
Low Latency Geo-distributed Data Analytics

Qifan Pu1,2, Ganesh Ananthanarayanan1, Peter Bodik1

Srikanth Kandula1, Aditya Akella3, Paramvir Bahl1, Ion Stoica2

1Microsoft Research 2University of California at Berkeley
3University of Wisconsin at Madison

ABSTRACT
Low latency analytics on geographically distributed dat-
asets (across datacenters, edge clusters) is an upcoming
and increasingly important challenge. The dominant
approach of aggregating all the data to a single data-
center significantly inflates the timeliness of analytics.
At the same time, running queries over geo-distributed
inputs using the current intra-DC analytics frameworks
also leads to high query response times because these
frameworks cannot cope with the relatively low and
variable capacity of WAN links.

We present Iridium, a system for low latency geo-distri-
buted analytics. Iridium achieves low query response
times by optimizing placement of both data and tasks
of the queries. The joint data and task placement op-
timization, however, is intractable. Therefore, Iridium

uses an online heuristic to redistribute datasets among
the sites prior to queries’ arrivals, and places the tasks
to reduce network bottlenecks during the query’s ex-
ecution. Finally, it also contains a knob to budget
WAN usage. Evaluation across eight worldwide EC2 re-
gions using production queries show that Iridium speeds
up queries by 3× − 19× and lowers WAN usage by
15%− 64% compared to existing baselines.

CCS Concepts
•Computer systems organization → Distributed
Architectures; •Networks → Cloud Computing;

Keywords
geo-distributed; low latency; data analytics; network
aware; WAN analytics

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SIGCOMM ’15, August 17 - 21, 2015, London, United Kingdom
c© 2015 ACM. ISBN 978-1-4503-3542-3/15/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2785956.2787481

1. INTRODUCTION
Large scale cloud organizations are deploying dat-

acenters and “edge” clusters globally to provide their
users low latency access to their services. For instance,
Microsoft and Google have tens of datacenters (DCs) [6,
11], with the latter also operating 1500 edges world-
wide [24]. The services deployed on these geo-distributed
sites continuously produce large volumes of data like
user activity and session logs, server monitoring logs,
and performance counters [34, 46, 53, 56].

Analyzing the geo-distributed data gathered across
these sites is an important workload. Examples of such
analyses include querying user logs to make advertise-
ment decisions, querying network logs to detect DoS
attacks, and querying system logs to maintain (stream-
ing) dashboards of overall cluster health, perform root-
cause diagnosis and build fault prediction models. Be-
cause results of these analytics queries are used by data
analysts, operators, and real-time decision algorithms,
minimizing their response times is crucial.

Minimizing query response times in a geo-distributed
setting, however, is far from trivial. The widely-used
approach is to aggregate all the datasets to a central
site (a large DC), before executing the queries. How-
ever, waiting for such centralized aggregation, signifi-
cantly delays timeliness of the analytics (by as much
as 19× in our experiments).1 Therefore, the natural
alternative to this approach is to execute the queries
geo-distributedly over the data stored at the sites.

Additionally, regulatory and privacy concerns might
also forbid central aggregation [42]. Finally, verbose or
less valuable data (e.g., detailed system logs stored only
for a few days) are not shipped at all as this is deemed
too expensive. Low response time for queries on these
datasets, nonetheless, remains a highly desirable goal.

Our work focuses on minimizing response times of
geo-distributed analytics queries. A potential approach
would be to leave data in-place and use unmodified,
intra-DC analytics framework (such as Hadoop or Spark)
across the collection of sites. However, WAN band-

1An enhancement could “sample” data locally and send only
a small fraction [46]. Designing generic samplers, unfortu-
nately, is hard. Sampling also limits future analyses.

widths can be highly heterogeneous and relatively mod-
erate [43, 47, 48] which is in sharp contrast to intra-DC
networks. Because these frameworks are not optimized
for such heterogeneity, query execution could be dra-
matically inefficient. Consider, for example, a simple
map-reduce query executing across sites. If we place
no (or very few) reduce tasks on a site that has a large
amount of intermediate data but low uplink bandwidth,
all of the data on this site (or a large fraction) would
have to be uploaded to other sites over its narrow up-
link, significantly affecting query response time.

We build Iridium, a system targeted at geo-distributed
data analytics. Iridium views a single logical analytics
framework as being deployed across all the sites. To
achieve low query response times, it explicitly considers
the heterogeneous WAN bandwidths to optimize data
and task placement. These two placement aspects are
central to our system since the source and destination of
a network transfer depends on the locations of the data
and the tasks, respectively. Intuitively, in the example
above, Iridium will either move data out of the site with
low uplink bandwidth before the query arrives or place
many of the query’s reduce tasks in it.

Because durations of intermediate communications
(e.g., shuffles) depend on the duration of the site with
the slowest data transfer, the key intuition in Iridium

is to balance the transfer times among the WAN links,
thereby avoiding outliers. To that end, we formulate
the task placement problem as a linear program (LP)
by modeling the site bandwidths and query character-
istics. The best task placement, however, is still limited
by input data locations. Therefore, moving (or repli-
cating) the datasets to different sites can reduce the
anticipated congestion during query execution.

The joint data and task placement, even for a single
map-reduce query, results in a non-convex optimization
with no efficient solution. Hence, we devise an effi-
cient and greedy heuristic that iteratively moves small
chunks of datasets to “better” sites. To determine which
datasets to move, we prefer those with high value-per-
byte; i.e., we greedily maximize the expected reduction
in query response time normalized by the amount of
data that needs to be moved to achieve this reduction.
This heuristic, for example, prefers moving datasets
with many queries accessing them and/or datasets with
queries that produce large amount of intermediate data.

Our solution is also mindful of the bytes transferred
on the WAN across sites since WAN usage has impor-
tant cost implications ($/byte) [53]. Purely minimizing
query response time could result in increased WAN us-
age. Even worse, purely optimizing WAN usage can ar-
bitrarily increase query latency. This is because of the
fundamental difference between the two metrics: band-
width cost savings are obtained by reducing WAN usage
on any of the links, whereas query speedups are ob-
tained by reducing WAN usage only on the bottleneck
link. Thus, to ensure fast query responses and reason-
able bandwidth costs, we incorporate a simple “knob”

Core
Network

Global
Manager

Job Queue

Site Manager

Map2

Site Manager

Map1

Reduce1

Site Manager

Map3

Bangalore
Boston

San Francisco Beijing

I1 S1

Reduce2

Figure 1: Geo-distributed map-reduce query. The
user submits the query in San Francisco, and the
query runs across Boston, Bangalore and Beijing.
We also show the notations used in the paper at
Bangalore, see Table 1.

that trades off the WAN usage and latency by limiting
the amount of WAN bandwidth used by data moves and
task execution. In our experiments, with a budget equal
to that of a WAN-usage optimal scheme (proposed in
[53, 54]), Iridium obtains 2× faster query responses.

Our implementation of Iridium automatically estimates
site bandwidths, future query arrivals along with their
characteristics (intermediate data), and prioritizes data
movement of the earlier-arriving queries. It also sup-
ports Apache Spark queries, both streaming [60] as well
as interactive/batch queries [59]. 2

Evaluation across eight worldwide EC2 regions and
trace-driven simulations using production queries from
Bing Edge, Conviva, Facebook, TPC-DS, and the Big-
data benchmark show that Iridium speeds up queries by
3× − 19× compared to existing baselines that (a) cen-
trally aggregate the data, or (b) leave the data in-place
and use unmodified Spark.

2. BACKGROUND AND MOTIVATION
We explain the setup of geo-distributed analytics (§2.1),

illustrate the importance of careful scheduling and stor-
age (§2.2), and provide an overview of our solution (§2.3).

2.1 Geo-distributed Analytics
Architecture: We consider the geo-distributed ana-
lytics framework to logically span all the sites. We
assume that the sites are connected using a network
with congestion-free core. The bottlenecks are only be-
tween the sites and the core which has infinite band-
width, valid as per recent measurements [13]. Addi-
tionally, there could be significant heterogeneity in the
uplink and downlink bandwidths due to widely different
link capacities and other applications (non-Iridium traf-
fic) sharing the links. Finally, we assume the sites have
relatively abundant compute and storage capacity.

Data can be generated on any site and as such, a
dataset (such as “user activity log for application X”)

2https://github.com/Microsoft-MNR/GDA

could be distributed across many sites. Figure 1 shows
an example geo-distributed query with a logically cen-
tralized global manager that converts the user’s query
script into a DAG of stages, each of which consists of
many parallel tasks. The global manager also coordi-
nates query execution across the many sites, keeps track
of data locations across the sites, and maintains durabil-
ity and consistency of data; durability and consistency,
though, are not the focus of our work.

Each of the sites is controlled by a local site manager
which keeps track of the available local resources and
periodically updates the global manager.
Analytics Queries: Input tasks of queries (e.g., map
tasks) are executed locally on sites that contain their
input data, and they write their outputs (i.e., interme-
diate data) to their respective local sites. Input stages
are extremely quick as a result of data locality [37, 58]
and in-memory caching of data [17, 59].

In a geo-distributed setup, the main aspect dictating
response time of many queries is efficient transfer of
intermediate data that necessarily has to go across sites
(e.g., all-to-all communication patterns). In Facebook’s
production analytics cluster, despite local aggregation
of the map outputs for associative reduce operations [9,
57], ratio of intermediate to input data sizes is still a
high 0.55 for the median query, 24% of queries have this
ratio ≥ 1 (more in §6). Intermediate stages are typically
data-intensive, i.e., their durations are dominated by
communication times [25, 26, 52].

Queries are mostly recurring (“batched”streaming [60]
or “cron” jobs), e.g., every minute or hour. Because of
their recurring nature, we often know the queries that
will run on a dataset along with any lag between the
generation of the dataset and the arrival of its queries.
Some ad hoc analytics queries are also submitted by
system operators or data analysts. Timely completion
of queries helps real-time decisions and interactivity.
Objectives: Our techniques for task and data place-
ment work inside the global manager to reduce query
response time, which is the time from the submission
of a query until its completion. At the same time, we
are mindful of WAN usage (bytes transferred across the
WAN) [53, 54] and balance the two metrics using a sim-
ple knob for budgeted WAN usage.

2.2 Illustrative Examples
While Iridium can handle arbitrary DAG queries, in

this section, we illustrate the complexity of minimiz-
ing the response time of a geo-distributed query using
a canonical map-reduce query. As described above, ef-
ficient transfer of intermediate data across sites is the
key. Transfer duration of “all-to-all” shuffles is dictated
by, a) placement of reduce tasks across sites, §2.2.1, and
b) placement of the input data, §2.2.2; since map out-
puts are written locally, distribution of the input data
carries over to the distribution of intermediate data. We
demonstrate that techniques in intra-DC scheduling and
storage can be highly unsuited in the geo-distributed

Symbol Meaning
Ii amount of input data on site i
Si amount of intermediate (map output)

data on site i
α selectivity of input stage, Si = αIi
Di downlink bandwidth on site i
Ui uplink bandwidth on site i
ri fraction of intermediate (reduce) tasks

executed in site i
TU
i , TD

i finish time of intermediate data trans-
fer on up and down link of site i

Table 1: Notations used in the paper.

setup. We will also show that techniques to minimize
WAN usage can lead to poor query response times.

For ease of presentation, we consider the links be-
tween the sites and the network core as the only bottle-
necks and assume that IO and CPU operations of tasks
have zero duration. Table 1 contains the notations. In
general, Ii, Si, Di, and Ui represent the query input
data, intermediate (map output) data, downlink and
uplink WAN bandwidths on site i, respectively. The
fraction of intermediate (reduce) tasks on a site i is ri;
we use the term link finish time to refer to TU

i and TD
i

which represent the time taken to upload and download
intermediate data from and to site i, respectively.

2.2.1 Intermediate Task Placement
Consider a log with the schema 〈timestamp, user_id,

latency〉 recording latencies of user requests. A user’s
requests could be distributed across many sites (say,
when a user represents a large global customer). Our
sample query computes exact per-user median latency
(SELECT user_id, median(latency) GROUP BY user_id).
As we execute a user-defined and non-associative func-
tion, median(), the map tasks output all pairs of 〈user_id,
〈latency〉〉, and this intermediate data is shuffled across
all sites. Assume the intermediate outputs are half the
input size; selectivity α = 0.5 (Table 1). Every reduce
task collects latency values for a subset of user_id val-
ues and calculates the median per user.

We consider execution of the above query over three
sites; see Table 2a for input and intermediate data sizes
and bandwidths available at the sites. State-of-the-
art approaches to scheduling reduce tasks recommend
equal spreading of reduce tasks across sites (or racks
and machines) [19, 52]. Such an approach would re-
sult in one-third of the tasks on each of the three sites,
r = (0.33, 0.33, 0.33), resulting in a query response time
of 80s (Figure 2b and 2c). Each of the sites has data
traversing its up and down links, whose finish times (TU

i

and TD
i) depend on their bandwidths. The transfer du-

ration is the maximum of all the link finish times, and
we colloquially refer to the slowest site as the bottleneck.
In this case the bottleneck is site-1 with a slow down-
link (1MB/s) which has to download 1/3 of intermediate

Site-1 Site-2 Site-3

Input Data (MB), I 300 240 240

Intermediate Data (MB), S 150 120 120

Uplink (MB/s), U 10 10 10

Downlink (MB/s), D 1 10 10

(a) Setup of three sites.

1111 2222 3333

2222 3333

2222 3333

1111 3333

1111 3333

1111 2222

1111 2222

S1=150 S2=120 S3=120

(r1= 1/3) (r3=1/3)(r2= 1/3)

(b) When tasks are equally spread across the three sites,
2
3

of the data (Si) on each site is sent out (uplink), split
equally to the other two sites. The download at each site
(downlink) can, thus, be correspondingly summed up.

0

0.2

0.4

0.6

0.8

1

0

20

40

60

80

100

Ti
U Ti

Dri

(T
D

o
r T

U
)

T
a

s
k
 F

ra
c
ti
o

n
,
r i

(80)

Site-1 Site-2 Site-3

(c) Equal Spread

0

0.2

0.4

0.6

0.8

1

0

20

40

60

80

100

(14.25)

Ti
U Ti

Dri

T
a

s
k
 F

ra
c
ti
o

n
,
r i

Site-1 Site-2 Site-3

(T
D

o
r T

U
)

(d) Better Alternative

Figure 2: Intermediate Task Placement over 3 sites
(a), comparing equal spreading of tasks (b, c) and a
better alternative (d). Task fractions (ri) are shown
on the left y-axis in ((c) and (d)) while link finish
times (TD

i or TU
i) are on the right y-axis.

data from sites 2 and 3, i.e., 120MB/3 + 120MB/3 =
80MB (Figure 2b).

A better alternative, covered in §3, distributes reduce
tasks with ratios r = (0.05, 0.475, 0.475) across the three
sites, reducing the query response time over five-fold to
14.25s, Figure 2d. The alternative, essentially, identi-
fied site-1’s downlink to be the bottleneck link in Fig-
ure 2c, and hence moved tasks away from it to the other
sites. For brevity, we omit the corresponding illustra-
tion similar to Figure 2b on calculating link finish times.

We cannot improve the reduce task placement much
more, since site-1’s up and downlinks have approxi-
mately similar link finish times now. Increasing or de-
creasing r1 will increase TD

1 or TU
1 , respectively, and

thus increase response time. Thus, task placement needs
to carefully balance the up/down link usages of the sites.
WAN Usage: To minimize WAN usage [53, 54] we
need to collect the intermediate data (Si) from sites-2
and 3 into site-1 since site-1 already contains the most
intermediate data. This results in cross-site WAN us-
age of 240MB, but takes 240s (downlink D1 = 1MB/s).
In contrast, it can be calculated that the alternative

task placement we proposed results in 268.5MB of WAN
data usage; increase in WAN usage of just 12% reduces
query response time 17× (from 240s to 14.25s). Thus,
schemes minimizing WAN usage can be highly ineffi-
cient for query response time. This is because savings
in WAN usage accrue with each link on which we reduce
the amount of data transferred, whereas we reduce re-
sponse time only by optimizing the bottlenecked link.

In fact, task placements of both the policies—equal
spreading and minimizing WAN usage—could result in
arbitrarily large query response times. For example, as
S2 increases, response time of the equal-spread policy
increases linearly, while the optimal task placement will
place all reduce tasks in site-2 and keep the response
time constant. Similarly, as D1 gets smaller, e.g., when
D1 = 0.1MB/s, minimizing WAN usage requires 2400s,
while we achieve a response time of 15s by placing no
reduce tasks on site-1.

2.2.2 Input Data Placement
In §2.2.1, we assumed that the query inputs stayed

on the sites that they were initially generated/stored.
Since even the best task placements are limited by the
locations of the data, it may be beneficial to move the
input data to different sites before starting the query.3

For example, when input data was generated at time
a0 and query is submitted at time a1 (a1 > a0), we
can use this lag of (a1 − a0) to rearrange the input data
to reduce query response time. Even when a0 = a1
but intermediate data is larger than input data (α > 1,
Table 1), moving input data would be more efficient
than moving the intermediate data. Recall that since
the input tasks write their outputs (intermediate data)
to the local site, any change in distribution of input
data carries over to the intermediate data.

Rearranging the input data, however, is non-trivial,
because as we change Si’s, we have to recompute the
optimal ri’s as well. Consider a query with input I =
(240, 120, 60)MB across three sites, α = 1, and a lag
of 24s between data generation and query arrival. As
before, we assume that IO and CPU operations of tasks
have zero duration and the WAN as the only bottleneck.
Figure 3a shows the data and bandwidths at the sites
along with query response time when data is left “in
place” (Figure 3b). Site-1’s uplink is the bottleneck link
whose link finish time is 21.6s.

A better input placement will move data out of the
bottlenecked site-1 in the available 24s, and Figure 3c
shows the benefit of the best movement: from site-1 to
site-2. The moving is gated on site-1’s uplink (10MB/s)
moving 240MB of data in 24s. This new data distribu-
tion reduces the response time 4× from 21.6s to 5.4s.
The different ri values between Figures 3b and 3c shows
that minimizing query response time indeed requires a
joint optimization over data and task placement.

3While we use the term “move” in describing our solution,
we in fact just replicate, i.e., create additional copies, §5.

Site-1 Site-2 Site-3

Input Data (MB), I 240 120 60

Intermediate Data (MB), S 240 120 60

Uplink (MB/s), U 10 10 10

Downlink (MB/s), D 1 10 10

(a) Setup of three sites.

0

100

200

300

400

0

5

10

15

20

25

Ti
U Ti

DSiIn
te

rm
e

d
ia

te
 D

a
ta

,
S

(21.6)

Site-1 Site-2 Site-3

(T
D

o
r T

U
)

(b) “In-place” Input Place-
ment

0

100

200

300

400

0

5

10

15

20

25

(5.4)

Ti
U Ti

DSi

Site-1 Site-2 Site-3

In
te

rm
e

d
ia

te
 D

a
ta

,
S

(T
D

o
r T

U
)

(c) Better Input Placement

Figure 3: Input Data Placement for (a). Comparison
of transfer durations when data is left in place (b)
with moving data from site-1 to site-2. The query
arrives with a lag of 24s after the data is available.
Intermediate data (Si) is shown on the left y-axis,
instead of ri in Figure 2. Link finish times (TD

i or
TU
i) are on the right y-axis. The best ri’s for (b) and

(c) are (0.1, 0.45, 0.45) and (0, 0.85, 0.15).

In the presence of multiple datasets, an additional
challenge is determining which datasets to move. For
example, it is advantageous to move datasets with high
number of queries accessing them. As we will show in
§6, there is a two orders of magnitude variation in access
counts of datasets in Facebook’s production cluster.

2.3 Summary and Solution Overview
In summary, we illustrated a setup of WAN-connected

sites: a query’s dataset is spread across sites (where
they were originally generated), each site stores parts
of many datasets, and each dataset is accessed by mul-
tiple queries. Our goal is to minimize average query re-
sponse time while also being mindful of WAN usage. We
achieve this by, a) moving parts of datasets across sites
in the lag between data generation and query arrival,
and b) placing intermediate tasks during the query’s
execution. The intuition is to identify “bottleneck” sites
and balance the number of tasks and/or amount of data
on these sites.

Our solution Iridium is described next.

1. We solve the problem of task placement for a sin-
gle query (given a fixed location of data) using an
efficient linear formulation (§3).

2. We devise an efficient heuristic to solve the prob-
lem of data placement (§4), that internally uses the
formulation developed in §3.

3. We incorporate a “knob” for budgeted WAN usage
in our data placement (§4.4).

For data and task placement, we ignore the (abun-
dant) CPU and memory resources at the sites.

3. TASK PLACEMENT
In this section, we describe how we place tasks of a

single query to minimize its response time given a fixed
input data distribution. As we described in §2.1, input
tasks that load and filter the input data involve no cross-
site data movement. For such input tasks, data local-
ity [37, 58] and in-memory caching [17, 59] is sufficient
for efficient execution; input tasks write their outputs
(intermediate data) locally on the site they run. Other
intermediate stages of the query, such as reduce and
join, communicate across the different sites and require
careful task placement to minimize their duration.

As these tasks are data-intensive, i.e., their durations
are dominated by the times spent on communication,
our objective is to minimize the duration of the inter-
mediate data transfer. This problem can be solved ex-
actly and efficiently for the most common communica-
tion patterns on intermediate data—reduce or join [25].
We explain our solution for these two (§3.1 and §3.2)
before extending it to arbitrary DAGs (§3.3).

3.1 Placement of Reduce Tasks
Consider a map-reduce query across sites, where Si is

the intermediate data at site i (
∑

i Si = S). We decide
ri, the fraction of reduce tasks to place on each site i
(
∑

i ri = 1) to minimize the longest link finish time.
For formulating the problem, we assume that the re-

duce tasks are infinitesimally divisible. We also assume
that the intermediate data on site i, Si, is distributed
across the other sites proportionally to rj ’s.

The main factors involved in the decision of ri’s are
the bandwidths of the uplinks (Ui) and downlinks (Di)
along with the size of intermediate data (Si) at the sites.
In the “all-to-all” shuffle communication, given the as-
sumptions above, each site i has to upload (1− ri) frac-
tion of its data for a total of (1 − ri)Si, and download
ri fraction of data from all the other sites for a total of
ri(S−Si). Therefore, the time to upload data from site
i during the intermediate data transfer is TU

i (ri) = (1−
ri)Si/Ui, and time to download the data is TD

i (ri) =
ri(S − Si)/Di. Given our assumption of a congestion-
free core, the problem of reduce task placement can,
hence, be formulated as a linear program (LP). The LP
implicitly avoids bottlenecks; e.g., if a site has a lot of
data or links with low bandwidth, the placement avoids
sending too much data over the narrow link.

min z
s.t. ∀i : ri ≥ 0∑

i ri = 1
∀i : TU

i (ri) ≤ z, TD
i (ri) ≤ z

The above formulation is highly efficient and invoked
(repeatedly) for data placement in §4. Our implemen-
tation, described in §5, removes some of the above ap-
proximations and uses a more general (but less efficient)
MIP for task placement.

3.2 Placement of Join Tasks
The above approach also extends to handle joins, e.g.,

a join of tables A and B on a common column M. There
are two join implementations: hash and broadcast, au-
tomatically chosen by query optimizers [3].

If both tables are large, they are joined using a hash
join which is executed as two all-to-all shuffles of both
tables (as in §3.1), followed by a pair-wise join operation
on data in the same key-range. To reduce the WAN
usage of the pair-wise join operation, reduce tasks of
the shuffle in both tables that are responsible for the
same key-range are scheduled on the same site. Thus,
for our purpose, we treat the whole join as a single all-
to-all shuffle and use the above LP with Si as the total
amount of data of tables A and B on site i.

If one of the tables is small, broadcast join will send
the smaller table to all sites storing any data of the
larger table. In the broadcast join, the amount of data
sent over WAN is both small and constant (size of the
small table). Placement of tasks does not impact join
completion time.

3.3 DAGs of Tasks
While task placement for a single intermediate data

transfer can be solved using an LP, doing so for general
DAGs is a much more challenging problem. For exam-
ple, placement of tasks for a query with two consecutive
intermediate data transfers results in a non-convex op-
timization (unlike the linear one above).

As a result, Iridium adopts a greedy approach of apply-
ing the task placement LP independently in each stage
of the query. Starting with the top-level stages, it ap-
plies the LP in topological order, which ensures that
when placing tasks of a stage, the tasks of their parents
have already been placed. While this approach is not
optimal, in queries with many stages in sequence, the
amount of data processed by each stage typically drops
off quickly [14]. The intermediate data transfer at the
query’s beginning is the most important.

Next, we use the approach described in this section
to find the best data placement, i.e., how to adjust Ii’s
(and Si’s) to minimize query response time.

4. DATA PLACEMENT
In this section, we describe our solution for distribut-

ing datasets across the sites to reduce the finishing time
on the anticipated bottleneck links (motivated in §2.2.2).
Changing the distribution of the input data carries over
to the distribution of intermediate data since the in-
put tasks that produce the latter write their outputs
locally. Further, as the best task placement (§3) is lim-
ited by the distribution of the data (Ii’s or Si’s), data
placement is complementary towards reducing query re-
sponse time. Again, we use “moving of data” for ease of
exposition; our system just replicates additional copies
that are tracked by the global manager (§2.1).

Site-1 Site-2 Site-3

Uplink

(MB/s), U
10 10 10

Downlink

(MB/s), D
1 10 10

(a) Setup of three sites.

0

100

200

300

400

0

5

10

15

20

25

Ti
U Ti

DSiIn
te

rm
e

d
ia

te
 D

a
ta

,
S

(21.6)

Site-1 Site-2 Site-3
(T

D
o

r T
U

)

(b) Original Input Place-
ment

0

100

200

300

400

0

5

10

15

20

25

(5.4)

Ti
U Ti

DSi

Site-1 Site-2 Site-3

In
te

rm
e

d
ia

te
 D

a
ta

,
S

(T
D

o
r T

U
)

(c) Site-1 → Site-2

0

100

200

300

400

0

5

10

15

20

25

(9)

Ti
U Ti

DSiIn
te

rm
e

d
ia

te
 D

a
ta

,
S

(T
D

o
r T

U
)

(d) Site-1 → Site-3

Figure 4: Exploring destination options for data
movement out of site-1 (same example as Figure 3).
In the initial configuration (4b), site-1’s uplink is the
bottleneck. We evaluate moving 240MB from site-1
to the other two sites, site-2 (4c) and site-3 (4d).
Moving to site-2 results in the lowest intermediate
data transfer duration of 5.4s, from 21.6s.

While the task placement problem alone can be solved
as an LP, the joint optimization of input and task place-
ment contains many local optima (see discussion in §7),
making it impossible to formulate it as a linear or a
quadratic program, or solve using convex optimization
tools. Thus, we proceed to devise an efficient heuristic.

We first provide intuition for a single dataset and
query (§4.1), generalize to multiple datasets and queries
in §4.2, provide important enhancements in §4.3, and
finally describe the knob to budget WAN usage in §4.4.

4.1 Basic Intuition
The LP in §3 provides a useful starting point. It com-

putes the optimal query response time, z, but also iden-
tifies the bottleneck link, where link finish time is equal
to z. Our heuristic rests on the intuition of moving data
out of the bottleneck site, thereby reducing this maxi-
mum link finish time (and hence the query duration).
Two natural questions arise in doing so: (i) where to
move the data? (ii) how much data to move out? We
answer both questions next.
(i) Figure 4 illustrates the effect of picking different des-
tinations to move data to, using the same example from
§2.2.2. Recall that query’s input across the three sites
was I = (240, 120, 60)MB with selectivity α = 1, i.e.,
S = I (see Figure 4a). Figure 4b shows the result of
running the query leaving the original data unmoved.
Site-1 will be the bottleneck during the intermediate
data transfer (ri’s and bottleneck site derived using §3).
Options for moving data from site-1 are to the other two
sites, 2 and 3. Figure 4c and 4d show the potential ef-
fect of both these moves, with ri’s recalculated based
on the new Si’s. Moving the data from site-1 to site-2

class Move
double cost
〈QueryID, double〉 timeReduction
Site bottleneck

1: procedure AllocateMoves(List〈Dataset〉 D)
2: for each Dataset d in D do
3: Move d.m ← FindMove(d)
4: lag ←

∑
q∈d.Queries q.lag / d.Queries.Count

5: d.value ←
∑

q∈d.Queries d.m.timeReduction[q] /
lag

6: d.score ← d.value
d.m.cost

7: for each Dataset d in D.SortedByDesc(d.score) do
8: if d.m.bottleneck.canMove() then
9: execute d.m

Pseudocode 1: Iridium Solution. The function takes
the set of all datasets D and assigns each site to
move out part of a dataset. For simplicity, we do
not present the calculation of the destination site to
be moved.

is the best move as the transfer duration is 5.4s com-
pared to 9s in Figure 4d. While not applicable in this
example, we ignore moves to those sites that increase
the transfer duration.
(ii) On the second question of how much data to move
out of the bottleneck site, the above example ended up
moving all the data from site-1 to site-2 because such
a move happened to result in the lowest duration for
intermediate transfer. In our system, we use a “what-if”
calculation to assess moving data out of the bottleneck
site in increments of δ (say, 10MB), i.e., move 10MB,
20MB and so forth. We pick the increment of δ that
provides the smallest transfer duration.4

Iridium’s heuristic can be summarized as follows: it-
eratively identify bottlenecked sites and move data out
of them to reduce the duration of intermediate data
transfer (considering all potential destinations and in-
crements of δ).5 We extend this simple intuition to a
workload of multiple competing datasets in §4.2. We
then enhance the solution in §4.3 with techniques to
predict future query arrivals, minimize contention be-
tween data movement and query traffic, etc.

4.2 Prioritizing between Multiple Datasets
In prioritizing between datasets, Iridium seeks to iden-

tify and move the high-valued datasets. High-valued
datasets are those that are accessed by more queries,
and those whose movement results in large improve-
ments in the intermediate data transfer of their queries.

In the example above, the “value” of moving data out
of site-1 to site-2 is (21.6− 5.4) = 16.2s. The relative
value of moving a dataset also increases if its queries

4This approach brings the transfer duration down to, at
least, the second-most bottlenecked link. Thus, this avoids
a “loop” of the same data being moved back to the site in
the next step. In general, fixing δ avoids jointly calculating
new values for ri’s and Si’s.
5If none of the moves out of the bottleneck site help, we
consider analogical moves of data into the bottleneck site.

are to arrive sooner, i.e., smaller lag. The “cost” of the
move is the amount of data that needs to be moved over
the WAN to improve the query, 240MB in the example.
We select the move that achieves the highest “score”,
i.e., (value/cost).

Pseudocode 1 lists the two main steps in our heuristic.
We defer estimation of future query arrivals to §4.3.
Step a), lines 2 − 5, first calls FindMove() that

returns the Move object that contains the bottlenecked
site, data to be moved out, and the reduction in query
durations (≥ 0) due to the move. The query durations
and bottleneck site are calculated using §3. If there are
multiple bottlenecked sites, we arbitrarily pick one.

The value of the move is calculated using the re-
duction in query durations and query lags (described
shortly). The “score” of the proposed move is value

cost .
Step b), lines 6−8, processes datasets in descending

order of their score. To prevent new low-value dataset
moves from slowing down ongoing high-value moves, we
allocate a site’s uplink and downlink to only one dataset
at a time (justified in §6.4). The canMove function per-
forms this check.
Query Lag: For two datasets A and B that arrived at
1:00, all else being equal, if dataset A’s queries arrive at
1:05 and dataset B’s queries at 1:10, we should prefer to
move dataset A at 1:00 since we can move B starting at
1:05. This is analogical to the “earliest-deadline-first”
scheduling approach.

We adopt this approach by calculating the query lag
for a dataset, i.e., time between dataset availability and
the query’s arrival, as the average of the lag of all the
queries accessing the dataset. The value for the dataset
is then multiplied by 1

lag . Thus, the smaller the av-

erage lag, the higher its value and urgency in moving
the dataset. In §6.4, we also evaluate other metrics of
arrival lag (e.g., median, earliest, latest) and see that
using the average works best.

The AllocateMoves() function in Pseudocode 1 is
invoked every time a new dataset or a query arrives or
when a scheduled data movement completes. Arrival of
queries aborts any incomplete movements of their data.

4.3 Enhancements
We now present two important enhancements.

Estimating Query Arrivals
For recurring workloads (“batch” streams [60] or “cron”
jobs), we estimate arrivals based on past executions.

However, this is hard to do for ad hoc queries. For a
dataset, we care about the number of queries that will
access it and their arrival times, i.e., lag. To that end,
we make the following simple assumption that works
well in our evaluation (§6.4). We assume the dataset’s
future query arrivals will repeat as per the query arrivals
so far (from the time the dataset was generated). For
instance, if the dataset was generated at time t and
two queries arrived at times (t+ 2) and (t+ 3), we will
assume at (t+ 3) that two more queries would arrive at

times (t+ 3) + 2 and (t+ 3) + 3. We use these arrival
lags in Pseudocode 1. In general, at the end of n queries,
it would assume n more queries will arrive.

Such a scheme under-estimates the number of ac-
cesses initially. But the estimate grows quickly, and it
estimates correctly at the“half-way”number of accesses.
Beyond this half-way point, it over-estimates future ac-
cesses, which could lead to unnecessary data movement.
In practice however, for even moderate number of ac-
cesses, data movements mostly stabilize by the time the
over-estimation starts, thus limiting any fallout.

Queries/Data Contention
In an online system, our heuristic makes its data move-
ment decisions even as (tasks of) queries are executing
on the sites. This results in contention between the net-
work flows of the tasks and data movement. When we
schedule a data movement out of a site, we measure the
impact, i.e, increase in duration of the running tasks
and the corresponding queries. An increase in task du-
ration need not necessarily increase the query’s duration
because the latter is bound by its slowest task. In mea-
suring the increase in duration, we assume fair sharing
of uplink/downlink bandwidth among all the flows.

We evaluate if the slowdown of the other running
queries due to contention is worth the speedup of the
queries whose data will be moved. Data is moved only
if the trade-off is beneficial, otherwise we ignore this
dataset and move to the next dataset in the ordered list
(not included in Pseudocode 1 for simplicity).

4.4 WAN Usage Budget
WAN usage across sites is an important operational

cost ($/byte) for datacenters [53, 54]. Also, third-party
services running on AWS or Azure across regions pay
based on WAN usage [5]. As described so far, Iridium

does not account for WAN usage. If there is enough lag
for a query’s arrival or if there are not many competing
datasets, it will be free to move the datasets even if they
only marginally improve the response times.

To avoid wasting WAN bandwidths on such move-
ments, we incorporate a budget for WAN usage that
forces our heuristic to balance between the speedup of
queries and WAN costs. The challenge in setting the
budget is to ensure it is neither too low (and moving
very few datasets leading to limited query speedups),
nor too high (and causing wasted usage of WAN links).

As a baseline for our budget, we start with the WAN
consumption, W , of a (data and task placement) scheme
that optimizes for WAN usage [53, 54]. We set the bud-
get for our heuristic to be (B ·W), B ≥ 1. B = 1
implies a strict WAN usage budget, while higher values
of B trade it for faster query response.

How do we calculate and keep track of the WAN bud-
get over time? We adopt the following greedy approach.
We start with a counter M = 0. Every time a new
dataset arrives, we compute the W for this dataset and
increment M+ = W ·B. Every time we execute a data

move, we decrement M by amount of data moved. If
M = 0, we do not execute any new data moves.

Setting the knob B is a matter of policy but our re-
sults indeed highlight the presence of a “sweet spot”.
With B = 1.3, Iridium’s gains are nearly 90% of the
gains with an unconstrained budget. In fact, even with
WAN usage equal to a WAN-usage optimal policy, i.e.,
B = 1, its query speedups are 2× more, §6.5.

5. SYSTEM IMPLEMENTATION
Our prototype implementation of Iridium is on top of

the Apache Spark [59] framework. The source code is
available here: https://github.com/Microsoft-MNR/GDA

To implement our task placement, we override the
default scheduler of Spark and plug-in our module that
internally uses the Gurobi solver [7]. We would like
to note that we solve the task placement problem as a
Mixed Integer Problem (in contrast to the simple LP in
§3). The MIP uses the exact amount of intermediate
data read by every task from each site, thus handles
any intermediate communication pattern, and outputs
a specific site to place each task. Even though the MIP
is less efficient, it is invoked only once per job for task
placement. The LP is an efficient approximation and
used in the many iterations of data placement decisions.

We incorporate our data placement heuristic inside
the Hadoop Distributed File System (HDFS) [8] that
Spark uses as its data store. We do not disable the de-
fault replication mechanism in HDFS, and all our data
movements hence only create additional copies of the
data, thus leaving data durability unaffected. As stor-
age at the sites is abundant, we believe this to be an
acceptable design.

User queries and analytics jobs are submitted through
an uniform interface provided by the Spark manager.
Because Iridium is built upon Spark, it can leverage two
Spark extensions, Spark SQL and Spark Streaming [60],
for parsing SQL queries and running streaming jobs.

We use simple techniques to estimate the bandwidths
at sites and intermediate data sizes (or α) of queries.
Estimating Bandwidths: Our experiments at the eight
EC2 sites (described in §6) indicate that the available
bandwidth is relatively stable in the granularity of min-
utes. Thus, we use a simple test that checks the avail-
able bandwidth every few minutes. However, we also
get continuous fine-grained measurements by piggyback-
ing measurements on the throughputs of the data move-
ment and task flows. Given our focus on recurring
queries, such piggybacking provides a sufficiently rich
source of bandwidth values that automatically considers
non-Iridium traffic. We plug these in to our heuristics.
Estimating Intermediate Data Sizes: Unlike input sizes
of queries, intermediate data sizes are not known up-
front. Again, we leverage the recurring nature of our
workloads to infer the intermediate data sizes. Re-
peated queries, even on newer parts of the same dataset,
often produce similar filtering of data. We are able to es-

timate the ratio of intermediate to input data of queries
(α) with an accuracy of 92% in our experiments.

6. EVALUATION
We evaluate Iridium using a geo-distributed EC2 de-

ployment as well as trace-driven simulations. The high-
lights of our evaluation are as follows.

1. Iridium speeds up workloads from Conviva, Bing
Edge, TPC-DS [12] and Big-data benchmarks [4]
by 64% to 92% (3× to 19×) when deployed across
eight EC2 regions in five continents.

2. Iridium saves WAN bandwidth usage by 15% to
64%. Even with usage equal to a WAN-usage op-
timal policy, its query speedups are 2× more.

6.1 Methodology
We begin by describing our evaluation setup.

EC2 Deployment: We deploy Iridium across eight EC2
regions in Tokyo, Singapore, Sydney, Frankfurt, Ire-
land, Sao Paulo, Virginia (US) and California (US) [2].
We use c3.4xlarge instances in each region [1] and the
WAN connecting them is a more constrained resource
than the local CPU/memory/disk. In addition, we also
mimic a larger geo-distributed setup of 30 sites within
one region.
Workloads: We tested our system using four analyt-
ics workloads from Conviva, Bing Edge, TPC-DS and
AMPLab Big-data benchmark (§6.2). These workloads
consist of a mix of Spark [59] and Hive [49] queries.
Trace-driven Simulator: We evaluate Iridium over
longer durations using a trace-driven simulator of pro-
duction traces (one month, 350K jobs) from Facebook’s
Hadoop cluster. The simulator is faithful to the trace
in its query arrival times (lag), task input/output sizes,
and dataset properties of locations, generation times
and access patterns. We mimic 150 sites in our simula-
tor; slots within sites are unconstrained.

We predict future query arrivals (lags) using the tech-
nique in §4.3, and evaluate its accuracy in §6.4.
Baselines: We compare Iridium to two baselines: (i)
leave data “in-place” and use stock Spark’s scheduling
and storage policies, and (ii) “centralized” aggregation
of data at a main DC whose in-bandwidth is generously
and conservatively set to be practically-infinite, i.e., it is
rarely the bottleneck during the aggregation. We again
use stock Spark’s scheduling/storage within the main
DC that they are optimized well for.
Metric: Our primary metric is reduction (%) in av-
erage response time of queries. For a query whose re-
sponse times with the baseline and Iridium are b and x,

we calculate 100 × (b−x)
b ; maximum is 100%. We also

quote b/x, the factor of reduction in response time when
appropriate. In §6.5, we measure WAN usage.

We describe our EC2 deployment results in §6.2 and
simulation results in §6.3. We assess Iridium’s design
decisions in §6.4 and the WAN usage knob in §6.5.

0

20

40

60

80

100

Iridium vs. Centralized
Iridium vs. In-place

Conviva Bing

Edge

TPC-

DS

Big-

DataR
e

d
u

c
ti
o

n
 (

%
)

in
 Q

u
e

ry

R
e

s
p

o
n

s
e

 T
im

e

3x3x3x3x

5x5x5x5x----14x14x14x14x 6x6x6x6x----9x9x9x9x

3x3x3x3x

(a) Inter-Region

0

20

40

60

80

100

Iridium vs. Centralized

Iridium vs. In-place

4444xxxx

Conviva Bing

Edge

TPC-

DS
Big-

DataR
e

d
u

c
ti
o

n
 (

%
)

in
 Q

u
e

ry

R
e

s
p

o
n

s
e

 T
im

e 3x3x3x3x----10x10x10x10x 4x4x4x4x----19x19x19x19x
3x3x3x3x----7x7x7x7x

(b) 30 sites

Figure 5: EC2 Results across eight worldwide regions
(a): Tokyo, Singapore, Sydney, Frankfurt, Ireland,
Sao Paulo, Virginia (US) and California (US). The
figure on the right (b) is on a larger 30-site setup.
Iridium is 3×− 19× better compared to the two base-
lines.

6.2 EC2 Deployment
We used four workloads to evaluate Iridium on EC2.

(1) Conviva Video Analytics: We use queries from
Conviva, a video delivery and monitoring company. Data
from clients (e.g., the edge/CDN serving them, their
ISP and network characteristics) are analyzed to mod-
ify the parameters of video sessions (e.g., codec, buffer
sizes) to improve performance (re-buffering ratio [21]).
The queries contain a mixture of aggregation (“reduce”)
and table-joins. Every query has 160GB input.
(2) Microsoft Bing Edge Dashboard: Microsoft’s
Bing service maintains a running dashboard of its edge
servers deployed worldwide. The queries aggregate data
from 40, 000 raw counters filtered by a range of location
(lat/long, city), user-id, etc. values to produce aver-
age and 90th percentiles. This is also an example of a
streaming query that we execute using Spark Stream-
ing’s “mini-batch” model [60] in every time period.
(3) TPC-DS Benchmark: The TPC-DS benchmark
is a set of decision support queries [12] based on those
used by retail product suppliers such as Amazon. These
OLAP queries examine large volumes of data (215GB)
each, and are characterized by a mixture of compute
and disk/network load, the latter of relevance to us.
(4) AMPLab Big-Data: The big-data benchmark [4]
is derived from workloads and queries from [45] with
identical schema of the data. The suite contain a mix
of Hive and Spark queries. The queries contain simple
scans, aggregations, joins, and UDF’s.

In our inter-region EC2 experiment, we use band-
widths naturally available to the instances on the sites.
In our 30-site setup, we vary the bandwidths between
100Mb/s to 2Gb/s (Linux Traffic Control [10]), hop-
ing to mimic the heterogeneous bandwidths across edge
clusters and DCs available for analytics frameworks.

Figure 5a plots our average gains for the four work-
loads across eight-region EC2 regions. Gains compared
to the in-place and centralized baselines range from 64%
to 92% (3× to 14×). Singapore, Tokyo and Oregon
(US) had 2.5× higher bandwidth than Virgina (US)
and Frankfurt, and 5× higher bandwidth than Sydney,

Iridium vs. Iridium vs.
In-place Centralized

Core 26% 32%
Core + Query Lag 41% 46%

Core + Query Lag
+ Contention 59% 74%

Core + Contention 45% 53%

Table 2: Progression of Iridium’s gains as additional
features of considering query lag and contention be-
tween query/data movements are added to the basic
heuristic. (Facebook workload)

Sao Paulo and Ireland. Iridium automatically adjusts its
data and task placement away from these sites to avoid
unduly congesting their links during query execution.
Our gains are similar (but a bit higher) with our 30-
site setup at 3×−19×. Note that since the Bing Edge
query is a streaming operation executed as a series of
“mini-batch” queries, we report the gains per batch.

Gains compared to the centralized baseline is higher
than with the in-place baseline for all but the Conviva
workload. This is because the intermediate data size
is closer to the input size (α) in the Conviva workload,
which makes central aggregation less hurtful. In addi-
tion, the Conviva and Big-data queries also have a more
intensive map stage (during which we do just as good
as our baselines via data locality) that relatively brings
down the opportunity and gains for Iridium. Finally,
the Conviva and Bing Edge queries have lesser skew in
their map outputs which limits the value of Iridium’s task
placement compared to the in-place baseline.
Overheads: Micro-benchmarks show that our data
placement iterations are efficient to implement, finish-
ing in under 100ms for up to 200 sites; the LP used
(§3.1) calculates fraction of tasks (ri), thus the number
of tasks do not matter in its calculation.

6.3 Trace-driven Simulation
In this section, we present simulation results based

on the production trace from Facebook’s Hadoop clus-
ter. We use bandwidth values 100Mb/s to 2Gb/s in our
simulator, similar to §6.2, but we also present a result
when the bandwidths are higher with lower heterogene-
ity later ({10, 50} Gb/s), indicative of only large DCs.

Compared to baselines of leaving data in place and
central aggregation, Iridium improves average response
time by 59% and 74%, respectively.

Table 2 shows the progression in gains as we start
with the basic data placement heuristic, and incremen-
tally add the usage of query lag in the score for datasets,
and consideration of contention between query/data traf-
fic. The basic heuristic itself starts with fairly moderate
gains, but jumps by a factor of 1.5× when we consider
the lag, and a further 1.5× with modeling contentions
with query traffic. The final result is also significantly
better than adding either one of the features. These
results seek to underline the use of query lag in dif-
ferentiating between datasets, and avoiding contention
with running queries.

0
20
40
60
80

100

0 25 50 75 100

C
D

F

Iridium
Task Placement Only
Input Placement Only

Reduction (%) in Query

Response Time

(a) In-place baseline

0
20
40
60
80

100

0 25 50 75 100

C
D

F

Iridium
Task Placement Only
Input Placement Only

Reduction (%) in Query

Response Time

(b) Centralized baseline

Figure 6: CDF of Iridium’s gains with the Facebook
workload. We also compare our two techniques—
task placement and data placement—standalone.

Also, keeping data in place is a more stringent base-
line than the common approach of central aggregation.
This is because reduction in data in intermediate stages
(α < 1) of many queries results in unnecessary delays
using the centralized approach. Iridium automatically
makes the right call on placing data and tasks depend-
ing on the intermediate data and other factors.
Distribution of Gains: Figure 6 plots the distribution
of gains. Gains compared to the in-place baseline are
more uniform (and lower) compared to the centralized
baseline where the gains are steep overall. The curves
converge at the third quartile at ∼ 80%. Importantly,
Iridium does not make any query worse. This is because
its decisions on data and task placements automatically
subsume the corresponding decisions by the baselines.

We also compare the effect of our two techniques—
task and data placements—standalone. With the for-
mer, we leave data in-place, and with the latter, we use
Spark’s stock intermediate task placement. With the
in-place baseline, using Iridium’s task placement alone
moderately outperforms using Iridium’s data placement
alone (outside of the final quartile); Figure 6a. However,
compared to the centralized baseline, it reverses and
significantly under-performs. This is roughly intuitive
given that smart data movements mainly assuage the
problem in moving all the data (centralized baseline)
while smart task placement mainly solves the congestion
issues due to naive task placement (in-place baseline).
Bucketing the Gains: Given the above variation in
gains, which are the queries that gain more? Figure 7
buckets queries by different characteristics and plots the
average gains in each bucket (along with the fraction of
queries). We use the stricter in-place baseline here.
(i) Intermediate/Input Ratio (α): Among queries with
same input size, Iridium’s data movement prioritizes those
with higher intermediate data as they provide higher
value. While Iridium’s task placement works for both,
queries with higher intermediate data present more op-
portunity for smart task placement. Consequently, gains
are skewed towards queries with high α (Figure 7a).
However, even queries with α < 1 see significant gains
because the times spent on input and intermediate stages
is also dictated by the vastly different processing speeds
of these stages (in-memory vs. WAN). Thus, optimizing
intermediate stages is still valuable.

0

20

40

60

80

100
%Queries

Improvement (%)

Intermediate/Input Data Ratio

<0.2
[0.2 –

0.5]
[0.5 – 1] >1

(a)

0

20

40

60

80

100
%Queries

Improvement (%)

Dataset Popularity (#Access)

<5 [5 –

25]

[26 –

50]
>100[51 –

100]

(b)

0

20

40

60

80

100
%Queries

Improvement (%)

Query Size (#Tasks)

<50
[51 –

250]

[251 –

1000]
>1000

(c)

0

20

40

60

80

100
%Queries

Improvement (%)

Cross-site Data Skew

(Coefficient of variation)

<0.5 [0.5 – 1] [1 – 2] >2

(d)

Figure 7: Iridium’s improvements (and % queries),
bucketed by various query characteristics: (a) inter-
mediate/input data ratio, (b) dataset access count,
(c) query size (# tasks), and (d) cross-site skew in
intermediate data.

(ii) Dataset popularity: As described in §4.2, Iridium

prefers moving datasets that are accessed by many queries
because the costs of moving is amortized better; our cost
and value in Pseudocode 1 aptly capture this aspect.
This is consequently reflected in the gains (Figure 7b).
Queries of oft-accessed datasets see 4× the gains com-
pared to queries whose whose input datasets are less
popular; the trend is also strictly monotonic.
(iii) Query Size (in number of tasks): Somewhat sur-
prisingly, our solution favors smaller queries (Figure 7c).
We believe this is due to two reasons. First, their datasets
happen to be oft-accessed as these queries are often in-
teractive and exploratory, resulting in repeat accesses.
Second, moving their datasets not only has a lower cost
but also higher value than those with many tasks. This
is due to the property of wave-based gains of parallel
jobs [17]. Speeding up a wave of simultaneous parallel
tasks, regardless of the number of parallel tasks (wave-
width), results in the same gain in query response time.
(iv) Cross-site skew of intermediate data: Iridium’s task
placement, and to a lesser extent, data placement, is
most effective when there is substantial skew across sites
in the intermediate data of a query. This is a trend we
observe in Figure 7d too where we bucket queries by the
coefficient-of-variation of their intermediate data sizes
across sites; smaller values of COV represent less skew.
However, the lower COV buckets have < 20% of queries.
Bandwidth of {10, 50} Gb/s: By making the band-
widths relatively higher and less heterogeneous, there is
lesser overlap of flows (flows finish faster due to higher
bandwidths), and the baseline task placement is bet-
ter off. While Iridium’s gains continue to be substantial,
an interesting aspect is that their values compared to

Lag Metric Vs. In-place Vs. Centralized
Iridium (Avg.) 59% 74%
Iridium (Median) 56% 75%
Iridium (Earliest) 38% 42%
Iridium (Latest) 24% 40%

Oracle 66% 81%

Table 3: Effectiveness of estimating query lag. Irid-
ium’s approach of using the average lag outperforms
other options and crucially, has gains of ∼ 90% of an
oracle that has full knowledge about query arrivals.

the centralized baseline drops down to 56%, which is
also roughly where the gains with the in-place base-
line land. Higher and lesser heterogeneous bandwidths
slightly soften the inefficiencies of the centralized base-
line’s data aggregation and in-place baseline’s task place-
ment, respectively.

6.4 Iridium’s Design Decisions
In this section, we evaluate the design decisions made

in Iridium’s data placement heuristic in §4.
Query Lag: In calculating the score for datasets to
rank them, we use the inverse of average lag of the
queries accessing them (§4.2). We now compare us-
ing alternate metrics of query lag than the average—
median, earliest and latest (Table 3). Using the median
lag results in nearly similar results indicating that the
arrival of queries is not long-tailed, but using the earliest
or latest results in substantially poorer performance due
to significant under- and over-estimation. They make
Iridium either too aggressive and mis-prioritize datasets
or too lethargic in its movement of datasets.

An encouraging aspect is the closeness of the gains
using the average lag to an “oracle” (∼ 90%) that knows
all the query arrivals and uses the exact query lags in
its decisions. Our simple predictor that assumes that
the arrival of queries henceforth will mimic the query
arrivals thus far, in fact, works well in practice.
Dataset at a time: The final design decision we eval-
uate is to move only one dataset at a time out of a site
(step b) in §4.2). We compare it to two alternatives.
The first natural alternative is at the other extreme of
having no cap. All the data movement flows sharing
the link obtain their fair share of bandwidth. The other
alternative is to allow many flows but allocate band-
widths between them in proportion to the “value” they
are estimated to obtain.

Iridium outperforms both these alternatives whose gains
compared to the baselines are 41% and 55% for the first,
and 48% and 61% for the second alternative.

6.5 WAN Bandwidth Usage
Finally, we evaluate the functioning of Iridium’s knob

to budget WAN bandwidth usage (§4.4); our results so
far were with the WAN budget knob B = 1.3. Figure 8
plots the results as B varies. “MinBW” is the scheme
that optimizes for WAN bandwidth usage proposed in
[53, 54]. While Iridium’s bandwidth gains are lower than
those of MinBW, they are still appreciable.

-20

0

20

40

60

80

0 10 20 30 40 50

Iridium
MinBW

R
e

d
u

c
ti
o

n
 (

%
)

in
 Q

u
e

ry

R
e

s
p

o
n

s
e

 T
im

e

Reduction (%) in WAN Usage

-20

B=1.5 B=1.3

B=1

(a) In-place baseline

0

20

40

60

80

100

0 20 40 60 80

Iridium

MinBW

R
e

d
u

c
ti
o

n
 (

%
)

in
 Q

u
e

ry

R
e

s
p

o
n

s
e

 T
im

e

Reduction (%) in WAN Usage

B=1.5
B=1.3

B=1

(b) Centralized baseline

Figure 8: WAN Bandwidth Usage knob, B. MinBW
is the scheme that optimizes for WAN bandwidth
usage. Even with same WAN usage as MinBW
(B = 1), Iridium’s gains in query response time are
significantly higher. MinBW slows down queries
against the in-place baseline.

With just a small value of B = 1.3 (i.e., 30% higher
WAN usage than MinBW), Iridium’s query speedups of
59% and 74% are ∼ 90% of those without any WAN
usage budget (64% and 80%). This shows that Iridium

smartly uses the bandwidth budget to balance gains
in bandwidth usage with gains in query response time.
This also shows that over long periods, arrival of “high-
valued” and “low-valued” datasets overlap sufficiently
in the workload. This is an important characteristic for
our greedy budgeted scheme to function well.

Even for B = 1 (i.e., same WAN bandwidth usage
as MinBW), Iridium’s gains in query response time are
appreciable. Crucially, MinBW results in an increase
in query response time (negative gains) with the in-
place baseline. While MinBW’s query gains are positive
compared to the centralized baseline, Iridium query gains
are handily 2× better for the same WAN usage.

7. DISCUSSION AND LIMITATIONS
We now discuss some limitations of our solutions.

Compute and Storage Constraints: Our work did
not consider limitations in compute and storage at the
sites as we believed that to be reasonable for datacen-
ters. However, as geo-distributed analytics moves to
“edge” clusters, it is conceivable that compute and stor-
age are also limitations. Under such a scenario, compute
and storage capacity have to be comprehensively con-
sidered for task and data placement. A simple approach
could do the following. To the task placement formu-
lation in §3, we add the following constraint on every
site i: ri ·D ≤ Ci, where D is the compute required by
the stage and Ci is the capacity. In our data placement
heuristic, when a site is running out of storage capacity,
we will simply not consider moves into that site.
WAN Topologies: How do our heuristics change when
the core network connecting the sites is not congestion-
free? One could model pair-wise connectivity between
sites, say Bij as the available bandwidth from site i
to site j. To optimize task placement, we formulate
an LP to determine the ri’s, similar to §3.1. Given
a distribution of intermediate data Si, let Tij(rj) be

the time it takes to send data from site i to site j;
Tij(rj) = Sirj/Bij . The LP to compute z, the mini-
mal shuffle duration, and the corresponding ri’s is as
follows: min z, s.t.

∑
i ri = 1 and ∀i 6= j : Tij(rj) ≤ z.

Redesigning the data placement heuristic, however, is
more challenging and requires careful consideration.
Local minima and greedy approach: As we alluded
to in §4, the joint problem of data and task placement
is non-convex. This means that the greedy approach
adopted by our heuristic may get stuck in local minima.
Overcoming them requires exploring potential options
that could increase query response time temporarily be-
fore bringing it down. While our gains are significant
even with the greedy solution, depending on the lag and
bandwidth available for moving data, one could con-
ceive a larger move with much more significant gain.
Extending our heuristic to overcome local minima is
part of future work.

8. RELATED WORK
1) Distributed databases: While big-data frameworks
currently operate only within a single cluster, work on
distributed databases has been a popular topic [22, 27];
see surveys in [40, 44]. Google Spanner [28] is an in-
stance of a distributed database deployed at scale. Our
problem is simpler because we do not have to deal with
concurrency and deadlocks; data processing systems are
typically append-only. This gives us more freedom to
move data across sites. JetStream [46], a stream pro-
cessing system for OLAP cubes, uses data aggregation
and adaptive filtering to support data analytics. How-
ever, unlike Iridium, JetStream does not support arbi-
trary SQL queries and does not optimize data and task
placement. Recent work [53, 54] optimize for WAN
bandwidth usage across sites. As we showed, this can
lead to poor query response times. In contrast, Iridium

optimizes for query response time and WAN usage using
a budget (§4.4 and §6.5).
2) Reducing data analytics responses: There is a large
body of work on improving query response time in data
parallel systems [20, 23, 29]. These systems improve
data locality of input tasks and fairness [37, 58], and
minimize outliers in task execution [16, 19, 61]. While
these systems optimize task placement, they do not con-
sider network contentions (which matter less within a
DC), and they do not move data around to relieve po-
tential network bottlenecks [33]. Further, Iridium is com-
plementary to approximation techniques [15, 18].
3) Optimizing communication patterns: Flow schedulers
like D3 [55], PDQ [35], DeTail [62], and D2TCP [51] aim
to improve flow completion times or guarantee dead-
lines. However, they operate inside a single DC and
do not consider complex communication patterns. Or-
chestra [25], Varys [26], and Baraat [30] are network
flow schedulers that optimize for completion time of
coflows, i.e., collections of flows. However, because the
endpoints of the coflows are fixed (e.g., source and des-

tination specified by location of input data and tasks),
these cannot schedule around network bottlenecks.
4) Scheduling on the WAN: There has been much work
on optimizing WAN transfers including tuning ECMP
weights [32] and adapting allocations across pre-estab-
lished tunnels [31, 39]. Also, both Google [38] and Mi-
crosoft [36] recently published details on their produc-
tion WAN networks. All this work improves the effi-
ciency of the WAN by scheduling network flows inside
the WAN. Instead, we optimize end-to-end application
performance, i.e., reducing response time of big-data
jobs, by placing data and tasks to explicitly reduce
load on congested WAN links. Other works optimize
data placement to improve WAN latencies and utiliza-
tion [41, 50]. Iridium optimizes much more complex com-
munication patterns, such as shuffles, that require co-
ordination of a large number of flows across many sites.
Moreover, most of the above could be used to improve
the individual WAN transfers in Iridium.

9. CONCLUSION
Cloud organizations are deploying datacenters and

edge clusters worldwide. The services deployed at these
sites, first-party and third-party, produce large quanti-
ties of data continuously. Results from analyzing these
geo-distributed data is used by real-time systems and
data analysts. We develop Iridium, a system that focuses
on minimizing response times of geo-distributed analyt-
ics queries. Our techniques focus on data transfers in
these queries that happen across the WAN. By carefully
considering the WAN’s heterogeneous link bandwidths
in the placement of data as well as tasks of queries, we
improve query response times in workloads derived from
analytics clusters of Bing Edge, Facebook and Conviva
by 3× − 19×. However, we would like to point out
that our approach is greedy in nature (not optimal) and
we offer only a partial solution to optimizing complex
DAGs of tasks, both of which we aim to improve.

Acknowledgments
We would like to thank Kaifei Chen, Radhika Mittal
and Shivaram Venkataraman for their feedback on the
draft. We also appreciate the comments from our shep-
herd Mohammad Alizadeh and the anonymous review-
ers. This work was partially supported by NSF grants
CNS-1302041, CNS-1330308 and CNS-1345249.

References
[1] Amazon EC2 Instance Types.

http://aws.amazon.com/ec2/instance-types/.
[2] Amazon Web Services. http:

//aws.amazon.com/about-aws/global-infrastructure/.
[3] Apache Calcite. http://optiq.incubator.apache.org/.
[4] Big Data Benchmark.

https://amplab.cs.berkeley.edu/benchmark/.
[5] EC2 Pricing. http://aws.amazon.com/ec2/pricing/.
[6] Google Datacenter Locations. http://www.google.

com/about/datacenters/inside/locations/.

[7] Gurobi Optimization. http://www.gurobi.com/.
[8] Hadoop Distributed File System. http:

//hadoop.apache.org/docs/r1.2.1/hdfs design.html.
[9] How Map and Reduce operations are actually carried

out.
http://wiki.apache.org/hadoop/HadoopMapReduce.

[10] Linux Traffic Control.
http://lartc.org/manpages/tc.txt.

[11] Microsoft Datacenters. http://www.microsoft.com/
en-us/server-cloud/cloud-os/global-datacenters.aspx.

[12] TPC Decision Support Benchmark.
http://www.tpc.org/tpcds/.

[13] Measuring Internet Congestion: A preliminary report.
https://ipp.mit.edu/sites/default/files/documents/
Congestion-handout-final.pdf, 2014.

[14] S. Agarwal, S. Kandula, N. Bruno, M.-C. Wu,
I. Stoica, and J. Zhou. Re-optimizing Data-Parallel
Computing. In USENIX NSDI, 2012.

[15] S. Agarwal, B. Mozafari, A. Panda, M. H., S. Madden,
and I. Stoica. BlinkDB: Queries with Bounded Errors
and Bounded Response Times on Very Large Data. In
ACM EuroSys, 2013.

[16] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and
I. Stoica. Effective Straggler Mitigation: Attack of the
Clones. In USENIX NSDI, 2013.

[17] G. Ananthanarayanan, A. Ghodsi, A. Wang,
D. Borthakur, S. Kandula, S. Shenker, and I. Stoica.
PACMan: Coordinated memory caching for parallel
jobs. In USENIX NSDI, 2012.

[18] G. Ananthanarayanan, M. C.-C. Hung, X. Ren,
I. Stoica, A. Wierman, and M. Yu. GRASS: Trimming
Stragglers in Approximation Analytics. USENIX
NSDI, 2014.

[19] G. Ananthanarayanan, S. Kandula, A. Greenberg,
I. Stoica, Y. Lu, B. Saha, and E. Harris. Reining in
the Outliers in Map-Reduce Clusters using Mantri. In
USENIX OSDI, 2010.

[20] Apache Hadoop NextGen MapReduce (YARN).
Retrieved 9/24/2013, URL:
http://hadoop.apache.org/docs/current/hadoop-yarn/
hadoop-yarn-site/YARN.html.

[21] A. Balachandran, V. Sekar, A. Akella, S. Seshan,
I. Stoica, and H. Zhang. Developing a Predictive
Model of Quality of Experience for Internet Video. In
ACM SIGCOMM, 2013.

[22] P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve,
and J. B. Rothnie, Jr. Query Processing in a System
for Distributed Databases (SDD-1). ACM
Transactions on Database Systems, 1981.

[23] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou,
Z. Qian, M. Wu, and L. Zhou. Apollo: Scalable and
Coordinated Scheduling for Cloud-Scale Computing.
In USENIX OSDI, 2014.

[24] M. Calder, X. Fan, Z. Hu, E. Katz-Bassett,
J. Heidemann, and R. Govindan. Mapping the
Expansion of Google’s Serving Infrastructure. In ACM
IMC, 2013.

[25] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and
I. Stoica. Managing Data Transfers in Computer
Clusters with Orchestra. In ACM SIGCOMM, 2011.

[26] M. Chowdhury, Y. Zhong, and I. Stoica. Efficient
Coflow Scheduling with Varys. In ACM SIGCOMM,
2013.

[27] W. W. Chu and P. Hurley. Optimal Query Processing
for Distributed Database Systems. IEEE Transactions
on Computers, 1982.

[28] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle,
S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak,
C. Taylor, R. Wang, and D. Woodford. Spanner:
Google’s Globally-distributed Database. In USENIX
OSDI, 2012.

[29] J. Dean and S. Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. Communications
of the ACM, 2008.

[30] F. R. Dogar, T. Karagiannis, H. Ballani, and
A. Rowstron. Decentralized Task-aware Scheduling for
Data Center Networks. In ACM SIGCOMM, 2014.

[31] A. Elwalid, C. Jin, S. Low, and I. Widjaja. MATE:
Multipath Adaptive Traffic Engineering. Computer
Networks, 2002.

[32] B. Fortz, J. Rexford, and M. Thorup. Traffic
Engineering with Traditional IP Routing Protocols.
Communications Magazine, IEEE, 2002.

[33] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao,
and A. Akella. Multi-Resource Packing for Cluster
Schedulers. In ACM SIGCOMM, 2014.

[34] A. a. Gupta et al. Mesa: Geo-Replicated, Near
Real-Time, Scalable Data Warehousing. In VLDB,
2014.

[35] C.-Y. Hong, M. Caesar, and B. Godfrey. Finishing
flows quickly with preemptive scheduling. ACM
SIGCOMM, 2012.

[36] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang,
V. Gill, M. Nanduri, and R. Wattenhofer. Achieving
High Utilization with Software-Driven WAN. In ACM
SIGCOMM, 2013.

[37] M. Isard, V. Prabhakaran, J. Currey, U. Wieder,
K. Talwar, and A. Goldberg. Quincy: Fair Scheduling
for Distributed Computing Clusters. In ACM SOSP,
2009.

[38] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,
A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu,
J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat. B4:
Experience with a Globally-deployed Software Defined
Wan. ACM SIGCOMM, 2013.

[39] S. Kandula, D. Katabi, B. Davie, and A. Charny.
Walking the Tightrope: Responsive Yet Stable Traffic
Engineering. ACM SIGCOMM, 2005.

[40] D. Kossmann. The State of the Art in Distributed
Query Processing. ACM Computer Survey, 2000.

[41] N. Laoutaris, M. Sirivianos, X. Yang, and
P. Rodriguez. Inter-datacenter Bulk Transfers with
Netstitcher. ACM SIGCOMM, 2011.

[42] P. Mohan, A. Thakurta, E. Shi, D. Song, and
D. Culler. GUPT: Privacy Preserving Data Analysis
Made Easy. In ACM SIGMOD, 2012.

[43] E. Nygren, R. Sitaraman, and J. Sun. The Akamai
Network: A Platform for High-Performance Internet
Applications. In ACM SIGOPS OSR, 2010.

[44] M. T. Ozsu and P. Valduriez. Principles of Distributed
Database Systems. 2011.

[45] A. Pavlo, E. Paulson, A. Rasin, d. Abadi, Daniel
an dDeWitt, S. Madden, and M. Stonebraker. A
Comparison of Approaches to Large-Scale Data
Analysis. In ACM SIGMOD, 2009.

[46] A. Rabkin, M. Arye, S. Sen, V. Pai, and M. Freedman.
Aggregation and Degradation in JetStream: Streaming
Analytics in the Wide Area. In USENIX NSDI, 2014.

[47] R. Sitaraman, M. Kasbekar, W. Lichtenstein, and
M. Jain. Overlay Networks: An Akamai Perspective.
In Advanced Content Delivery, Streaming, and Cloud
Services, 2014.

[48] S. Sundaresan, W. d. Donato, N. Feamster,
R. Teixeira, S. Crawford, and A. Pescape. Broadband
Internet Performance: A View From the Gateway. In
ACM SIGCOMM, 2011.

[49] A. Thusoo, J. Sarma, N. Jain, Z. Shao, P. Chakka,
N. Zhang, S. Antony, H. Liu, and R. Murthy. Hive - A
Petabyte Scale Data Warehouse using Hadoop. In
ICDE, 2010.

[50] S. Traverso, K. Huguenin, I. Trestian, V. Erramilli,
N. Laoutaris, and K. Papagiannaki. TailGate:
Handling Long-tail Content with a Little Help from
Friends. In WWW, 2012.

[51] B. Vamanan, J. Hasan, and T. N. Vijaykumar.
Deadline-Aware Datacenter TCP (D2TCP). In
Proceedings of the ACM SIGCOMM, 2012.

[52] S. Venkataraman, A. Panda, G. Ananthanarayanan,
M. Franklin, and I. Stoica. The Power of Choice in
Data-Aware Cluster Scheduling. In USENIX OSDI,
2014.

[53] A. Vulimiri, C. Curino, B. Godfrey, T. Jungblut,
J. Padhye, and G. Varghese. Global Analytics in the
Face of Bandwidth and Regulatory Constraints. In
USENIX NSDI, 2015.

[54] A. Vulimiri, C. Curino, B. Godfrey, K. Karanasos, and
G. Varghese. WANalytics: Analytics for a
Geo-distributed Data-intensive World. In CIDR, 2015.

[55] C. Wilson, H. Ballani, T. Karagiannis, and
A. Rowtron. Better Never Than Late: Meeting
Deadlines in Datacenter Networks. ACM SIGCOMM,
2011.

[56] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett,
and H. Madhyastha. SPANStore: Cost-effective
Geo-replicated Storage Spanning Multiple Cloud
Services. In ACM SOSP, 2013.

[57] Y. Yu, P. K. Gunda, and M. Isard. Distributed
Aggregation for Data-Parallel Computing: Interfaces
and Implementations. In ACM SOSP, 2009.

[58] M. Zaharia, D. Borthakur, J. Sen Sarma,
K. Elmeleegy, S. Shenker, and I. Stoica. Delay
scheduling: a simple technique for achieving locality
and fairness in cluster scheduling. In ACM EuroSys,
2010.

[59] M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker,
and I. Stoica. Spark: Cluster Computing with
Working Sets. In USENIX HotCloud, 2010.

[60] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and
I. Stoica. Discretized Streams: Fault-Tolerant
Streaming Computation at Scale. In ACM SOSP,
2013.

[61] M. Zaharia, A. Konwinski, A. Joseph, R. Katz, and
I. Stoica. Improving MapReduce performance in
heterogeneous environments. In USENIX OSDI, 2008.

[62] D. Zats, T. Das, P. Mohan, D. Borthakur, and
R. Katz. DeTail: Reducing the Flow Completion Time
Tail in Datacenter Networks. ACM SIGCOMM, 2012.

