
Net-Replay: A New Network Primitive

Ashok Anand, Aditya Akella
University of Wisconsin-Madison
{ashok,akella}@cs.wisc.edu

ABSTRACT
In this paper, we describeNet-Replay, a new network primitive to
help application end points conduct in-band characterization of the
glitches they encountered. InNet-Replay, each network infrastruc-
ture element remembers a small amount of information for every
packet observed at the element over a certain time interval.Further-
more, network elements expose a simple “packet marking” inter-
face, using which they can indicate to end-points whether ornot
they had seen a particular packet in the past. When application
end-points observe glitches, theyreplay(i.e. retransmit) the packets
which observed the glitch and leverage feedback from network ele-
ments to determine the type and location of the glitch encountered
by the packets. We discuss how end-host network stacks should
be modified to leverageNet-Replayin this fashion. We also con-
sider how network infrastructure can supportNet-Replayin a low-
overhead fashion.

We argue thatNet-Replaycan enable applications to detect a variety
of glitches and react to them in an accurate and informed manner,
while ensuring that the infrastructure stays simple and fast. We be-
lieve that proactive support from the network in the form ofNet-
Replay-like functionality is crucial to ensure robust performance of
future Internet applications, many of which are likely to behighly
demanding and far less tolerant of network glitches than traditional
applications.

1. BACKGROUND AND MOTIVATION
The network infrastructure today does not support any way topro-
vide information regarding on-going transmissions to end applica-
tions. This information is maintained in some adhoc manner (e.g.
netflow etc) for some network devices, but is not available tonetwork-
end points via any standardized interface. This helps keep the net-
work simple and efficient.

However, this design choice has had a significant impact on appli-
cations, in particular, on how application flows detect and respond
to network-induced glitches. End-to-end flows could be affected by
a variety of glitches, such as packet drops, re-orderings ordelays.
Such glitches could have a significant impact on user experience,
especially when performance-sensitive applications suchas stream-
ing video, VoIP etc. are employed. Since the network does not

tell anything regarding end-to-end transfers, application end-points
(in particular, the transport protocols) have to resort tocomplicated
logic to infer whathad impacted their transfers so that they can re-
act appropriately to network glitches. In many cases, it is difficult
to make an accurate inference — for example, congestion losses
cannot be distinguished easily from losses due to packet errors or
packets dropped by on-path filters — causing application flows to
react erroneously and affecting user experience. Also, owing to
the current design, application flows have no information regard-
ing wherein the network their packets had encountered a glitch. If
available, the application logic at end-points could use the knowl-
edge toovercomethe glitches by routing around them (using route-
control mechanisms [1, 2], or recently-proposed protocolsenhance-
ments [12, 14, 9]), and improve user experience.

We believe that emerging demanding applications will hasten the
need for a moreproactiveinvolvement from the network. The re-
cent years have seen tremendous growth in applications likeVoIP,
gaming, e-commerce applications, and streaming over the WAN,
which are far less tolerant of network glitches and demand much
more robust and resilient network behavior than traditional elastic
flows. Given these trends, relying solely on network end-points to
salvage robust end-to-end experience in the face of network-induced
glitches is likely to make application and transport protocol designs
more and more complex.Yet, there is no guarantee that the stringent
needs of modern applications will be met.

In this paper, we propose a candidate approach for adding proactive
support into the network. In our approach, the network supports a
new primitive calledNet-Replayto helpongoing application flows
determine the type of glitches their data packets had encountered as
well as the location of the glitch. End-points could use the improved
knowledge of network glitches at the transport and/or application
layers to respond to, or to overcome, glitches in an informedfashion.
Our insight is thatNet-Replaycan be realized by implementing a
couple of extremely simple mechanisms in network elements and
installing a small amount of logic at network end-points. Thus, the
simplicity and speed of the network infrastructure is not sacrificed
in any way.

In Net-Replay, network infrastructure elements perform two simple
functions:(1) Network elements remember set of packets that they
havesuccessfully forwardedover a past time interval, irrespective of
the application, source, destination or protocol fields in the packets.
(2) Network elements expose a simple “packet marking” interface;
Before forwarding packets, network elements annotate themto in-
dicate if they hadnever seenthe packet in the near past. When flow
senders detect that some glitch had occurred (based on TCP ACK
packets or other special reception reports), the senders re-transmit,
or replay, a small number of additional packets which are exact du-
plicates of the packets that had experienced the glitch. When the
replayed packets arrive at the app-receiver, the annotations in them

1



Figure 1: Using Net-Replay to characterize packet loss: (1) The
sender application transmits three packets. (2) On-path rou-
ters remember the packets locally. Since router A saw the pack-
ets for the first time, it annotates all of them with its identifier.
Downstream routers don’t annotate any further. (3) Router
B drops packet 2. (4) Receiver detects packet 2 was dropped
and lets sender know (not shown). (5) Sender replays packet
2 (shown using dashed arrows). (6) Router C checks against
its local store and observes that it never saw packet 2 earlier.
C annotates the retransmission. (7) The receiver conveys the
information to the sender. The senders knows that the router
upstream from C caused the drop.

can be used to derive the type and location of the glitches encoun-
tered by theoriginal packets. The whole process takes a handful of
extra RTTs. Figure 1 shows an example of how application flows
can useNet-Replayto characterize packet loss. Thus,Net-Replay
allows an application flow to conductin-band investigationof the
glitches experienced by aspecific earlier packetin the flow.

There exist a few probing-based approaches today to characterize
network-induced glitches (see, for example, tulip [7]). However,
they suffer from key drawbacks which prevent them from support-
ing Net-Replay-like functionality effectively. First, in current ap-
proaches, the probing is doneout-of-bandandaftera glitch has been
observed. Second, the network may treat probe packets differently
than data packets. Third, most probing techniques are ineffective
at detecting transient glitches. Many aspects of our designof Net-
Replayare informed by these drawbacks.

Net-Replayis a network-supported but application- and transport
protocol-driven framework for diagnosing network glitches. In-fact
network elements need not remember packets of all applications,
and can remember packets of only those applications who wantto
leverageNet-Replay. Applications can indicate so by using a flag bit
in the packet header. However, for simplicity, we consider network
elements to remember packets from all application flows in rest of
our discussions. In Section 3, we discuss in detail the network sup-
port required forNet-Replay.

We argue thatNet-Replaywill enable application flows to accu-
rately identify and respond to a variety of network glitches, includ-
ing those which are very short-lived. We also argue thatNet-Replay
can be incorporated into end-host network stacks in a way that helps
make both application and transport protocol designs flexible and
simple. Applications are given flexibility to decide how they want to
overcomeglitches, while mechanisms are built into transport layer
to detect and characterizeglitches. This retains the simplicity of
transport layer and gives flexibility for application designers. In par-
ticular, a variety of flexible end-point strategies can be developed to
overcomeglitches. End-hosts could leverage recent end-host con-
trolled routing protocols enhancements [13, 12, 14, 9] to overcome
the glitches. Others may decide to track historical performance of

ISPs and use it to avoid some ISPs altogether. We discuss thisin
more detail in Section 4.

We also present an approach for incrementally deployingNet-Replay
into a network with legacy infrastructure. We argue thatNet-Replay
could be deployed within high-speed two ports switches, which we
refer to as “bumps in the wire”, around the network devices. We
provide further details in Section 5.

We believe that the key ideas from our proposal can also be ap-
plied to develop debugging tools for specialized settings,such as
large complex distributed systems, data centers and enterprise net-
works. Augmenting infrastructure with memory and exporting an
Net-Replay-like interface can help shed light on some complex fail-
ure modes in these settings.

2. RELATED WORK
Our ideas behindNet-Replayare motivated by a variety of past stud-
ies. We review these below.

Argyraki et al. propose a framework which relies on each ISP to
provide regular, out-of-band feedback to senders regarding the per-
formance of an application’s packets as the packets traverse the ISP
network [3]. Each ISP is required to track ISP-wide performance
(e.g. packet loss, delay etc.) experienced by application flows using
expensive state on network devices. To reduce the amount of over-
head due to ISP reports, Argyraki et al. propose to offer aggregate-
level feedback (generated either at long time scales or for groups of
flows). Also, the proposal requires the support of a special frame-
work to help end-hosts ensure the authenticity of reports generated
by on-path ISPs. In contrastNet-Replayis relatively light-weight,
requires no expensive state and does not rely on out-of-bandcom-
munication originating from network devices. Yet,Net-Replaycan
allow any individual application flow to characterize the network
glitches it had experienced and respond appropriately.

The idea of storing packets in routers to figure out whether they
were observed earlier has been used in Snoeren et al.’s work on sin-
gle packet-based IP traceback [11]. Similar to our study, Snoeren et
al.’s work also uses Bloom filters to minimize storage overhead on
routers. Our study differs in several other key aspects, however: in
particular, we go well beyond Snoeren et al.’s framework andextend
it to have all routers expose an in-band packet marking interface uni-
versally to all applications. We describe how regular end-hosts and
applications can leverage the interface to improve their end-to-end
experience. Packet marking has been explored in several other con-
texts as well, including Savage’s original traceback work [10] where
probabilisticmarking was considered, and the ECN proposal where
the network indicates incipient congestion through marks (but not
where the congestion was occuring). Our proposal can be viewed as
generalizing both of these marking techniques.

The recent X-trace proposal [6] also bears some similarity to our
work. X-trace logs the information associated with variousnetwork
operations, focusing in particular on tracking causal dependencies
between different protocols, applications, and middleboxes which
may come into play during an end-to-end communication. The goal
is to use the logs to perform retroactive diagnosis of failures. In
contrast,Net-Replayenables in-band investigation of glitches faced
by ongoing communications. The second key difference is that Net-
Replayis end-to-end application in nature, in that the network does
not generate any feedback unless applications elicit it explicitly. In
contrast, X-trace is more provider-centric in that the expectation is
that the device logs are analyzed ex post facto for possible causes of
failures.

Orchid [8] has similar goals of in-band network fault diagnosis.

2



However, Orchid requires expensive per-flow state maintainance at
each router. Many of the details are not there e.g. interactions with
end-hosts is not clear. In contrast,Net-Replayis relatively simpler.
We have explored the end-host interactions in greater detail, and
many other issues.

3. NETWORK SUPPORT FOR Net-Replay
In this section, we describe the functionality necessary within net-
work elements to supportNet-Replay. We focus our description on
network routers, although our arguments apply at a high level to
other network elements.

Basic Functionality. To supportNet-Replay, each network router
needs to remember a list of all packets that it has successfully for-
warded in a past time-window. A router stores a hash for each such
packet inHashStore, where the hash is computed over the entire
content and header, minus the mutable fields of the header like the
TTL. As a packet traverses a network route, each router checks if
the packet is present in its local HashStore. If packet isnot found,
implying that the router did not observe the packet over a past time
interval, then the router appends itsidentifier (e.g. address of the
incoming interface) to the packet. If multiple routers append their
identifiers then packet sizes can grow arbitrarily. So we insert the
identifier of just the first such router into a single fixed-size field
in the packet header; we call this the “PacketNotFoundAt” field.
If downstream routers notice that the field is non-empty thenthey
simply forward the packet along, without checking for the packet’s
presence in their local hash table. This helps expose the first loca-
tion on the path where a glitch was observed.

Practical HashStore Implementation. To supportNet-Replayef-
fectively, routers need to store packet hashes and retrievethem fast
enough. On a 2.5 Gbps router, a new packet can arrive every 128
ns (minimum 40B packet). This is enough time for storing and re-
trieving hashes, from DRAM of latency 50 ns. So HashStore can
be stored in DRAM at these speeds using simple hashtables. 1 GB
DRAM would be enough to store around 25s worth packets using
16B hashes for 600B average packet size.

However for higher speeds like 40 Gbps, HashStore must be stored
in faster memory like SRAM. But, with current limit of 16 MB
SRAM, just few milliseconds worth packets would be stored. So an
immediate option is to consider space-efficient data structures like
Bloom filters. Similar to Snoeren et al.’s proposal [11], we can use a
Bloom filter with three hash functions (k = 3) and a capacity factor
(m/n) of five, i.e. bloom filter of sizem = 5n bits for storing≤ n
unique packets. Such filter has a false positive rate ofP = 0.092
whenn keys have been inserted. In case of false positives, a router
would think that it has seen a packet earlier when it has not. This
could mean that precise point of loss can be misidentified. However,
the imprecision will be within one hop of actual loss-point with pro-
bability (1 − P 2) = 0.9915, which is reasonably high. End appli-
cations can take into account of this small imprecision while taking
decisions for working around glitches.

Stale entries needs to be cleared from bloom filters. So, we propose
using two bloom filters in tandem, where one of the bloom filters
(called Secondary) lags in time behind the other (called Primary).
In particular, when a certain number of bloom filter entries are set in
the Primary (corresponding to insertions ofn/2 packets), we start
populating the secondary (which is empty up until then). When
the Primary is filled up withn entries, we copy the contents of the
secondary into the primary, and flush the secondary.

With two bloom filters, a 16MB SRAM can store around 3s worth
packet hashes for a 40Gbps router, assuming an average packet size
of 600B. This is more than 10 RTTs forRTT < 250ms. As we will

argue later, this gives enough time to characterize network-induced
glitches using transport layer mechanisms. Routers can also peri-
odically dump their SRAMs to slower memory to provide a log for
future queries, to aid operators in traffic engineering tasks.

More Information Per Packet. Storing additional information per
packet can help applications characterize and respond to more so-
phisticated network-induced glitches. Along with the packet hash,
each router can store meta-data regarding the queuing delayin-
curred by the packet, or the spare capacity on the outbound link,
just before the packet was forwarded along. Bloom filters do not
provide any support for storing meta-data, but we can have another
bloom filter for specific metadata – for example, we can have an-
other bloom filter for storing packets which had experienceda high
queuing delay (greater than somethresholdvalue). Then in similar
manner, location of delay can be determined.

4. END-HOSTS USINGNet-Replay
In this section, we describe how theNet-Replayprimitive can be
leveraged by end-hosts and applications to characterize a variety
of network-induced anomalies, including packet drops, reordering
and excessive queuing delay. Later in this section, we describe
where in the end-host’s networking stack the schemes described be-
low should be implemented. In particular, we argue that the trans-
port protocol should implement the techniques for characterizing
the anomalies.

Throughout the description below, we assume that the sending host
detects a glitch based on feedback from the receiver (e.g. via dupli-
cate acknowledgments, timeouts, receptions reports in RTSP etc.)
and also knows which packets seem to have experienced the glitch.
We focus on describing how the sender goes about characterizing
the glitch.

Recall, as we mentioned earlier, that application end-points replay
the packet(s) that they think experienced a glitch to determine what
happened to the packet(s).

4.1 Characterizing Glitches
Packet loss. Upon detecting a lost packet, the sender replays or
retransmits the missing packet exactly, in full. Based on the Packet-
NotFoundAt field in the replayed packet, the receiver can know
which router dropped the packet (namely, the router upstream from
the one in the PacketNotFoundAt field). The receiver can relay this
information back to the sender.

Note that it is possible that a route change took place by the time
the sender replayed the missing packet. This could provide false in-
formation regarding which router dropped the packet. To overcome
this possibility, the sender can replay onenon-missingpacket along
with the missing packet. If a route change did take place, there-
played non-missing packet will also be seen by some router for the
first time and will carry a mark. If a route change did not take place
then the replayed non-missing packet will not carry any marks while
the replayed missing packet will carry the location of the router that
had dropped it.

Packet Reordering. Upon knowing which packets got reordered
(based on receiver feedback), the sender replays the re-ordered pack-
ets in full. Suppose that the reordering occurred due to a route
change. If the route has changed, similar to packet drop scenario
above, the first router where the route change took place can be in-
ferred from the marks in the replayed packets. Now suppose that the
reordering occurs due to other reasons, a common one being some
intermediate route preferentially forwarding small packets before
large packets. In this case, the replayed packets will also arrive out

3



of order at the receiver (just as the original packets had done), but
they will not carry any marks.

Delay. Suppose that the receiver informs the sender that some packet
arrived in a highly delayed fashion, e.g. a voice or video sample may
have arrived much after its play-back deadline, or a TCP receiver
may have noticed that inter-packet arrival times are high. The sender
then replays the delayed packets. Beyond this, the approachis the
same as described earlier, with the receiver relaying to thesender
the network location where the highest delay was encountered.

We note here that sender can also useNet-Replayto determine, in
some scenarios, if a packet drop was due to congestion or due to
non-congestion-related reasons. To do this, the sender canexamine
if high delays were observed by packets prior to the dropped packet,
which may indicate an impending buffer overflow. This is applica-
ble if the sender is transmitting packets at a fast rate. Otherwise, the
packets prior to the dropped packet may have been transmitted at
a time when the queue was just beginning to build, and hence they
may have observed no serious delay at all.

4.2 Division of Functionality
We discuss how end-point protocol stacks should be modified to
leverageNet-Replay. In particular, we focus on the split-up of func-
tionality between transport and higher layers.

SinceNet-Replaydeals with glitches observed by data packets and
the network elements also store information regarding individual
packets, we believe that it is best to incorporate all the mechanisms
required todetect and characterizeglitches usingNet-Replayinto
networktransport protocols.

The logic for whether or not toovercomethe glitches, and how to
overcome them, can also be implemented at the transport layer. But
we argue that this is a policy decision and hence it must be imple-
mented within thehigher layers. Here, we use the term “higher
layers” liberally to include both applications as well as the end-
networks where the applications run. For instance, some applica-
tions and end-networks may decide that the glitches don’t deserve
any action unless they are severe and persistent. Other applications
or end-networks may track the incidence of glitches over time, and
decide to use routes which avoid the most troublesome network lo-
cations. Dividing functionality in this manner gives application de-
signers the flexibility to incorporate a variety of strategies to over-
come glitches, without having to deal with developing algorithms
for detecting the glitches themselves. At the same time, it also frees
the transport protocols from having to incorporate a commonset of
strategies for overcoming glitches that match a variety of applica-
tion needs.

We note that in order to effectively support higher-layer strategies,
the interface between applications and transport protocolsmust be
enriched so that the inferences derived by transport protocols could
be exposed to higher layers. Below, we use TCP as an example and
discuss how it must be modified to detect and characterize glitches,
and how to enrich the interface between TCP and the higher layers.

Modifying TCP. We briefly discuss how to modify TCP senders
and receivers. We focus on characterizing packet losses as an ex-
ample. Recall that several modern TCP versions implement the fast
retransmit algorithm where the TCP sender waits for three duplicate
acknowledgments to detect a packet loss. Subsequently, thesender
reduces the congestion window in half as part of TCP’s congestion
control, and retransmits the packet. Our insight is that theretrans-
mission following a packet loss can be treated as a packet replayed
for diagnostic purposes.

More specifically, the fast retransmit algorithm can be modified
slightly as follows to work withNet-Replay. As with current TCPs,
the TCP sender retransmits the lost packet and cuts the congestion
window in half. The retransmitted packet arrives at the receiver with
annotations inserted by on-path network elements. Upon receiving
the retransmitted packet, the receiver, as usual, sends an ACK for
the highest in-sequence packet. In addition, if the receiver is Net-
Replay-aware, it creates another spurious ACK (TCP flags can be
used to indicate that this is a spurious ACK), into which it incor-
porates the annotations received in the retransmitted packet along
with a hash of the original lost packet; thus, the spurious ACK is
slightly larger than a traditional TCP ACK packet. If the receiver is
not Net-Replay-aware, then it simply ignores the annotations in the
retransmitted packet and the sender will not be able to character-
ize the loss.The annotations reflected by the receiver in thespurious
ACK will indicate the location and cause of loss. The sender TCP
exports this information to the higher layer.

We note that sinceNet-Replayprovides richer information regarding
thenatureof the loss, TCP’s congestion control algorithm can use
it to determinehow best to react to a packet drop. For example, as
described above, if annotations indicate that packet loss was not due
to congestion, TCP sender canre-opencongestion window back to
size prior to loss.

Interface between TCP and Applications.We discuss briefly how
the interface between TCP and applications can be modified sothat
TCP can push “upward” all the diagnostic information to applica-
tions that may want to use it. One way to achieve this is to allocate
a small amount of memory on the sending host as “scratch space”,
into which TCP can write its inferences and the relevant applica-
tion can read them. For instance, TCP can create a log with a list
of entries of the form<type of glitch, time of glitch, location of
glitch>. The scratch space can be allocated alongside the memory
allocated for a transmission control block (TCB) when intiating a
TCP connection.

Response from Higher Layers.We discuss how higher layers can
overcome network glitches (if they so desire) based on inferences
provided by transport layers. In particular, we discuss howthe feed-
back can be used along-side recent proposals for intelligent route
control.

Given multiple options and ability to choose a path, the end point
can select routes which avoid the location of the glitches. Multi-
homing provides multiple paths but end-point can only select paths
from its ISPs and does not have any control over the path that ISP
selects for a destination. MIRO [12] provides more explicitcontrol
over the AS path; the feedback fromNet-Replaycan be coupled
with MIRO to avoid troublesome ISPs. Recent “Path Splicing”[9]
and “route deflections” [14] proposals go well beyond multihoming
and MIRO, and provide much greater flexibility for end-points to
select paths allowing them to switch paths at any intermediate hop
along the path. All of these proposals can be leveraged alongside
Net-Replayto overcome glitches.

5. DISCUSSION
In this section, we discuss some practical deployment issues, incen-
tives of ISPs, challenges due to cheating and other applications of
Net-Replay.

5.1 Deployment
Coarser Information. In the form described earlier, the informa-
tion provided byNet-Replaywas at the granularity of an individual
device. Some network infrastructure providers and ISPs maynot
wish to reveal internal information to application end-points at such
fine-granularity for security and competitive reasons.Net-Replay

4



Figure 2: An illustration of “bumps in the wire”.

can be easily extended to provide information at the granularity of a
single domain.

In-fact, it is also possible for a mixture of modes of operation, where
some domains on a network-path provide feedback at a very fine-
granularity (individual device) while others provide information at
the level of a domain.

Also, note that even if a service provider only exposes coarse-grained
information to network end-points, it caninternally employ fine-
grained router-level markings on end-point-replayed packets to de-
bug delay and loss issues inside its own network and conduct traffic
engineering effectively. The fine-grained router marks canbe con-
verted to coarse grained marks as packets exit the network.

Partial Deployment. Net-Replaycould also provide benefits when
deployed on a subset of network devices. In particular, ISPscould
enable this functionality on just their borders routers andthis is still
sufficient to provide feedback to applications at the granularity of a
domain.Net-Replaycan also be enabled on error-prone devices and
devices with complex failure modes (and their neighbors).

Avoiding Device Modifications.Net-Replayrequires modifications
to network devices and this could be prohibitive from the view-point
of some network device vendors. We claim that devices modifi-
cations can be avoided altogether andNet-Replaycan be applied
alongside off-the-shelf network infrastructure. To see how, note that
instead of modifying a device, we can deployNet-Replay-enabled
“bumps in the wire” in the vicinity of the device. The “bumps”
are high-speed two-port hardware switches which perform the sim-
ple functions of remembering which packets were successfully for-
warded, and marking packets which were seen for the first timewith
the identity of the upstream device. An example deployment of the
bumps is shown in Figure 2.

5.2 Incentives and Cheating
We believe that service providers would have a natural incentive to
deployNet-Replay, especially in the coarse-grained form described
above. This is because,Net-Replayfeedback can be leveraged by
service providers to provideaccountingfor end-to-end transfers,
which subscribers may view as an attractive value-added service.

Net-Replaycould potentially suffer from issues related to cheat-
ing: a service provider network could insert wrong annotations into
packets to make it seem like an upstream network introduced glitches
(e.g. losses), whereas in reality its own infrastructure was respon-
sible for the glitches. ISP could do so for a significant fraction of
traffic to ensure that it is not considered accountable for any of its
glitches. In that case there is a high chance that ISP will be caught,
and this could deter ISP from cheating. Another possibilityis that
an ISP can delete annotations on the return path to the senderthat
implicate it as having dropped packets. ISP can inspect the “spu-
rious” TCP ACKs, search for its own routers’ IP addresses within
them and drop them. However, this can be easily avoided by send-
ing encryptedspurious TCP ACKs, and ISP would not know if it is
being considered responsible for dropping packets.

We are currently investigating mechanisms for detecting and thwart-
ing several such cheating instances.

5.3 Other applications
SinceNet-Replayenhances the feedback provided by the network, it
helps simplify the design of many current troubleshooting tools and
applications, and also enables new ones. Consider, for example,
network tomography for inferring link loss rates in a given network
topology using a small collection of end-to-end measurements. Sen-
ders either send multicast probes or back-to-back unicast probes and
receivers measure the loss rates. Since the location of the loss can-
not be determined, existing proposals [4, 5] employ a variety of
sophisticated statistical techniques to assign the most probable link-
loss rates for various internal network links.Net-Replaysimplifies
network tomography to a great extent. Whenever there is a loss of
probe packet, the sender replays the probe packet to find the exact
location of the loss. There is no need to infer the location where the
loss is most likely to be occurred. Thus, the link-loss rate can be
easily and more precisely determined.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we describedNet-Replay, a new network primitive to
help application flows conduct in-line characterization ofthe glitches
they encountered. We discussed the support required with infras-
tructure elements as well as how end-point stacks must be modi-
fied to leverageNet-Replay. We argued thatNet-Replaycan enable
applications to detect a variety of glitches and react to them in an
informed fashion. We strongly believe thatNet-Replay-like support
from the network is crucial to ensure robust performance of future
Internet applications.

We have left several issues unaddressed or partially addressed in this
work. One such issue is how unreliable network protocols such as
UDP can be modified to leverageNet-Replay. Even in the context
of TCP, it is important to understand how exactly to modify TCP
end-points to react to some complex problems, such as pathologi-
cal reordering and a mixture of loss, delay and reordering (we only
considered the example of packet drops). A final issue is to explore
the countermeasures for deterring/detecting cheating by ISPs.

7. REFERENCES
[1] A. Akella, S. Seshan, and A. Shaikh. Multihoming performance benefits: An

experimental evaluation of practical enterprise strategies. InUSENIX 04.
[2] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. N.Rao. Improving

web availability for clients with monet. InNSDI, 2005.
[3] K. J. Argyraki, P. Maniatis, O. Irzak, S. Ashish, and S. Shenker. Loss and delay

accountability for the internet. InICNP, 2007.
[4] R. Cáceres, N. G. Duffield, J. Horowitz, D. F. Towsley, andT. Bu.

Multicast-based inference of network-internal characteristics: Accuracy of
packet loss estimation. InINFOCOM, 1999.

[5] N. G. Duffield, F. L. Presti, V. Paxson, and D. F. Towsley. Inferring link loss
using striped unicast probes. InINFOCOM, 2001.

[6] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica. X-trace: A pervasive
network tracing framework. InNSDI, 2007.

[7] R. Mahajan, N. T. Spring, D. Wetherall, and T. E. Anderson. User-level internet
path diagnosis. InSOSP, 2003.

[8] M. Motiwala, A. Bavier, and N. Feamster. Network troubleshooting: An in-band
approach. InNSDI, 2007.

[9] M. Motiwala, M. Elmore, N. Feamster, and S. Vempala. Pathsplicing. In
SIGCOMM, 2008.

[10] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical network support
for ip traceback. InSIGCOMM 2000.

[11] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones, F. Tchakountio, S. T.
Kent, and W. T. Strayer. Hash-based ip traceback. InSIGCOMM, 2001.

[12] W. Xu and J. Rexford. Miro: multi-path interdomain routing. In SIGCOMM,
2006.

[13] X. Yang, D. Clark, and A. W. Berger. Nira: a new inter-domain routing
architecture.IEEE/ACM Trans. Netw., 15(4), 2007.

[14] X. Yang and D. Wetherall. Source selectable path diversity via routing
deflections. InSIGCOMM, 2006.

5


