
Accelerating Deep Learning Inference via Freezing

Adarsh Kumar Arjun Balasubramanian Shivaram Venkataraman Aditya Akella

University of Wisconsin - Madison

Abstract
Over the last few years, Deep Neural Networks (DNNs)

have become ubiquitous owing to their high accuracy on real-
world tasks. However, this increase in accuracy comes at the
cost of computationally expensive models leading to higher
prediction latencies. Prior efforts to reduce this latency such
as quantization, model distillation, and any-time prediction
models typically trade-off accuracy for performance. In this
work, we observe that caching intermediate layer outputs can
help us avoid running all the layers of a DNN for a sizeable
fraction of inference requests. We find that this can potentially
reduce the number of effective layers by half for 91.58% of
CIFAR-10 requests run on ResNet-18. We present Freeze
Inference, a system that introduces approximate caching at
each intermediate layer and we discuss techniques to reduce
the cache size and improve the cache hit rate. Finally, we
discuss some of the open research challenges in realizing
such a design.

1 Introduction

The field of artificial intelligence (AI) has made rapid strides
over the past few years largely due to the progress in Deep
Neural Networks (DNNs). DNNs have surpassed human-level
accuracy on tasks ranging from speech recognition [20], im-
age classification [5, 10, 12, 14–16] to machine translation [4].
However, this gain in accuracy has come with models be-
coming deeper leading to increased computational require-
ments. For example, in object classification, the top-5 clas-
sification accuracy has increased from 71% in 2012 to 97%
in 2015 on the ImageNet dataset, while the models have be-
come 20× more computationally expensive. This increase in
computation also leads to longer latencies during prediction
or inference where low user response time is paramount. To
efficiently serve these models, there is a need to reduce the
overall computation needed for inference, without trading off
accuracy.

There have been several efforts to reduce the computational
complexity of DNNs to improve model serving. A number

of previous efforts have proposed compressing the model
using techniques such as quantization [1, 2] or model distil-
lation [6], but such techniques typically hurt accuracy. On
the other hand, ensemble methods [13] or any-time predic-
tion models [7] aim to provide a better trade-off between
accuracy and latency by building models of varying complex-
ity. However, this either requires re-training using custom
model architectures or training a number of models ahead of
time. Systems such as Clipper [3] improve serving by batch-
ing queries and optimizing their execution within a batch.
These techniques typically improve throughput and making
inference latency-aware. Finally, PRETZEL [11] improves
latencies using multi-model optimizations but does not focus
on reducing compute for a single given model.

In this work, we introduce caching as a technique to reduce
the prediction latency of DNNs. Caches in general are used
to improve the latency of Web requests by storing the output
of previous requests. Previous works [3] have used caching
at the input layer to improve the prediction latency, but they
consider the DNN as a black box. Thus, in the event of a
cache miss at the input layer, these systems have to run all the
layers of the DNN to obtain a prediction. Instead the question
we ask is: Can we design caching such that we can avoid the
need to run all the layers of a DNN for every input request?

To this end, we propose augmenting DNNs with a cache at
each layer, where the cache holds a succinct representation
of intermediate layer outputs and their relation to the final
classification. The rationale behind this is that each layer of
the DNN tries to normalize the variations in the input that
do not correlate with the output, and by doing so, tries to
learn an embedding space where similar data points are closer
to each other. Thus, even when we do not get a "cache hit"
for the input, we could get a "cache hit" at an intermediate
layer. For example, with an object classification model, the
background, brightness, contrast, etc of the input image do
not correlate with the output class. The model will normalize
these variations in the image, layer by layer. Thus, we can
expect images of the same object with different backgrounds
to be embedded closer in the projection space after some

DNN layers have been evaluated.
Maintaining a cache for intermediate layers comes with its

own challenges. First, as the intermediate layer outputs are
float tensors in a high dimensional space, the probability of
exact match is low, leading to a low cache hit rate. Second,
such a cache would require a large amount of memory owing
to the high dimensionality of tensors and the size of training
data. Finally, cache look-up time is poor for large caches that
cannot fit in fast memories.

We introduce Freeze Inference, a system which augments
DNNs with intermediate layer caches to reduce the prediction
latency and addresses the above issues. For our initial proto-
type, Freeze Inference creates an offline cache, which stores
the intermediate layer outputs computed over training data.
We then train a dimensionality reduction model for each layer,
which projects high dimensional intermediate layer tensors to
a low dimensional space. Finally, we perform k-means clus-
tering on the reduced dimensional space and only store the
centroids of the clusters, which further reduces the memory
footprint and look-up time.

The rest of the paper is organized as follows. In Sec. 2,
we introduce the rationale behind caching in the context of
DNNs. Next, we describe the design of our system Freeze
Inference in Sec. 3. Finally, we present the initial results of our
prototype (Sec. 4) and conclude with discussions on future
research directions (Sec. 5).

2 Intuition

We begin by describing some key properties of DNNs and
how layer-wise caching as we envision it can be applied in
this setting. In a DNN, the input is represented as a set of
features, where each feature is a value provided to individual
nodes at the DNN’s input layer. The DNN has a number of
hidden layers each consisting of multiple nodes, where each
node applies a non-linear function to a weighted sum of its
inputs. We refer to the individual hidden layer outputs as
intermediate layer outputs in our work. Finally, there is an
output layer which consists of one or more neurons that can
cumulatively be viewed as making a prediction.

Given the architecture of DNNs, we make two important
observations which form the basis for our work:
(O1) Given two inputs Xi and X j which are exactly same, the
DNN will predict the same label Y for both the inputs. This
is because the same set of learned weights are used during
inference which effectively means that each layer executes
a deterministic function on its input. On similar lines, if two
inputs Xi and X j result in the same intermediate layer output
at a given hidden layer, we expect the DNN to predict the
same label for both the inputs.
(O2) Consider two inputs Xi and X j whose output feature vec-
tors reside close to each other in the output feature space. To
predict labels, DNNs typically use a function such as softmax
at the output layer which draws decision boundaries in the

Figure 1: The basic idea behind Freeze Inference. (a) The interme-
diate outputs are cached. (b) During inference, a cache look-up is
done after every layer and a cache hit yields a faster prediction

output feature space. Proximity in the output feature space
means there is a high probability that the points lie within the
same decision boundary and are assigned the same prediction
Y by the DNN.

Figure 1 builds up towards the intuition behind Freeze In-
ference. Consider a DNN with N layers. Let us take two input
feature vectors X1 and X2. Let us say that each input produces
intermediate layer outputs Li, j, where i is the layer number
and j is an identifier for the input under consideration. Now,
let us consider a situation where X1 has already run through
the DNN to obtain a prediction Y . We store each of it’s in-
termediate layer outputs Li,1 for i = 1,2,3..N along with the
final predicted label Y in a per-layer cache. We now try to
predict the label for input X2 as follows: after the computation
at each layer, we additionally compare the obtained inter-
mediate output to the contents of the corresponding layer’s
cache. During this process, let us say that at some layer K we
observe that LK,1 and LK,2 are the same. From observation
O1, we can conclude that the intermediate outputs of succes-
sive layers would also be the same ultimately leading to the
same prediction. More formally, if K is the smallest layer at
which we have LK,1 = LK,2, then we can say that Li,1 = Li,2
for i = K +1,K +2, ..N and both X1 and X2 would have the
same predicted label Y . Hence, it is possible to skip expensive
computations for layer K +1,K +2, ..N when the intermedi-
ate layer output for a layer K matches an intermediate output
that has been cached. In such a scenario, we can freeze the
computation at layer k and return the cached output.

2.1 Towards Approximate Caching

Since feature vectors have high dimensionality and are rep-
resented by a set of floats, it is highly unlikely that that two
intermediate layer outputs would be exactly the same. There-
fore, a caching mechanism based on exact matches would not
generate enough cache hits to provide meaningful computa-
tional benefits. To address this, we leverage the insight from
observation O2 in that DNNs try to identify decision bound-
aries in order to classify items. To empirically validate this,
we took a set of 50,000 images belonging to the CIFAR-10 [8]
dataset and ran a complete forward pass for each image on

Figure 2: Distribution of fractional share of majority label per cluster
for ResNet-18 on CIFAR-10

the ResNet-18 [5] model. From this, we constructed a set of
intermediate layer outputs for each ResNet block1 and tagged
each output with the label predicted by the model. For each
ResNet block, we then arranged the outputs into 200 clusters
using k-means and computed the majority label occupying
each cluster along with the fractional share of the label within
that cluster. From Figure 2, we notice that there is a dominant
majority label in each cluster. For instance, in Block 4, we
see that the mean fraction of the majority label is 0.95. This
provides empirical backing that there exists a semantic rela-
tionship between points that lie nearby to each other in the
intermediate feature space. Another interesting observation
is that the mean fraction of the majority label increases as
we move across the layers, indicating that points get better
correlated in the feature space as we go deeper in the DNN.

We leverage the above ideas in Freeze Inference by con-
structing an offline, per-layer cache consisting of intermediate
layer outputs and their corresponding labels. We augment
the inference control flow to perform an approximate cache
look-up for the intermediate output at each layer by using
an algorithm like k-nearest neighbors. We use information
such as the labels of the k neighbors and their distances from
the input point to make a prediction and offer a notion of
confidence about the prediction. We characterize the cache
look-up at that layer as a hit if the offered confidence exceeds
a defined threshold for that layer.

3 Freeze Inference Design

The first major challenge in Freeze Inference is that the inter-
mediate layer outputs reside in high-dimensional space. Apart
from resulting in low cache hit rates, high memory usage,
and increasing the computational complexity of cache look-
up, prior work [18] has shown that performance of similarity
search degrades in high dimension. This is a problem since
Freeze Inference relies on the notion of closeness to infer
semantic similarity. We overcome this by using dimension-
ality reduction. Inspired by Metric Learning [19], we do this

1ResNet-18 consists of 8 blocks, where each block consists of 2 convolu-
tional layers and 1 residual connection

Figure 3: Freeze Inference High Level Design

using a one layer neural network whose hidden layer consists
of 1024 nodes. We train a per-layer dimensionality reduc-
tion model using the intermediate layer outputs and labels
predicted by the model for the training data set.

Next, we define the semantics of approximate cache look-
ups by describing a cache look-up API. The API takes in an
intermediate layer representation as an argument and returns
a prediction along with a confidence value. Following from
the discussion in Section 2.1, the API computes k-nearest
neighbors on the input and obtains a set of k tuples, where
each tuple consists of the label of the neighbor and its distance
from the input. In our initial design, we use a heuristic for
computing the predicted label and the associated confidence
value. Our heuristic is based on the intuition that predictions
can be more confident if (a) more neighbors agree on the same
label and (b) the neighbors are close to the input under consid-
eration. Let us say that the dataset has N labels n1,n2...,nN .
For a given input point, suppose label ni has mi occurrences
amongst the k neighbors for the input at a specific layer of the
DNN. Let the distances associated with the mi occurrences
be d1, .,d j, .,dmi . We first compute ni label’s fractional share
amongst the k neighbors as Si =

mi
k . We then compute the

confidence Ci = Si×∑
mi
j=1

1
d j

for each label. The API returns
the label having maximum confidence as the predicted label
for the layer along with the associated confidence.

Figure 3 presents the Freeze Inference pipeline. It consists
of an offline phase which aggregates information to be used
during inference. The offline phase consists of two parts - (i)
Cache Construction (ii) Threshold Computation. The above
two steps lead to the construction of per-layer caches and
per-layer thresholds which are then passed onto the online
phase. These structures are used during the online inference
phase to perform cache look-up and characterize cache hits.
We describe the individual steps in detail below.

3.1 Offline Phase
(i) Cache Construction: Freeze Inference takes in a trained
model and constructs per-layer caches by running a forward
pass of the DNN for each example and caching the dimension-
ally reduced intermediate layer outputs for each layer (Line
22–30 in Algorithm 1).

Pseudocode 1 Freeze Inference Workflow
1: CACHE = {} . Per-layer cache
2: THRESHOLDS = {} . Per-layer thresholds
3:
4: . Given a model M, perform offline pre-processing for Freeze Inference
5: procedure OFFLINEPHASE(Model M, TrainData T D, ValidationData V D)
6: CACHE = CONSTRUCTCACHE(M, T)
7: THRESHOLDS = COMPUTETHRESHOLDS(M, V , CACHE)
8: end procedure
9:

10: . Given a model M, perform Freeze Inference on input I
11: procedure FREEZEINFERENCE(Model M, Input I)
12: for all layer ∈M.layers() do
13: layerOut put = forward pass on M for next layer
14: pred_label, con f idence = prediction for layerOut put from CACHE[layer]
15: if con f idence > THRESHOLDS[layer] then
16: return predicted_label
17: end if
18: end for
19: return label predicted by output layer of M
20: end procedure
21:
22: procedure CONSTRUCTCACHE(Model M, TrainData T D)
23: IO[i][j] . Intermediate output for T D[i] at layer j
24: Y [i] . Label Predicted by M for T D[i]
25: for all item ∈ T D do
26: for all layer ∈M.layers() do
27: CACHE[layer].append(<IO[item][layer], Y [item]>)
28: end for
29: end for
30: end procedure
31:
32: procedure COMPUTETHRESHOLDS(Model M, ValidationData V D, Cache C)
33: IO[i][j] . Intermediate output for V D[i] at layer j
34: Y [i] . Label Predicted by M for V D[i]
35: Prediction[i][j] . Label Predicted by look-up from C for V D[i] at layer j
36: Con f idence[i][j] . Confidence value of look-up from C for V D[i] at layer j
37: for all item ∈V D do
38: for all l ∈M.layers() do
39: if Prediction[item][l] not equals Y[item] then
40: THRESHOLD[l] = max(THRESHOLD[l], Con f idence[item][l])
41: end if
42: end for
43: end for
44: end procedure

(ii) Threshold Computation: A critical piece of the Freeze
Inference design is to develop the notion of a cache hit. For
this purpose, we use a validation dataset to compute per-layer
thresholds. For each item in the validation data, we perform a
forward pass, reduce the dimension of the layer output and
then do a cache look-up at each layer. For each layer, we
set the threshold as the maximum confidence value that re-
sulted in a wrong prediction on the validation set (Line 40
in Algorithm 1). Thus, Freeze Inference adopts a pessimistic
approach by establishing strict thresholds and ensuring zero
error on the validation data, which in turn maximizes the
accuracy of cache hits during inference.

3.2 Online Phase - Inference

When an inference request comes in, we do forward propaga-
tion one layer at a time and a cache look-up on the dimension-
ally reduced output at each layer. If the confidence returned
by cache look-up is greater than the established threshold for
that layer, we skip the computation of the remaining layers
and return the label predicted by cache look-up as the final
predicted label. (Lines 11 to 20 in Algorithm 1).

(a) Upper Bound (b) Actual

Figure 4: CDF of points frozen w.r.t. blocks for ResNet-18 using k-NN

Cache Construction Scheme Total Memory
k-NN without Dimensionality Reduction 37500.0 MB
k-NN with Dimensionality Reduction 2500.0 MB
k-Means with Dimensionality Reduction 12.5 MB

Table 1: Memory requirements for caching on ResNet-18

4 Results and Challenges

We evaluate our Freeze Inference system for the CIFAR-10 [8]
and CIFAR-100 [9] datasets on the ResNet-18 model [5]. Fig-
ure 4(a) presents the earliest block at which an inference
request can be f rozen assuming that we have a perfect thresh-
old calculation scheme. In this scenario, we observe that can
potentially save half the computation time (run half of the to-
tal layers) for around 91% data-points in CIFAR-10 and 55%
of the data-points for CIFAR-100. This represents an upper
bound on the potential of Freeze Inference. Figure 4(b) shows
the distribution of layers at which inference requests are
f rozen using our naive threshold calculation scheme. From
the graph, we observe that our naive Freeze Inference saves
half the computation for about 20% of the points on CIFAR-10
and around 15% for CIFAR-100 respectively. Overall, we are
able to freeze about 95% and 44% of the data-points before the
output layer in CIFAR-10 and CIFAR-100 respectively. The
k-NN approach with our naive threshold calculation scheme
achieves an accuracy of 97.48% and 99.03% with respect to
the model’s prediction for CIFAR-10 and CIFAR-100 datasets
respectively. This shows that we are able to save computation
without trading off too much on the accuracy.

Even though we are able to Freeze a significant percentage
of data-points, k-NN has following overheads:
Computational Complexity: Computing k-nearest neigh-
bors incurs significant overheads due to a large number of
cached intermediate points to compare against. In our ex-
periment, we had 40,000 training data points in the cache at
each layer. To extract the most out of Freeze Inference, we
would require the cache-lookup to be computationally cheap.
Memory Overheads: With caching, Freeze Inference incurs
an additional overhead with respect to memory. Table 1 cap-
tures memory usage that the k-NN implementation of Freeze
Inference would require. Though dimensionality reduction
significantly reduces the memory overhead, we would still
like the requirement to be as low as possible to allow Freeze
Inference to scale well for larger datasets and models.

(a) ResNet-18 (b) ResNet-50

Figure 5: CDF of points frozen w.r.t. blocks using k-means

We can overcome the computational and memory over-
heads by leveraging the fact that intermediate layer points are
semantically related to each other (Figure 2). In this light, we
use k-means to cluster neighboring intermediate layer points
and represent them by a single cluster center. This reduces
the number of points that need to be stored in the cache and
consequently reduces both the computational complexity and
memory overheads. We construct a per-layer cache such that
each item consists of a cluster center, the majority label and
the fraction of majority label in that cluster. During inference,
the API returns the majority label of the closest cluster as the
predicted label and the ratio of the fraction of majority label
to distance from the cluster center as the confidence value.
The thresholding scheme used by k-means is the similar to
the one described earlier for k-NN.

Figure 5 shows the distribution of layers at which inference
requests are f rozen using the k-means clustering approach for
ResNet-18 and ResNet-502. For ResNet 18, we observe that
Freeze Inference saves half the computation for about 33%
and 19% of the points on CIFAR-10 and CIFAR-100 respec-
tively. Similarly, for ResNet-50, we are able to save half the
computation for 46% and 26% of the points on CIFAR-10 and
CIFAR-100 respectively. Overall, this approach achieves an
accuracy of 92.85% and 88.86% with respect to the model’s
prediction for CIFAR-10 and CIFAR-100 datasets respec-
tively. Figure 6 captures the trade-off between the percentage
of points that Freeze Inference can f reeze and the accuracy of
those points for CIFAR-10 on ResNet-50. We observe that as
we increase the threshold, the percentage of points frozen de-
creases which results in points getting frozen more accurately.
This tells us that we can model thresholding as an optimiza-
tion problem where we need to simultaneously maximize the
percentage of points frozen and the accuracy with which they
are frozen.

With respect to computation, our experiments show that
cache look-up is about 20X faster than the compute for a
single layer. Additionally, from Table 1 we see that the cache
requires a mere 12.5MB of memory for ResNet-18. Thus, k-
means solves the problems both with respect to computational
complexity and memory requirements.

2ResNet-50 consists of 15 blocks, where each block consists of 3 convo-
lutional layers and 1 residual connection.

(a) Block 7 (b) Block 15
Figure 6: Trade-off between accuracy of frozen points and percentage
of total points frozen as the threshold varies for block 7 and block 15 of
ResNet-50

5 Research Directions

Cache Size and Accuracy Trade-off: From the results, we
notice that while k-means is able to lower the memory require-
ments this comes at the cost of reduced accuracy. We plan to
study techniques that can further improve the heuristic used
to compute confidence and thresholds per layer and also study
the effect of disabling freeze inference at earlier layers (e.g.,
Block 4) as most of errors happen in the initial few layers.
Freeze Inference on GPUs: Batching of inference requests
is a popular technique used to increase prediction throughput.
With Freeze Inference, we would need to reconstruct the batch
after each layer to remove the items that have been frozen.
Handling dynamic batch sizes in GPUs across layers is an
interesting research problem that needs to be investigated.
Cache lookup performance: Optimizing the cache lookup
performance is important for realizing the benefits from freez-
ing. While our current prototype uses a single thread on CPU
to compute distance from centroids, we plan to investigate
techniques to pipeline cache lookups with the forward pass
being executed on GPUs.
Incremental Cache Update: In the current design, we use
a cache that is constructed offline from the training data. To
handle updates, we plan to identify common inference re-
quests that were not frozen over a period of time, collect their
intermediate layer representations and labels and once enough
examples have accumulated, we can use these examples to
recompute the thresholds. Performing online cache updates
is a challenging problem especially with k-means as clusters
and thresholds need to be re-computed for every update.

Acknowledgements. We thank Yingyu Liang, Arjun Singhvi
and reviewers for their valuable feedback and suggestions.
This work is supported by the National Science Foundation
(CNS-1838733). Shivaram Venkataraman is also supported
by a Facebook faculty research award and support for this re-
search was also provided by the Office of the Vice Chancellor
for Research and Graduate Education at the University of Wis-
consin, Madison with funding from the Wisconsin Alumni
Research Foundation. Aditya Akella is also supported by a
Google Faculty award, a gift from Huawei, and H. I. Romnes
Faculty Fellowship.

6 Discussion Topics

In this paper we introduced Freeze Inference, a general tech-
nique to improve the latency of serving deep learning models
by using cache and have shown that this direction has poten-
tial. This paper is likely to generate a discussion regarding the
opportunities for not running all the layers of a DNN. Some
points that we think will lead to discussion include:
Design approaches for an approximate cache: In this pa-
per, we presented an initial approach at designing an approxi-
mate cache using k-NN and k-means clustering. If other tech-
niques can improve the trade-off between cache size, cache
lookup time, and accuracy, it will make for an interesting
discussion.
Dynamic batching on GPUs: As discussed in Section 5, the
problem of dynamically adjusting the batch size on GPUs
is very interesting from a systems perspective. Solutions to
this problem could also improve other techniques like Skip-
Nets [17].
Effect of non-uniform request popularity: Finally our
evaluation results consider a uniform distribution of requests
from the test dataset. However in real world scenarios we
often see a zipfian pattern with a few very popular requests
and it will be interesting to discuss on how we can achieve
greater benefits for such requests.

References

[1] CAI, Z., HE, X., SUN, J., AND VASCONCELOS, N.
Deep learning with low precision by half-wave gaus-
sian quantization. CoRR abs/1702.00953 (2017).

[2] COURBARIAUX, M., AND BENGIO, Y. Binarynet:
Training deep neural networks with weights and activa-
tions constrained to +1 or -1. CoRR abs/1602.02830
(2016).

[3] CRANKSHAW, D., WANG, X., ZHOU, G., FRANKLIN,
M. J., GONZALEZ, J. E., AND STOICA, I. Clipper:
A low-latency online prediction serving system. In
14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17) (Boston, MA, 2017),
USENIX Association, pp. 613–627.

[4] HASSAN, H., AUE, A., CHEN, C., CHOWDHARY, V.,
CLARK, J., FEDERMANN, C., HUANG, X., JUNCZYS-
DOWMUNT, M., LEWIS, W., LI, M., ET AL. Achiev-
ing human parity on automatic chinese to english news
translation. arXiv preprint arXiv:1803.05567 (2018).

[5] HE, K., ZHANG, X., REN, S., AND SUN, J. Deep
residual learning for image recognition. CoRR
abs/1512.03385 (2015).

[6] HINTON, G., VINYALS, O., AND DEAN, J. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531 (2015).

[7] HUANG, G., CHEN, D., LI, T., WU, F., VAN DER
MAATEN, L., AND WEINBERGER, K. Q. Multi-scale
dense convolutional networks for efficient prediction.
CoRR abs/1703.09844 (2017).

[8] KRIZHEVSKY, A., NAIR, V., AND HINTON, G. Cifar-
10 (canadian institute for advanced research).

[9] KRIZHEVSKY, A., NAIR, V., AND HINTON, G. Cifar-
100 (canadian institute for advanced research).

[10] KRIZHEVSKY, A., SUTSKEVER, I., AND HINTON,
G. E. Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information
Processing Systems. 2012, pp. 1097–1105.

[11] LEE, Y., SCOLARI, A., CHUN, B.-G., SANTAMBRO-
GIO, M. D., WEIMER, M., AND INTERLANDI, M.
PRETZEL: Opening the black box of machine learn-
ing prediction serving systems. 611–626.

[12] LIN, M., CHEN, Q., AND YAN, S. Network in network.
CoRR abs/1312.4400 (2013).

[13] SHEN, H., PHILIPOSE, M., AGARWAL, S., AND WOL-
MAN, A. Mcdnn: An execution framework for deep
neural networks on resource-constrained devices. Tech.
rep., December 2015.

[14] SIMONYAN, K., AND ZISSERMAN, A. Very deep con-
volutional networks for large-scale image recognition.
CoRR abs/1409.1556 (2014).

[15] SZEGEDY, C., LIU, W., JIA, Y., SERMANET, P., REED,
S., ANGUELOV, D., ERHAN, D., VANHOUCKE, V.,
AND RABINOVICH, A. Going deeper with convolutions.
In Computer Vision and Pattern Recognition (CVPR)
(2015).

[16] SZEGEDY, C., VANHOUCKE, V., IOFFE, S., SHLENS,
J., AND WOJNA, Z. Rethinking the inception architec-
ture for computer vision. CoRR abs/1512.00567 (2015).

[17] WANG, X., YU, F., DOU, Z., AND GONZALEZ, J. E.
Skipnet: Learning dynamic routing in convolutional net-
works. CoRR abs/1711.09485 (2017).

[18] WEBER, R., SCHEK, H.-J., AND BLOTT, S. A quantita-
tive analysis and performance study for similarity-search
methods in high-dimensional spaces. In VLDB (1998),
pp. 194–205.

[19] XING, E. P., JORDAN, M. I., RUSSELL, S. J., AND
NG, A. Y. Distance metric learning with application to
clustering with side-information. In Advances in neural
information processing systems (2003), pp. 521–528.

[20] XIONG, W., , HUANG, X., SEIDE, F., , AND STOLCKE,
A. Toward human parity in conversational speech recog-

nition. IEEE/ACM Transactions on Audio, Speech, and
Language Processing 25 (Sept 2017), 2410–2423.

	Introduction
	Intuition
	Towards Approximate Caching

	Freeze Inference Design
	Offline Phase
	Online Phase - Inference

	Results and Challenges
	Research Directions
	Discussion Topics

