the traffic in a flow (i.e.,
transmit descriptor queue), scheduling metadata updates are
sent through doorbell descriptors. Second, when the policy
applies to individual segments, scheduling metadata is passed
in segment descriptors. By passing metadata inline, there is
no extra OS overhead to communicate new scheduling in-
formation when new flows arrive. Furthermore, Loom saves
per-queue metadata in on-NIC lookup tables, which allows
for future segments to be sent without any additional meta-
data. All of the information needed by the NIC (e.g., the
address of the queue in main memory) is already implicitly
associated with the queue the segment is enqueued in.
Because the match+action pipeline processes packets se-
quentially, dynamically reconfiguring the scheduling hierar-
chy is straightforward. When processing a segment or door-
bell, each stage in the pipeline saves provided configuration
values (if present) to local SRAM as the stage processes the
segment or doorbell. These values can include scheduling

metadata, shared memory regions, algorithms, and traffic
classes. With Loom’s efficient doorbells this can be accom-
plished without additional PCle writes.

4.4 Discussion

There are a wide spectrum of different NIC designs, ranging
from NICs with specialized ASICs [3, 35], NICs with some
FPGAs [36, 33, 22], NICs built from tiled or network proces-
sors [39, 13, 14, 58, 37], and purely virtual NICs [48, 1]. We
believe that Loom’s design is applicable to all of these differ-
ent NIC types. While the PIFO abstraction is well suited for
efficient hardware implementation (ASIC) [56], recent work
has proved that all local scheduling algorithms are expressible
with PIFOs [38]. Thus, the Loom design can be applied even
to NICs with more flexible architectures. Similarly, all NIC
types benefit from an efficient OS/NIC interface. Even in a
virtual NIC, the use of doorbell queues reduces the number of
memory regions that need to be polled by the NIC’s backend.

Self-virtualizing NICs (e.g., SR-IOV) can reduce the CPU
overheads of virtual networking. Supporting SR-IOV with
Loom is straightforward. Instead of providing per-core door-
bells, Loom provides per-VCPU doorbells. VMs are then
allocated their own doorbells and events. For security, queue
creation/initialization is controlled by the hypervisor. How-
ever, common case operations like updating scheduling meta-
data are handled directly by the guest.

Similarly, Loom is also compatible with kernel bypass
frameworks like RDMA, DPDK [28], and netmap [45]. Like
netmap [45], we require such applications to call into the
kernel to ring doorbells and configure queues. Even with a
large number of kernel-bypass queues and applications, this
still allows for efficient doorbell batching and scheduling of
competing doorbells from different traffic classes.

S Implementation

There are two major aspects to our implementation. The first
is a compiler for the Loom policy DAG, and the second is a
prototype Loom NIC. Loom is open source and available at
https://github.com/bestephe/loomn.

For the policy DAG compiler, we made modifications to an
existing compiler for scheduling trees written in Domino [5].
Scheduling policies are expressed as a DAG, and each node
contains both an enqueue and a dequeue function. The Loom
network policy is expressed in a restricted subset of C++. The
output of the compiler is C++ code that combines generic
PIFOs with custom scheduling algorithms.

We created a software prototype Loom NIC using the
Berkeley Extensible Software Switch (BESS [1], formerly
SoftNIC [25]). To interface with the OS, BESS loads a ker-
nel module that registers a new Ethernet adapter. The driver
for this adapter communicates with a backend userspace ap-
plication that emulates the functionality of the Loom NIC
hardware. The driver and backend in BESS communicate
through descriptor queues implemented with shared memory.

https://github.com/bestephe/loom

We modified the BESS kernel driver to implement Loom’s
OS/NIC interface. We replaced BESS’s per-core descriptor
queues with per-flow descriptor queues and per-core doorbell
queues. Also, we modified the descriptor format and the
driver so that OS and flow-level metadata is included along
with transmit descriptors and doorbells. We also identified
and fixed a problem in the driver that caused excessive packet
loss when transmitting packets.

To implement the compiled Loom policy in the NIC back-
end, we extended a C++ implementation of a pipeline of
PIFOs [6]. We modified the shaping queues used for rate-
limiting to support our DAG abstraction (Section 4). We also
modified the model to support functions called on dequeue.

6 Methodology

For a baseline in our experiments, we compare our Loom
prototype against three different BESS configurations. The
first uses a single transmit descriptor queue for all packets
(SQ), the second uses a descriptor queue per-core (MQ), and
the third uses one queue per-flow (QPF) with round-robin
scheduling between competing queues. Although SQ is not
able to always drive line-rate in our experiments, it provides
a baseline where the OS is able to enforce network policy. In
contrast, while MQ and QPF are able to drive line-rate, they
provide a baseline that is not able to enforce network policy.

In both the SQ and MQ configurations, when possible
we configure Qdisc to try to enforce the network policy in
software (Loom policies that use DAG rate-limits are not
expressible in the Qdisc tree hierarchy). Because Qdisc does
not allow for packet scheduling to be configured based on
container, process, or socket ids, we rely on IP addresses and
ports to express the network policy when using Qdisc.

We perform two different types of experiments to evaluate
Loom. First, we use network-bound applications to profile
the network behavior of our implementation. Specifically, we
use the iperf3 [4] program to saturate network throughput and
the sockperf [8] application to measure end-to-end latency.
In these experiments, applications from different tenants are
isolated by placing them in their own containers (cgroups).
Second, we run real data center applications. We try to cap-
ture the performance of both latency and bandwidth sensitive
applications. We use memcached for a latency-sensitive ap-
plication. As a bandwidth-sensitive application, we use Spark
with the TeraSort benchmark to perform a 25 GB shuffle. We
compute throughput over a 50ms window.

We evaluate both types of experiments by sending data
between two servers on CloudLab [20]. In order to stress
Loom’s packet processing, we use a 1500 byte MTU for
all experiments, and do not use large segments, either for
transmit segmentation offload (TSO) or large receive offload
(LRO). The small packet size increases the number of packets
per second that must be scheduled by a single core.

The software NIC in every experiment uses one core for
packet transmission and one core for reception. This implies

that the CPU utilization of the software prototype is 200%.

We use two different experiment configurations. In the first
configuration (HW1), we use two servers with Intel X520
10GbE NICs, two Intel ES-2683 v3 14-core CPUs (Haswell)
and 256GB of memory. In this configuration, all servers use
the Loom prototype NIC for both sending and receiving.

In the second configuration (HW2), we use two servers
with 40 Gbps Mellanox ConnectX-3 NICs, two Intel E5-2650
8-core CPUs (Haswell) and 64GB of memory. These experi-
ments are asymmetric: only the server sending uses the Loom
prototype NIC. The BESS SoftNIC [25], upon which our
prototype is based, is currently unable to receive at 40 Gbps
with a 1500 byte MTU with a single receive core (although
it can receive at 40 Gbps with 9000B jumbo frames)>. To
demonstrate that Loom can schedule and transmit packets at
40 Gbps with a 1500 MTU, we perform asymmetric experi-
ments where the receiving host uses a vanilla driver.

7 Evaluation

First, we evaluate the ability of our Loom prototype to enforce
network policies. Next, we evaluate the efficiency of our new
OS/NIC interface. Finally, we evaluate the performance of
two different DC applications when used with Loom.

7.1 Policy Enforcement

Our first experiments demonstrate that our Loom prototype
can isolate tenants. We perform the following experiment:
There are five active tenants (T0-T4). Fair queuing (FQ)
with equal shares is used to share bandwidth between tenants.
The first tenant runs a single latency-sensitive application
(sockperf). Then, in successive two-second intervals, another
tenant starts running a bandwidth-hungry application. Start-
ing with Tenant T1, each tenant i starts 4’ flows (4-256). Two
seconds after the final tenant starts, the applications for each
tenant successively finish at two-second intervals.

Figure 9 shows the throughput achieved over time by dif-
ferent tenants in the single queue (SQ), multi-queue (MQ),
queue-per-flow (QPF), and Loom configurations. Figure 9a
shows that SQ is able to approximately enforce this policy
of tenant bandwidth isolation. However, because only a sin-
gle transmit queue is used, SQ is not able to fully drive the
10 Gbps line-rate. Next, Figure 9b shows that MQ is not
able enforce this policy. Instead, each successive tenant is
able to use more than its fair share of bandwidth because it
has more flows. As shown in Figure 9c QPF also leads to
unfairness because the NIC’s per-queue deficit round robin
scheduling favors the tenant with the most flows. In contrast,
Figure 9d shows that Loom is able to more precisely enforce
the network policy than SQ while also driving full line-rate.

Next, Figure 10 shows the 90" percentile latency observed
in each 250ms interval by tenant TO in the same experiment

2The limit is not intrinsic to Loom. It arises from a BESS design choice
to copy packet data in the kernel and not in the backend, and we are working
with the BESS authors to address the problem.

Time (seconds)
—T1 ---T2 —-T3 —T4

Time (seconds)

(a) Throughput with a single

NIC queue (SQ). queue per-core (MQ).

,V?lO ,m\lO
£ 8pm, g8 =
O 6 1 ® 6 . —)
?’5’ 4 ?g 4 ! i
o 2 1 ! o 2 + S
oo A 1) = |
5 10 15 20 5 10 15 20

—T1 ---T2 —-T3 —T4
(b) Throughput with a NIC

T,)\10 Tn\10
I £ 8
® 6 g O 6
= 4 " = 41 1
2 24 1 RN] 2 2 1 1 .
= 0 ' Cim = 0 [L
5 10 15 20 5 10 15 20

Time (seconds)
—T1 ---T2 —-T3 —T4

(c) Throughput with a NIC
queue per-flow (QPF).

Time (seconds)
—T1 ---T2 —-T3 —T4

(d) Throughput with Loom.

Figure 9: Aggregate throughput achieved by different tenants when each tenant should receive an equal share of bandwidth.

50 (a) 10Gbps
2.5
~~ L Ot
%]
0.0
§ 50 75 100 125
= Time (seconds)
>
Q.
S, (b) 40Gbps
=N 230
= o
0 5 10 15 20 Eig
Time (seconds) = py e

..... SQ ---MQ —-QPF —Loom 50 75 100 125
Time (seconds)

Figure 10: 90™ Percentile la- —J0 ---J1 —-J2
tency over time for a latency Figure 11: Throughput for the
sensitive application (T0) that different jobs from tenant T1
is configured to fairly share when only jobs J1 and J2 are
bandwidth with up to four subject to a combined 2.5 Gbps
other bandwidth hungry appli- and 10 Gbps rate-limit on a
cations (T1-T4) for SQ, MQ, 10 Gbps and 40 Gbps network,
and Loom. respectively.

for the SQ, MQ, QPF, and Loom configurations. Because TO
uses less than its share of bandwidth, its packets are prioritized
ahead of those from the other tenants. When the number of
flows is small, Figure 10 shows that all of the approaches are
able to provide similar latency. However, as the number of
flows increases, only Loom is able to provide consistent low
latency. QPF incurs the highest latency of any configuration
because it uses more queues than SQ and MQ.

We compared the CPU utilization of Loom to existing
designs: SQ, MQ, and QPF°. Loom performs similarly to
MQ and QPF because there is little CPU scheduling work and
no coordination across cores. In contrast, SQ has 25-300%
higher CPU utilization due to complicated packet scheduling
in software and contention for a single queue.

We study Loom’s ability to enforce shaping policies where
the rate-limit classes are different than the traffic classes used
for scheduling. This experiment uses the same tenants as
the previous one, but replaces Tenant T1. It now runs three
competing jobs: JO for Dst-1, and J1 and J2 for Dst-2. The
traffic for Dst-2 is rate-limited to 10 Gbps, and for Dst-1 is
not rate-limited. As before, every two seconds, an additional
tenant starts flows, but in this case all stop at the same time.

The results of this experiment are shown in Figure 11.

3Note that this CPU utilization is in addition to that used by our software
prototype, which uses two cores.

(@ sQ

2 Bl 1| 2
) 5 10 15 203 5 10 15 20
‘g Time (seconds) g Time (seconds)
- -
=) (c) QPF =) (d) Loom
3 40 - 3 40
£ 301 i £ 30
= 204 ! = 20 - |

10 A j 10 4f—4-1 T

0 — 0 —

5 10 15 20 5 10 15 20

Time (seconds) Time (seconds)
—T1 ---T2 —-T3 —T4
Figure 12: Aggregate throughput achieved on a 40 Gbps net-
work when the network policy is that each tenant should receive
an equal share of bandwidth.*

When the only active flows are from T1 (5-7 seconds),
together, jobs J1 and J2 are appropriately rate-limited to
10 Gbps while JO receives the remaining bandwidth. Fur-
ther, according to the scheduling policy, jobs J1 and J2 fairly
share the bandwidth available to their rate-limit class. How-
ever, after Tenant T2 and T3 have started flows at 9 seconds,
tenant T1’s fair share is 3.3 Gbps and the fair share of jobs J1
and J2 are less than 10 Gbps, we see that Jobs J1, J2, and J3
fairly share tenant T1’s bandwidth.

From Figure 11, we see that Loom is able to enforce the
policy DAG. In contrast, this policy is not expressible with
the static Linux Qdisc or the scheduling tree policies used by
prior work if the number of jobs is dynamic [56]. In a strict
hierarchy, the rate limit must be applied before applying fair
queuing across jobs, but the relative weight of the shaped and
not shaped traffic changes with each new job.

Performance at 40 Gbps and Beyond: To demonstrate that
our prototype scales with increasing line rates, we repeated
some of the previous experiments at 40 Gbps line-rates with
the small change that tenant T1 starts 16 flows instead of 4.
These results are shown in Figure 12 and Figure 11(b). In
both of these experiments, the trends stay the same. Figure 12
shows that SQ is only able to drive roughly ~10 Gbps due
to contention for the queue. In contrast, while MQ, QPF,
and Loom are able to drive ~37 Gbps, only Loom is able to

4Qur current prototype has a small throughput hit (1.3% median and 3.4%
average) when compared with MQ that we are working on improving.

SENIC/QPF Loom
Number of Tenants write/s | write/s | % Reduction
32 Tenants 150K 128K 19.2%
64 Tenants 243K 205K 15.8%
96 Tenants 303K 263K 13.2%

Table 1: The median number of PCIe writes per second gen-
erated by SENIC/QPF and Loom and the percent reduction in
number of PCle writes with Loom’s batched doorbells.

enforce network policy. Similarly, Figure 11(b) shows that
Loom can rate-limit traffic while also driving a 40 Gbps link.

Based on these results, we believe that it should be possible
to continue to scale Loom with increasing line-rates, e.g.,
100 and 200 GbE. These results demonstrate that a single
CPU core can schedule 1500B packets at 40 Gbps, and we
expect that a hardware NIC implementation should be able
to exceed this performance. NPU-based NICs can parallelize
computing ranks in enqueue and dequeue functions. Also,
prior work has already demonstrated that custom hardware
can enqueue/dequeue a billion packets per-second [56].

7.2 OS/NIC Interface

To evaluate Loom’s batched doorbells, we estimate the differ-
ence in number of PCle writes using Loom’s batched door-
bells and a NIC that has a queue-per-core with unbatched
doorbells, such as SENIC [43] and the ConnectX-4. We in-
strument Linux to count how many doorbells Loom would
use, and how many extra doorbell rings are needed without
batching. With Loom, there is one PCle write to the doorbell
queue for a batch of segments added to any queue by a single
core; this is approximately the same Linux behavior with a
queue-per-core, which adds a batch of segments from multi-
ple flows to a single queue. We calculate the number of PCle
doorbell writes in Loom as the number of skbs for which
the xmit _more flag is false, indicating the OS has no more
data to enqueue. Without batching, additional PCle doorbell
writes are needed for each different flow. We calculate the
number of additional writes as the number of times a segment
in a batch comes from a different flow than the preceding
packet, indicating it would be sent on a different queue.

We evaluate the interface efficiency with a variable number
of tenants each with 16 active flows sending traffic with iperf3.
‘We note that this experiment is a best case scenario because
it uses long-lived flows that are able to benefit from segmen-
tation offload, which reduces the total number of segments
sent to the NIC. Table 1 shows total number of writes per
second and the percent reduction in number of PCle writes
with Loom when compared with current approaches. In these
experiments, the total number of writes generated by the one
flow per-queue approach varies from 150K-303K writes per
second. Even with this benign workload, batched doorbells
can reduce the number of writes by up to 19.2%. As part of
future work, we are working to improve batching in Linux,
which we expect can lead to even further reductions.

Next, because the benefits of batched doorbells are work-

64KB Batch 256KB Batch

SENIC/QPF Loom | SENIC/QPF Loom

Line-rate write/s | write/s write/s | write/s
10 Gbps 833K 19K 833K 4.8K
40 Gbps 3.3M 76K 3.3M 19K
100 Gbps 8.3M 191K 8.3M 48K

Table 2: The number of PCle writes per second generated by
SENIC/QPF and Loom given a worst-case traffic pattern.

1.0 —r 1.00
0.8 e i 0951
oo =SQ] ool
a R --MQ & oss|
O 04 i - QpF - o
02} et — Loom |/ 0801
Vi 0.75 -
0.0
0 1 2 3 4 5 0.70 - . . n n
0 1000 2000 3000 4000 5000 6000
FM = |TPUTy, — TPUTr,| (Gbps) 90th Percentile Latency (us)
(@) (b)

Figure 13: Hierarchical policy performance. (a) CDF of fair-
ness for Tenants 1 and 2. (b) CDF of memcached latency

load dependent, we also performed a worst case analysis to
estimate the benefits of Loom’s approach. We approximate
an RPC-style workload with many clients and assume that
each 1500B packet in a batch is sent from a different flow.
In this scenario, existing approaches such as SENIC that use
a queue per flow generate a write per packet, while Loom
generates one write per batch. Table 2 shows computed write
rates of SENIC/QPF and Loom for different batch sizes and
line-rates. At 40 Gbps with 64KB batches, SENIC generates
3.3M writes/second, while Loom causes only 76,000, a 43x
reduction! For context, prior work found that the Intel XLL710
40 Gbps NIC cannot drive line-rate when the OS generates
more than 3.3M writes per second (i.e., a single doorbell is
rung per 1500B packet) [46].

This analysis demonstrates that existing one flow per-queue
approaches will have difficulty driving increasing line-rates
for workloads with many short flows. Additionally, this analy-
sis shows that Loom can reduce PCle overheads by increasing
the batch size, which is not possible with existing one flow
per-queue approaches under some workloads.

Finally, we also note that current approaches would gener-
ate even more PCle writes than we estimate as flows start and
stop to update scheduling metadata and the network policy.
In contrast, configuration updates in Loom do not generate
any additional updates as they are inlined with data.

7.3 DC Applications

We also used applications that are not always network bound
to evaluate Loom. We show that Loom addresses the prob-
lems associated with using multiqueue NICs demonstrated in
in Section 2. We omit most graphs due to lack of space.

Memcached rate limit. First, we found that despite using
multiple queues, Loom can accurately rate-limit memcached
traffic to 2 Gbps in the experiment from Figure 2.

Equal shares. When two Spark jobs are active (cf. Fig-
ure 3), Loom is able to fairly schedule traffic from the com-
peting jobs, even as different flows start and stop. In contrast,

MQ and QPF lead to job-level unfairness. SQ provides the
same fairness as Loom, but is not able to drive line rate.

Priority. We evaluated Loom’s ability to prioritize flows
from one Spark job over those of another. We find that Loom
can enforce this policy while MQ cannot. With Loom, the
average and 90" percentile job completion times for the high-
priority Job are 51.8s and 59.2s, respectively. In contrast, with
MQ, the average and 90" percentile job completion times are
69.38s and 151.6s, respectively.

Multi-workload priority. We conducted an experiment
where a single tenant is running two multi-threaded and multi-
process applications with different performance requirements
(memcached and Spark). The policy is that all of the traffic
from memcached should have strict priority over that from
Spark. We measure the impact that traffic from Spark has
on memcached latency by examining the 90th percentile la-
tency each 1 second interval. Both SQ and Loom isolate
memcached from the Spark job, but MQ and QPF have 2.5X
worse latencies in at least 25% of the intervals. Thus, even
though each application thread has its own core in MQ and
each flow has its own queue in QPF, neither is able to en-
sure that memcached response times are not impacted by a
competing Spark job.

Hierarchical policy. Figure 13 shows that Loom can en-
force hierarchical policies that cannot be enforced by DCB.
In this experiment, tenants T1 and T2 are allocated equal
shares of bandwidth. Tenant T1 runs memcached and Spark
with the local policy that memcached has strict priority over
Spark. Tenant T2 only runs Spark. 1’s memcached latency
should not be impacted by T1’s Spark job, and each tenant
should receive at most their fair share of throughput when
they are both active. Figure 13a plots per-tenant unfairness,
and Figure 13b plots the 90" percentile memcached request
latency in each one second interval during the experiment.
These figures show that Loom provides both isolation and
fairness, while MQ and QPF cannot.

8 Related Work

SENIC [43] is related to Loom because it provides each flow
with its own transmit descriptor queue and uses a doorbell
FIFO to notify the NIC of new segments. However, SENIC
only provides a single shared doorbell FIFO that requires
synchronization across multiple cores. Further, SENIC writes
individual 16B queue updates, and SENIC does not support
programmable policies.

The ConnectX-4 [35] (CX-4) NIC is also similar to Loom.
It supports many hundreds of thousands of descriptor queues
and uses per-CPU registers for doorbell updates. However,
individual doorbells and configuration updates need to be
written to the NIC one at a time. The CX-4 also does not
support hierarchical or programmable policies.

Titan [57] and MQFQ [26] can both improve fairness on
multiqueue NICs. However, neither can enforce traffic priori-
ties or hierarchical policies, and Titan incurs high scheduling

update overheads with dynamic workloads.

Carousel [48] and PSPAT [46] both use multiple dedicated
CPU cores to onload packet scheduling. However, both ap-
proaches still need to use multiple independent cores to drive
100 Gbps line-rates. Although they both use as few cores
as possible, this does not solve the problems associated with
multiqueue NICs. Further, Carousel can only express rate-
limits, and, while PSPAT can express the same policies as
Qdisc, it is still not able to express some policies that use
per-destination rate-limits.

Like PSPAT [46], Neugebauer et. al [40] also benchmark
PClIe performance. They find that PCle can significantly
impact the performance of end host networking. Both of these
projects motivate the need for an efficient OS/NIC interface.

Eiffel [49] improves the efficiency of software packet
scheduling, and, like Loom, Fiffel also addresses some short-
comings of PIFOs. Eiffel and Loom are complementary.
Eiffel would benefit from Loom if it is ever not able to drive
line-rate with a single core, and Eiffel can be used to enforce
Loom policy sub-trees in software.

FlexNIC [31] introduces new interface for receiving pack-
ets on a programmable NIC. Loom’s focus on packet trans-
mission makes it complementary to FlexNIC.

Silo [29] also finds that multiqueue NICs prevent per-
destination rate-limits from being enforced. However, Silo
cannot ensure that competing applications share NIC band-
width according to a high-level policy and has difficulty driv-
ing high line-rates because it only uses a single NIC queue.

9 Conclusions

DCs need to enforce a high-level hierarchical network policy.
However, with today’s multiqueue NICs, this is not possi-
ble. To address this deficiency, we created Loom, a new NIC
design that moves all per-flow scheduling decisions out of
the OS and into the NIC. Loom contributes 1) a new policy
DAG abstraction that can express per-destination rate-limits
independent of scheduling traffic classes, 2) a new flexible
programmable scheduling hierarchy designed for NICs, and
3) a new expressive and efficient OS/NIC interface. Together,
these aspects enable Loom to completely offload all packet
scheduling to the NIC with low CPU overhead while still
driving increasing line-rates (100Gbps). For collocated ten-
ants’ applications, these benefits translate into reductions in
latency, increases in throughput, and improvements in fairness
for competing tenants and applications.

Acknowledgments: We would like to thank the anonymous
reviewers and our shepherd Alex C. Snoeren for their thought-
ful feedback. Brent Stephens, Aditya Akella, and Michael
Swift are supported in part by the NSF grant CNS-1717039.

References

[1] BESS: Berkeley Extensible Software Switch. https://github.
com/NetSys/bess.

https://github.com/NetSys/bess
https://github.com/NetSys/bess

[2]

[3]

[4]
[5]

[6]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

Bulk network packet transmission.
Articles/615238/.

https://lwn.net/

Intel ethernet switch fm10000 datasheet. https://www.intel.
com/content/dam/www/public/us/en/documents/
datasheets/ethernet-multi-host-controller—
fm10000-family-datasheet.pdf.

iperf3: Documentation. http://software.es.net/iperf/.

pifo-compiler: Compiler for packet scheduling programs. https:
//github.com/programmable-scheduling/pifo-
compiler.

pifo-machine: C++ reference implementation for push-in
first-out queue. https://github.com/programmable-
scheduling/pifo-machine.

qdisc: bulk dequeue support. https://lwn.net/Articles/
615240/.

sockperf: Network benchmarking utility. https://github.com/
Mellanox/sockperf.

xps: Transmit packet steering. https://lwn.net/Articles/
412062/.

BALLANI, H., COSTA, P., KARAGIANNIS, T., AND ROWSTRON, A.
Towards predictable datacenter networks. In SIGCOMM (2011).

BALLANI, H., JANG, K., KARAGIANNIS, T., KiM, C., GUNAWAR-
DENA, D., AND O’SHEA, G. Chatty tenants and the cloud network
sharing problem. In NSDI (2013).

BOSSHART, P., GIBB, G., KIM, H.-S., VARGHESE, G., MCKEOWN,
N., IzzARD, M., MuJICA, F. A., AND HOROWITZ, M. Forward-
ing metamorphosis: fast programmable match-action processing in
hardware for SDN. In SIGCOMM (2013).

CAVIUM CORPORATION. Cavium CN63XX-NICIOE. http:
//cavium.com/Intelligent_Network_ Adapters_
CN63XX_NIC10E.html.

CAVIUM CORPORATION. Cavium LiquidIO. http:

//www.cavium.com/pdfFiles/LiquidIO_Server_
Adapters_PB_Revl.2.pdf.

CHOLE, S., FINGERHUT, A., MA, S., SIVARAMAN, A., VARGAFTIK,
S., BERGER, A., MENDELSON, G., ALIZADEH, M., CHUANG, S.-T.,
KESLASSY, I., ORDA, A., AND EDSALL, T. dRMT: Disaggregated
programmable switching. In SIGCOMM (2017).

CHOWDHURY, M., AND STOICA, I. Coflow: A networking abstraction
for cluster applications. In HotNets (2012).

CHOWDHURY, M., AND STOICA, 1. Efficient coflow scheduling
without prior knowledge. In SIGCOMM (2015).

CHOWDHURY, M., ZAHARIA, M., MA, J., JORDAN, M. I., AND
STOICA, I. Managing data transfers in computer clusters with orchestra.
In SIGCOMM (2011), ACM.

CHOWDHURY, M., ZHONG, Y., AND STOICA, I. Efficient coflow
scheduling with Varys. In SIGCOMM (2014).

Cloudlab. http://cloudlab.us/.

DATA CENTER BRIDGING TASK GROUP. http://www.ieee802.
org/l/pages/dcbridges.html.

EXABLAZE. ExaNIC VS5P.

/exanic-v5p.

https://exablaze.com/

FLAJSLIK, M., AND ROSENBLUM, M. Network interface design for
low latency request-response protocols. In USENIX ATC (2013).

Guo, C., YUAN, L., XIANG, D., DANG, Y., HUANG, R., MALTZ,
D., Liu, Z., WANG, V., PANG, B., CHEN, H., LIN, Z.-W., AND
KURIEN, V. Pingmesh: A large-scale system for data center network
latency measurement and analysis. In SIGCOMM (2015).

[25]

[26]

[27]

[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

HAN, S., JANG, K., PANDA, A., PALKAR, S., HAN, D., AND RAT-
NASAMY, S. SoftNIC: A software NIC to augment hardware. Tech.
Rep. UCB/EECS-2015-155, EECS Department, University of Califor-
nia, Berkeley, May 2015. http://www.eecs.berkeley.edu/
Pubs/TechRpts/2015/EECS-2015-155.html.

HEDAYATI, M., SCOTT, M. L., SHEN, K., , AND MARTY, M.
Multi-queue fair queuing. Tech. Rep. UR CSD / 1005, Depart-
ment of Computer Science, University of Rochester, October 2018.
http://hdl.handle.net/1802/34380.

INTEL. Intel 82599 10 GbE controller datasheet. http:
//www.intel.com/content/dam/www/public/us/en/
documents/datasheets/82599-10-gbe-controller—
datasheet .pdf.

Intel Data Plane Development Kit. http://dpdk.org.

JANG, K., SHERRY, J., BALLANI, H., AND MONCASTER, T. Silo:
Predictable message latency in the cloud. In SIGCOMM (2015).

JEYAKUMAR, V., ALIZADEH, M., MAZIERES, D., PRABHAKAR, B.,
KM, C., AND GREENBERG, A. EyeQ: Practical network performance
isolation at the edge. In NSDI (2013).

KAUFMANN, A., PETER, S., SHARMA, N. K., ANDERSON, T., AND
KRISHNAMURTHY, A. High performance packet processing with
FlexNIC. In ASPLOS (2016).

KUMAR, A., JAIN, S., NAIK, U., KASINADHUNI, N., ZERMENO,
E. C., GunN, C. S., A1, J., CARLIN, B., AMARANDEI-STAVILA,
M., ROBIN, M., SIGANPORIA, A., STUART, S., AND VAHDAT, A.
BwE: Flexible, hierarchical bandwidth allocation for WAN distributed
computing. In SIGCOMM (2015).

L1, J., MICHAEL, E., SHARMA, N. K., SZEKERES, A., AND PORTS,
D. R. K. Just say NO to paxos overhead: Replacing consensus with
network ordering. In OSDI (2016).

Lo, D., CHENG, L., GOVINDARAJU, R., RANGANATHAN, P., AND
KozYRAKIS, C. Heracles: Improving resource efficiency at scale. In
ISCA (2015).

MELLANOX TECHNOLOGIES. ConnectX-4 VPIL http:
//www.mellanox.com/related-docs/prod_adapter_
cards/PB_ConnectX-4_VPI_Card.pdf.

MELLANOX TECHNOLOGIES. Innova - 2 Flex Programmable
Network Adapter. http://www.mellanox.com/related-
docs/prod_adapter_cards/PB_Innova-2_Flex.pdf.

MELLANOX TECHNOLOGIES. Mellanox BlueField Smart-
NIC. http://www.mellanox.com/related-docs/prod_
adapter_cards/PB_BlueField_Smart_NIC.pdf.

MITTAL, R., AGARWAL, R., RATNASAMY, S., AND SHENKER, S.
Universal packet scheduling. In NSDI (2016).

NETRONOME. NFP-6xxx flow processor. https://netronome.
com/product /nfp-6xxx/.

NEUGEBAUER, R., ANTICHI, G., ZAZO, J. F., AUDZEVICH, Y.,
LOPEZ-BUEDO, S., AND MOORE, A. W. Understanding PClIe perfor-
mance for end host networking. In SIGCOMM (2018).

Pora, L., KUMAR, G., CHOWDHURY, M., KRISHNAMURTHY, A.,
RATNASAMY, S., AND STOICA, I. FairCloud: Sharing the network in
cloud computing. In SIGCOMM (2012).

QIu, Z., STEIN, C., AND ZHONG, Y. Minimizing the total weighted
completion time of coflows in datacenter networks. In SPAA (2015).

RADHAKRISHNAN, S., GENG, Y., JEYAKUMAR, V., KABBANI, A.,
PORTER, G., AND VAHDAT, A. SENIC: Scalable NIC for end-host
rate limiting. In NSDI (2014).

RAGHAVAN, B., VISHWANATH, K., RAMABHADRAN, S., YOCUM,
K., AND SNOEREN, A. C. Cloud control with distributed rate limiting.
In SIGCOMM (2007).

https://lwn.net/Articles/615238/
https://lwn.net/Articles/615238/
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/ethernet-multi-host-controller-fm10000-family-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/ethernet-multi-host-controller-fm10000-family-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/ethernet-multi-host-controller-fm10000-family-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/ethernet-multi-host-controller-fm10000-family-datasheet.pdf
http://software.es.net/iperf/
https://github.com/programmable-scheduling/pifo-compiler
https://github.com/programmable-scheduling/pifo-compiler
https://github.com/programmable-scheduling/pifo-compiler
https://github.com/programmable-scheduling/pifo-machine
https://github.com/programmable-scheduling/pifo-machine
https://lwn.net/Articles/615240/
https://lwn.net/Articles/615240/
https://github.com/Mellanox/sockperf
https://github.com/Mellanox/sockperf
https://lwn.net/Articles/412062/
https://lwn.net/Articles/412062/
http://cavium.com/Intelligent_Network_Adapters_CN63XX_NIC10E.html
http://cavium.com/Intelligent_Network_Adapters_CN63XX_NIC10E.html
http://cavium.com/Intelligent_Network_Adapters_CN63XX_NIC10E.html
http://www.cavium.com/pdfFiles/LiquidIO_Server_Adapters_PB_Rev1.2.pdf
http://www.cavium.com/pdfFiles/LiquidIO_Server_Adapters_PB_Rev1.2.pdf
http://www.cavium.com/pdfFiles/LiquidIO_Server_Adapters_PB_Rev1.2.pdf
http://cloudlab.us/
http://www.ieee802.org/1/pages/dcbridges.html
http://www.ieee802.org/1/pages/dcbridges.html
https://exablaze.com//exanic-v5p
https://exablaze.com//exanic-v5p
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html
http://hdl.handle.net/1802/34380
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://dpdk.org
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-4_VPI_Card.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-4_VPI_Card.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-4_VPI_Card.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_Innova-2_Flex.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_Innova-2_Flex.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
https://netronome.com/product/nfp-6xxx/
https://netronome.com/product/nfp-6xxx/

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55

[56]

(571

[58]

[59]

Ri1zz0, L. netmap: A novel framework for fast packet I/O. In USENIX
ATC (2012).

R1zz0, L., VALENTE, P., LETTIERI, G., AND MAFFIONE, V. PSPAT:
Software packet scheduling at hardware speed. http://info.iet.
unipi.it/~luigi/pspat/. Preprint; accessed May 31 2017.

ROY, A., ZENG, H., BAGGA, J., PORTER, G., AND SNOEREN, A. C.
Inside the social network’s (datacenter) network. In SIGCOMM (2015).

SAEED, A., DUKKIPATI, N., VALANCIUS, V., LaM, T., CON-
TAVALLI, C., AND VAHDAT, A. Carousel: Scalable traffic shaping at
end-hosts. In SIGCOMM (2017).

SAEED, A., ZHAO, Y., DUKKIPATI, N., AMMAR, M., ZEGUR, E.,
A KHALED HARRAS, AND VAHDAT, A. Eiffel: Efficient and flexible
software packet scheduling. In NSDI (2019).

SHIEH, A., KANDULA, S., GREENBERG, A., AND KIM, C. Sharing
the data center network. In NSDI (2011).

SHINDE, P., KAUFMANN, A., KOURTIS, K., AND ROSCOE, T. Mod-
eling NICs with Unicorn. In PLOS (2013).

SHINDE, P., KAUFMANN, A., ROSCOE, T., AND KAESTLE, S. We
need to talk about NICs. In HorOS (2013).

SHREEDHAR, M., AND VARGHESE, G. Efficient fair queueing using
deficit round robin. In SIGCOMM (1995).

SINGH, A., ONG, J., AGARWAL, A., ANDERSON, G., ARMISTEAD,
A., BANNON, R., BOVING, S., DESAI, G., FELDERMAN, B., GER-
MANO, P., KANAGALA, A., PROVOST, J., SIMMONS, J., TANDA, E.,
WANDERER, J., HOLZLE, U., STUART, S., AND VAHDAT, A. Jupiter
rising: A decade of clos topologies and centralized control in Google’s
datacenter network. In SIGCOMM (2015).

SIVARAMAN, A., CHEUNG, A., BubIu, M., Kim, C., ALIZADEH,
M., BALAKRISHNAN, H., VARGHESE, G., MCKEOWN, N., AND
LICKING, S. Packet transactions: High-level programming for line-rate
switches. In SIGCOMM (2016).

SIVARAMAN, A., SUBRAMANIAN, S., ALIZADEH, M., CHOLE, S.,
CHUANG, S.-T., AGRAWAL, A., BALAKRISHNAN, H., EDSALL, T.,
KATTI, S., AND MCKEOWN, N. Programmable packet scheduling at
line rate. In SIGCOMM (2016).

STEPHENS, B., SINGHVI, A., AKELLA, A., AND SWIFT, M. Titan:
Fair packet scheduling for commodity multiqueue NICs. In USENIX
ATC (2017).

TILERA. Tile Processor Architecture Overview For the TILE-
GX Series. http://www.mellanox.com/repository/
solutions/tile-scm/docs/UG130-ArchOverview—
TILE-Gx.pdf.

ZHAO, Y., CHEN, K., BAI, W., TiAN, C., GENG, Y., ZHANG, Y., LI,
D., AND WANG, S. RAPIER: Integrating routing and scheduling for
coflow-aware data center networks. In INFOCOM (2015).

http://info.iet.unipi.it/~luigi/pspat/
http://info.iet.unipi.it/~luigi/pspat/
http://www.mellanox.com/repository/solutions/tile-scm/docs/UG130-ArchOverview-TILE-Gx.pdf
http://www.mellanox.com/repository/solutions/tile-scm/docs/UG130-ArchOverview-TILE-Gx.pdf
http://www.mellanox.com/repository/solutions/tile-scm/docs/UG130-ArchOverview-TILE-Gx.pdf

	Introduction
	Motivation
	High-Level Network Policies
	Issues with Multiqueue NICs
	Background
	Inflexible NIC Packet Schedulers
	Inefficient OS/NIC Interfaces

	DAG Policy Abstraction
	Loom Design
	Programmable Scheduling Background
	Programmable Scheduling for NICs
	Scheduling Operations
	DAG Rate-Limiting
	Line-rate (100Gbps) Operation

	OS/NIC Interface
	Batched Doorbells
	Scheduling Metadata

	Discussion

	Implementation
	Methodology
	Evaluation
	Policy Enforcement
	OS/NIC Interface
	DC Applications

	Related Work
	Conclusions

