Net-Replay: A New Network Primitive

Ashok Anand, Aditya Akella
University of Wisconsin-Madison
{ashok,akella}@cs.wisc.edu

ABSTRACT

In this paper, we describet-Replaya new network primitive to
help application end points conduct in-band charactédmaif the
glitches they encountered. MNet-Replayeach network infrastruc-
ture element remembers a small amount of information foryeve
packet observed at the element over a certain time intdfuather-
more, network elements expose a simple “packet markinggrint
face, using which they can indicate to end-points whethenaar
they had seen a particular packet in the past. When applicati
end-points observe glitches, theplay (i.e. retransmit) the packets
which observed the glitch and leverage feedback from nétwie-
ments to determine the type and location of the glitch entved
by the packets. We discuss how end-host network stacks dshoul
be modified to leveragblet-Replayin this fashion. We also con-
sider how network infrastructure can suppbigt-Replayin a low-
overhead fashion.

We argue thalet-Replaycan enable applications to detect a variety
of glitches and react to them in an accurate and informed erann
while ensuring that the infrastructure stays simple and fa& be-
lieve that proactive support from the network in the formMNut-
Replaylike functionality is crucial to ensure robust performaraf
future Internet applications, many of which are likely to lighly
demanding and far less tolerant of network glitches thaditicanal
applications.

1. BACKGROUND AND MOTIVATION

The network infrastructure today does not support any wagyte

vide information regarding on-going transmissions to epgliaa-

tions. This information is maintained in some adhoc maneey. (
netflow etc) for some network devices, but is not availablestiovork-
end points via any standardized interface. This helps keemét-

work simple and efficient.

However, this design choice has had a significant impact pfi-ap
cations, in particular, on how application flows detect aesbond

to network-induced glitche€nd-to-end flows could be affected by
a variety of glitches, such as packet drops, re-orderingsetays.
Such glitches could have a significant impact on user expegie
especially when performance-sensitive applications sisctream-

ing video, VoIP etc. are employed. Since the network does not

tell anything regarding end-to-end transfers, applicagad-points

(in particular, the transport protocols) have to resortamplicated
logic to inferwhathad impacted their transfers so that they can re-
act appropriately to network glitches. In many cases, itiffécdlt

to make an accurate inference — for example, congestiore$oss
cannot be distinguished easily from losses due to packetsear
packets dropped by on-path filters — causing applicationgltw
react erroneously and affecting user experience. Alsongvio
the current design, application flows have no informatiogard-

ing wherein the network their packets had encountered a glitch. If
available, the application logic at end-points could usekhowl-
edge toovercomethe glitches by routing around them (using route-
control mechanisms [1, 2], or recently-proposed protoealsance-
ments [12, 14, 9]), and improve user experience.

We believe that emerging demanding applications will haske
need for a morgroactiveinvolvement from the network. The re-
cent years have seen tremendous growth in applicationd/tike,
gaming, e-commerce applications, and streaming over thél WA
which are far less tolerant of network glitches and demandhmu
more robust and resilient network behavior than traditiciastic
flows. Given these trends, relying solely on network endisoto
salvage robust end-to-end experience in the face of netimoltkced
glitches is likely to make application and transport protatesigns
more and more compleXet there is no guarantee that the stringent
needs of modern applications will be met.

In this paper, we propose a candidate approach for addiragtive
support into the network. In our approach, the network suisp®
new primitive called\et-Replayto helpongoing application flows
determine the type of glitches their data packets had eriemethas
well as the location of the glitch. End-points could use thprioved
knowledge of network glitches at the transport and/or ajagion
layers to respond to, or to overcome, glitches in an inforfastiion.
Our insight is thatNet-Replaycan be realized by implementing a
couple of extremely simple mechanisms in network elements a
installing a small amount of logic at network end-points.ughthe
simplicity and speed of the network infrastructure is natréeced

in any way.

In Net-Replaynetwork infrastructure elements perform two simple
functions:(1) Network elements remember set of packetsttiey
havesuccessfully forwardeover a past time interval, irrespective of
the application, source, destination or protocol field$impackets.

(2) Network elements expose a simple “packet marking” fates;
Before forwarding packets, network elements annotate ttoeim-
dicate if they hadhever seetthe packet in the near past. When flow
senders detect that some glitch had occurred (based on T&P AC
packets or other special reception reports), the senderamsmit,

or replay, a small number of additional packets which are exact du-
plicates of the packets that had experienced the glitch. nthe
replayed packets arrive at the app-receiver, the annagtiothem

[[3] original packet
Original packet with annotation

Retransmitted packet

> Original transmission

---—==> Retransmission

| Retransmitted packet with annotation

{717 Listof
: | past packets

Figure 1: Using Net-Replay to characterize packet loss: (1) The
sender application transmits three packets. (2) On-path ra-
ters remember the packets locally. Since router A saw the p&e
ets for the first time, it annotates all of them with its identifier.
Downstream routers don’t annotate any further. (3) Router
B drops packet 2. (4) Receiver detects packet 2 was dropped
and lets sender know (not shown). (5) Sender replays packet
2 (shown using dashed arrows). (6) Router C checks against
its local store and observes that it never saw packet 2 earlie
C annotates the retransmission. (7) The receiver conveys ¢h
information to the sender. The senders knows that the router
upstream from C caused the drop.

can be used to derive the type and location of the glitcheswenc
tered by theoriginal packets The whole process takes a handful of
extra RTTs. Figure 1 shows an example of how application flows
can useNet-Replayto characterize packet loss. Thidet-Replay
allows an application flow to conduat-band investigatiorof the
glitches experienced byspecific earlier packen the flow.

There exist a few probing-based approaches today to clesizet
network-induced glitches (see, for example, tulip [7]). wéwer,
they suffer from key drawbacks which prevent them from suppo
ing Net-Replaylike functionality effectively. First, in current ap-
proaches, the probing is dopat-of-bandandaftera glitch has been
observed. Second, the network may treat probe packetseatiffg
than data packets. Third, most probing techniques areeicife
at detecting transient glitches. Many aspects of our desigwet-
Replayare informed by these drawbacks.

Net-Replayis a network-supported but application- and transport
protocol-driven framework for diagnosing network glitshén-fact
network elements need not remember packets of all appitsti
and can remember packets of only those applications who teant
leveraga\et-ReplayApplications can indicate so by using a flag bit
in the packet header. However, for simplicity, we considetork
elements to remember packets from all application flows st oé
our discussions. In Section 3, we discuss in detail the nitaiap-
port required foNet-Replay

We argue thaiNet-Replaywill enable application flows to accu-
rately identify and respond to a variety of network glitchieslud-

ing those which are very short-lived. We also argue thet-Replay
can be incorporated into end-host network stacks in a wayhips
make both application and transport protocol designs flexamd
simple. Applications are given flexibility to decide how yheant to
overcomegglitches, while mechanisms are built into transport layer
to detect and characterizglitches. This retains the simplicity of
transport layer and gives flexibility for application deségs. In par-
ticular, a variety of flexible end-point strategies can beetleped to

overcomeglitches. End-hosts could leverage recent end-host con-

trolled routing protocols enhancements [13, 12, 14, 9] teroome
the glitches. Others may decide to track historical peréomoe of

ISPs and use it to avoid some ISPs altogether. We discusthis
more detail in Section 4.

We also present an approach for incrementally deploiagReplay
into a network with legacy infrastructure. We argue tNat-Replay
could be deployed within high-speed two ports switchesctviie
refer to as “bumps in the wire”, around the network devicese W
provide further details in Section 5.

We believe that the key ideas from our proposal can also be ap-
plied to develop debugging tools for specialized settirgggh as
large complex distributed systems, data centers and eisenpet-
works. Augmenting infrastructure with memory and expaytam
Net-Replaylike interface can help shed light on some complex fail-
ure modes in these settings.

2. RELATED WORK

Our ideas behintllet-Replayre motivated by a variety of past stud-
ies. We review these below.

Argyraki et al. propose a framework which relies on each I8P t
provide regular, out-of-band feedback to senders reggritie per-
formance of an application’s packets as the packets travkes|SP
network [3]. Each ISP is required to track ISP-wide perfonce
(e.g. packet loss, delay etc.) experienced by applicattosflising
expensive state on network devices. To reduce the amounveof o
head due to ISP reports, Argyraki et al. propose to offer eggape-
level feedback (generated either at long time scales orrfmrgs of
flows). Also, the proposal requires the support of a specéhé-
work to help end-hosts ensure the authenticity of repontegeed
by on-path ISPs. In contradtet-Replayis relatively light-weight,
requires no expensive state and does not rely on out-of-band
munication originating from network devices. Yétet-Replaycan
allow any individual application flow to characterize thetwerk
glitches it had experienced and respond appropriately.

The idea of storing packets in routers to figure out whethey th
were observed earlier has been used in Snoeren et al.’s wisineo
gle packet-based IP traceback [11]. Similar to our studge®en et
al’s work also uses Bloom filters to minimize storage ovarhen
routers. Our study differs in several other key aspects,gvew in
particular, we go well beyond Snoeren et al.'s framework exténd

it to have all routers expose an in-band packet markingfexteruni-
versally to all applications. We describe how regular endtf and
applications can leverage the interface to improve theirterend
experience. Packet marking has been explored in several coin-
texts as well, including Savage’s original traceback wa®] jwhere
probabilisticmarking was considered, and the ECN proposal where
the network indicates incipient congestion through matks 6ot
where the congestion was occuring). Our proposal can beadas
generalizing both of these marking techniques.

The recent X-trace proposal [6] also bears some similaatgur
work. X-trace logs the information associated with varioeswvork
operations, focusing in particular on tracking causal depeacies
between different protocols, applications, and middl&sowhich
may come into play during an end-to-end communication. T g
is to use the logs to perform retroactive diagnosis of fafur In
contrastNet-Replayenables in-band investigation of glitches faced
by ongoing communications. The second key difference isNle&
Replayis end-to-end application in nature, in that the networksdoe
not generate any feedback unless applications elicit iti@xp. In
contrast, X-trace is more provider-centric in that the etpton is
that the device logs are analyzed ex post facto for possélees of
failures.

Orchid [8] has similar goals of in-band network fault diagiso

However, Orchid requires expensive per-flow state maiataie at
each router. Many of the details are not there e.g. intevastith
end-hosts is not clear. In contrablet-Replayis relatively simpler.
We have explored the end-host interactions in greater Idetad
many other issues.

3. NETWORK SUPPORT FOR Net-Replay

In this section, we describe the functionality necessaiiwinet-
work elements to suppoNet-Replay We focus our description on
network routers, although our arguments apply at a highl leve
other network elements.

Basic Functionality. To supportNet-Replay each network router
needs to remember a list of all packets that it has succéssbum
warded in a past time-window. A router stores a hash for each s
packet inHashStore where the hash is computed over the entire
content and header, minus the mutable fields of the headeth&k
TTL. As a packet traverses a network route, each router chidck
the packet is present in its local HashStore. If packetisfound
implying that the router did not observe the packet over a fia
interval, then the router appends iteentifier (e.g. address of the
incoming interface) to the packet. If multiple routers apgéheir
identifiers then packet sizes can grow arbitrarily. So weliinthe
identifier of just the first such router into a single fixedesiteld
in the packet header; we call this the “PacketNotFoundAttfie
If downstream routers notice that the field is non-empty tthay
simply forward the packet along, without checking for thelgat's
presence in their local hash table. This helps expose thddoa-
tion on the path where a glitch was observed.

Practical HashStore Implementation. To supportNet-Replayef-
fectively, routers need to store packet hashes and rettiiera fast

argue later, this gives enough time to characterize netivatidced
glitches using transport layer mechanisms. Routers canpsds-
odically dump their SRAMs to slower memory to provide a log fo
future queries, to aid operators in traffic engineering sask

More Information Per Packet. Storing additional information per
packet can help applications characterize and respond te sw
phisticated network-induced glitches. Along with the petchash,
each router can store meta-data regarding the queuing delay
curred by the packet, or the spare capacity on the outbounkd li
just before the packet was forwarded along. Bloom filters db n
provide any support for storing meta-data, but we can haethan
bloom filter for specific metadata — for example, we can have an
other bloom filter for storing packets which had experienadugh
queuing delay (greater than sortmeesholdvalue). Then in similar
manner, location of delay can be determined.

4. END-HOSTS USINGNet-Replay

In this section, we describe how tidet-Replayprimitive can be
leveraged by end-hosts and applications to characterizariaty
of network-induced anomalies, including packet dropsrdenng
and excessive queuing delay. Later in this section, we tbscr
where in the end-host’s networking stack the schemes desthe-
low should be implemented. In particular, we argue that thes-
port protocol should implement the techniques for charazitey
the anomalies.

Throughout the description below, we assume that the sgrittiat
detects a glitch based on feedback from the receiver (eagdupli-
cate acknowledgments, timeouts, receptions reports inPREIS.)
and also knows which packets seem to have experienced tbk. gli
We focus on describing how the sender goes about charantgriz

enough. On a 2.5 Gbps router, a new packet can arrive every 128the glitch.

ns (minimum 40B packet). This is enough time for storing agd r

trieving hashes, from DRAM of latency 50 ns. So HashStore can Recall, as we mentioned earlier, that application endpaieplay
be stored in DRAM at these speeds using simple hashtable® 1 G the packet(s) that they think experienced a glitch to detezwhat
DRAM would be enough to store around 25s worth packets using happened to the packet(s).

16B hashes for 600B average packet size.

However for higher speeds like 40 Gbps, HashStore must bedsto
in faster memory like SRAM. But, with current limit of 16 MB
SRAM, just few milliseconds worth packets would be stored a8
immediate option is to consider space-efficient data sirastlike

4.1 Characterizing Glitches

Packet loss. Upon detecting a lost packet, the sender replays or
retransmits the missing packet exactly, in full. Based @Rbcket-
NotFoundAt field in the replayed packet, the receiver canvwkno

Bloom filters Similar to Snoeren et al.'s proposal [11], we can use a which router dropped the packet (namely, the router upstrieam

Bloom filter with three hash function& (= 3) and a capacity factor
(m/n) of five, i.e. bloom filter of sizen = 5n bits for storing< n
unique packets. Such filter has a false positive rat® ¢ 0.092

the one in the PacketNotFoundAt field). The receiver caryréies
information back to the sender.

whenn keys have been inserted. In case of false positives, a router Note that it is possible that a route change took place byithe t

would think that it has seen a packet earlier when it has nbis T
could mean that precise point of loss can be misidentifieavéver,
the imprecision will be within one hop of actual loss-poirittwpro-
bability (1 — P?) = 0.9915, which is reasonably high. End appli-
cations can take into account of this small imprecision /taking
decisions for working around glitches.

Stale entries needs to be cleared from bloom filters. So, wegse
using two bloom filters in tandem, where one of the bloom filters
(called Secondary) lags in time behind the other (callechBRry).

In particular, when a certain number of bloom filter entries et in
the Primary (corresponding to insertionsrof2 packets), we start
populating the secondary (which is empty up until then). Whe
the Primary is filled up with entries, we copy the contents of the
secondary into the primary, and flush the secondary.

With two bloom filters, a 16MB SRAM can store around 3s worth
packet hashes for a 40Gbps router, assuming an average pake
of 600B. This is more than 10 RTTsf&7TT < 250ms. As we will

the sender replayed the missing packet. This could provilde fin-
formation regarding which router dropped the packet. Tocvme
this possibility, the sender can replay amen-missingpacket along
with the missing packet. If a route change did take placeré¢he
played non-missing packet will also be seen by some routehé
first time and will carry a mark. If a route change did not takecp
then the replayed non-missing packet will not carry any reavkile
the replayed missing packet will carry the location of thetes that
had dropped it.

Packet Reordering. Upon knowing which packets got reordered
(based on receiver feedback), the sender replays the ezeatgack-
ets in full. Suppose that the reordering occurred due to &erou
change. If the route has changed, similar to packet dropasicen
above, the first router where the route change took place ean-b
ferred from the marks in the replayed packets. Now suppasetile
reordering occurs due to other reasons, a common one being so
intermediate route preferentially forwarding small paskbefore
large packets. In this case, the replayed packets will atdoeaut

of order at the receiver (just as the original packets hadejidout
they will not carry any marks.

More specifically, the fast retransmit algorithm can be rfiedi
slightly as follows to work withiNet-Replay As with current TCPs,
the TCP sender retransmits the lost packet and cuts the stimge

Delay. Suppose that the receiver informs the sender that sometpackewindow in half. The retransmitted packet arrives at the ireavith

arrived in a highly delayed fashion, e.g. a voice or videogamay

have arrived much after its play-back deadline, or a TCPivece
may have noticed that inter-packet arrival times are higte 3ender
then replays the delayed packets. Beyond this, the appiedble

same as described earlier, with the receiver relaying tcsdreler
the network location where the highest delay was encouttere

We note here that sender can also Me#-Replayto determine, in
some scenarios, if a packet drop was due to congestion oradue t
non-congestion-related reasons. To do this, the sendem@anine

if high delays were observed by packets prior to the dropaettet,
which may indicate an impending buffer overflow. This is apgl

ble if the sender is transmitting packets at a fast rate. @ike, the
packets prior to the dropped packet may have been transhatte

a time when the queue was just beginning to build, and herege th
may have observed no serious delay at all.

4.2 Division of Functionality

We discuss how end-point protocol stacks should be modified t
leverageNet-Replay In particular, we focus on the split-up of func-
tionality between transport and higher layers.

SinceNet-Replaydeals with glitches observed by data packets and
the network elements also store information regardingviddal
packets, we believe that it is best to incorporate all thelarisms
required todetect and characterizglitches usingNet-Replayinto
networktransport protocols

The logic for whether or not tovercomethe glitches, and how to
overcome them, can also be implemented at the transport Byie
we argue that this is a policy decision and hence it must béeimp
mented within thehigher layers Here, we use the term “higher
layers” liberally to include both applications as well a® tend-
networks where the applications run. For instance, somécapp
tions and end-networks may decide that the glitches dorsede
any action unless they are severe and persistent. Othecaimhs
or end-networks may track the incidence of glitches oveetiend
decide to use routes which avoid the most troublesome nktiwer
cations. Dividing functionality in this manner gives agalfion de-
signers the flexibility to incorporate a variety of stragegito over-
come glitches, without having to deal with developing aions
for detecting the glitches themselves. At the same timédsd frees
the transport protocols from having to incorporate a comsetrof
strategies for overcoming glitches that match a varietyppfliaa-
tion needs.

We note that in order to effectively support higher-layeatdgies,
theinterface between applications and transport protoculsst be
enriched so that the inferences derived by transport poatgamould

be exposed to higher layers. Below, we use TCP as an exangple an
discuss how it must be modified to detect and characterizehgi,

and how to enrich the interface between TCP and the higherday

Modifying TCP. We briefly discuss how to modify TCP senders
and receivers. We focus on characterizing packet lossen ag-a
ample. Recall that several modern TCP versions implemerfaist
retransmit algorithm where the TCP sender waits for thre®idate
acknowledgments to detect a packet loss. Subsequentlgetiter
reduces the congestion window in half as part of TCP’s caies
control, and retransmits the packet. Our insight is thatrétens-
mission following a packet loss can be treated as a packkztyegh
for diagnostic purposes.

annotations inserted by on-path network elements. Upogivieg

the retransmitted packet, the receiver, as usual, sendsC&hfér
the highest in-sequence packet. In addition, if the recas/dlet-
Replayaware, it creates another spurious ACK (TCP flags can be
used to indicate that this is a spurious ACK), into which ttdn
porates the annotations received in the retransmittedgpaadkng
with a hash of the original lost packet; thus, the spuriouKA€
slightly larger than a traditional TCP ACK packet. If the eeer is
not Net-Replayaware, then it simply ignores the annotations in the
retransmitted packet and the sender will not be able to chara
ize the loss.The annotations reflected by the receiver ispghgous
ACK will indicate the location and cause of loss. The sendePT
exports this information to the higher layer.

We note that sincBlet-Replayrovides richer information regarding
the nature of the loss, TCP’s congestion control algorithm can use
it to determinehow best to react to a packet dropor example, as
described above, if annotations indicate that packet lessnet due

to congestion, TCP sender caropencongestion window back to
size prior to loss.

Interface between TCP and Applications.We discuss briefly how
the interface between TCP and applications can be modifiditbso
TCP can push “upward” all the diagnostic information to aqep!
tions that may want to use it. One way to achieve this is tccati®

a small amount of memory on the sending host as “scratch 5pace
into which TCP can write its inferences and the relevant iappl
tion can read them. For instance, TCP can create a log witst a li
of entries of the form<type of glitch, time of glitch, location of
glitch>. The scratch space can be allocated alongside the memory
allocated for a transmission control block (TCB) when ititig a
TCP connection.

Response from Higher Layers.We discuss how higher layers can
overcome network glitches (if they so desire) based on émfees
provided by transport layers. In particular, we discuss tosfeed-
back can be used along-side recent proposals for intetligerie
control.

Given multiple options and ability to choose a path, the eoittp
can select routes which avoid the location of the glitchesultiM
homing provides multiple paths but end-point can only sgaths
from its ISPs and does not have any control over the path 8t |
selects for a destination. MIRO [12] provides more explcittrol
over the AS path; the feedback frohet-Replaycan be coupled
with MIRO to avoid troublesome ISPs. Recent “Path Splicig]
and “route deflections” [14] proposals go well beyond muititing
and MIRO, and provide much greater flexibility for end-psiro
select paths allowing them to switch paths at any interntediap
along the path. All of these proposals can be leveraged sidag
Net-Replayto overcome glitches.

5. DISCUSSION

In this section, we discuss some practical deployment $ssneen-
tives of ISPs, challenges due to cheating and other apiolitabf
Net-Replay

5.1 Deployment

Coarser Information. In the form described earlier, the informa-
tion provided byNet-Replaywas at the granularity of an individual
device. Some network infrastructure providers and ISPs naty
wish to reveal internal information to application end+usiat such
fine-granularity for security and competitive reasoridet-Replay

Net-Replay-agnostic
devices

\V

Net-Replay-enabled
“bumps in the wire”
(two-port high-speed switches)

Figure 2: Anillustration of “bumps in the wire”.

can be easily extended to provide information at the graitulaf a
single domain.

In-fact, it is also possible for a mixture of modes of opamatiwhere
some domains on a network-path provide feedback at a very fine
granularity (individual device) while others provide imfioation at

the level of a domain.

Also, note that even if a service provider only exposes @grained
information to network end-points, it canternally employ fine-
grained router-level markings on end-point-replayed p#cko de-
bug delay and loss issues inside its own network and conchffitt
engineering effectively. The fine-grained router marks lbarcon-
verted to coarse grained marks as packets exit the network.

Partial Deployment. Net-Replaycould also provide benefits when
deployed on a subset of network devices. In particular, &
enable this functionality on just their borders routers gl is still
sufficient to provide feedback to applications at the grarityl of a
domain.Net-Replaycan also be enabled on error-prone devices and
devices with complex failure modes (and their neighbors).

Avoiding Device Modifications. Net-Replayequires modifications
to network devices and this could be prohibitive from thewjgoint
of some network device vendors. We claim that devices modifi-
cations can be avoided altogether axdt-Replaycan be applied
alongside off-the-shelf network infrastructure. To seehaote that
instead of modifying a device, we can deplNgt-Replayenabled
“bumps in the wire” in the vicinity of the device. The “bumps”
are high-speed two-port hardware switches which perforstm-
ple functions of remembering which packets were succdgfut
warded, and marking packets which were seen for the firstwiitie
the identity of the upstream device. An example deployméihe
bumps is shown in Figure 2.

5.2 Incentives and Cheating

We believe that service providers would have a natural itieeo
deployNet-Replayespecially in the coarse-grained form described
above. This is becausblet-Replayfeedback can be leveraged by
service providers to providaccountingfor end-to-end transfers,
which subscribers may view as an attractive value-addedcger

Net-Replaycould potentially suffer from issues related to cheat-
ing: a service provider network could insert wrong annaotagiinto
packets to make it seem like an upstream network introdulietigs
(e.g. losses), whereas in reality its own infrastructure wespon-
sible for the glitches. ISP could do so for a significant fiaetof
traffic to ensure that it is not considered accountable fgrafrits
glitches. In that case there is a high chance that ISP wildoglat,
and this could deter ISP from cheating. Another possibiitthat

an ISP can delete annotations on the return path to the strater
implicate it as having dropped packets. ISP can inspectgpa-*
rious” TCP ACKSs, search for its own routers’ IP addresse$iwit
them and drop them. However, this can be easily avoided by-sen
ing encryptedspurious TCP ACKs, and ISP would not know if it is
being considered responsible for dropping packets.

We are currently investigating mechanisms for detectirdjtwart-
ing several such cheating instances.

5.3 Other applications

SinceNet-Replaynhances the feedback provided by the network, it
helps simplify the design of many current troubleshootimgjs and
applications, and also enables new ones. Consider, for gram
network tomography for inferring link loss rates in a givestwork
topology using a small collection of end-to-end measurdmesen-
ders either send multicast probes or back-to-back unicabggs and
receivers measure the loss rates. Since the location obsisecan-
not be determined, existing proposals [4, 5] employ a wargdt
sophisticated statistical techniques to assign the mosgie link-
loss rates for various internal network linkislet-Replaysimplifies
network tomography to a great extent. Whenever there issadbs
probe packet, the sender replays the probe packet to fincktwt e
location of the loss. There is no need to infer the locatioerstihe
loss is most likely to be occurred. Thus, the link-loss rada be
easily and more precisely determined.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we describedet-Replaya new network primitive to
help application flows conduct in-line characterizatiothaf glitches
they encountered. We discussed the support required wiithisin
tructure elements as well as how end-point stacks must bé-mod
fied to leveragdNet-Replay We argued thalNet-Replaycan enable
applications to detect a variety of glitches and react tontle an
informed fashion. We strongly believe thset-Replaylike support
from the network is crucial to ensure robust performanceutidire
Internet applications.

We have left several issues unaddressed or partially aslehites this
work. One such issue is how unreliable network protocolhsag
UDP can be modified to leverag¢et-Replay Even in the context
of TCP, it is important to understand how exactly to modifyPrC
end-points to react to some complex problems, such as jpafihol
cal reordering and a mixture of loss, delay and reordering ¢wly
considered the example of packet drops). A final issue ishoex
the countermeasures for deterring/detecting cheatingbg |

7. REFERENCES

A. Akella, S. Seshan, and A. Shaikh. Multihoming perfamee benefits: An
experimental evaluation of practical enterprise straeginUSENIX 04

D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and RR&b. Improving
web availability for clients with monet. INSD|, 2005.

K. J. Argyraki, P. Maniatis, O. Irzak, S. Ashish, and Se8ker. Loss and delay
accountability for the internet. IKlCNP, 2007.

R. Caceres, N. G. Duffield, J. Horowitz, D. F. Towsley, ahdu.
Multicast-based inference of network-internal charasties: Accuracy of
packet loss estimation. INFOCOM, 1999.

N. G. Duffield, F. L. Presti, V. Paxson, and D. F. Towslayelrring link loss
using striped unicast probes. INFOCOM, 2001.

R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and |. 8to{drace: A pervasive
network tracing framework. INSDI, 2007.

R. Mahajan, N. T. Spring, D. Wetherall, and T. E. Andersdser-level internet
path diagnosis. I$OSPR 2003.

M. Motiwala, A. Bavier, and N. Feamster. Network trousfeoting: An in-band
approach. INSDI, 2007.

M. Motiwala, M. Elmore, N. Feamster, and S. Vempala. Pailicing. In
SIGCOMM 2008.

S. Savage, D. Wetherall, A. Karlin, and T. Anderson.dical network support
for ip traceback. I'SIGCOMM 2000

A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. JoneB¢lakountio, S. T.
Kent, and W. T. Strayer. Hash-based ip tracebaclsIBCOMM 2001.

W. Xu and J. Rexford. Miro: multi-path interdomain ringd. In SIGCOMM
2006.

X. Yang, D. Clark, and A. W. Berger. Nira: a new inter-daim routing
architecturelEEE/ACM Trans. Netw15(4), 2007.

X. Yang and D. Wetherall. Source selectable path ditexsa routing
deflections. IlSIGCOMM 2006.

