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Abstract

From the early days of modern congestion control, ushered in by the development of TCP’s and
DECbit’s congestion control algorithm and by the pioneering theoretical analysis of Chiu and Jain,
there has been widespread agreement that linear additive-increase-multiplicative-decrease (AIMD)
control algorithms should be used. However, the early congestion control design decisions were made
in a context where loss recovery was fairly primitive (e.g. TCP Reno) and often timed-out when more
than a few losses occurred and routers were FIFO drop-tail. In subsequent years, there has been
significant improvement in TCP’s loss recovery algorithms. For instance, TCP SACK can recover
from many losses without timing out. In addition, there have been many proposals for improved
router queueing behavior. For example, RED active queue management and Explicit Congestion
Notification (ECN) can tolerate bursty flow behavior. Per-flow packet scheduling (DRR and Fair
Queueing) can provide explicit fairness.
In view of these developments, we seek to answer the following fundamental question in this paper:
Does AIMD remain the sole choice for congestion avoidance and control even in these modern
settings? If not, can other mechanism(s) provide better performance?
We evaluate the four linear congestion control styles – AIMD, AIAD, MIMD, MIAD – in the context
of these various loss recovery and router algorithms. We show that while AIMD is an unambiguous
choice for the traditional setting of Reno-style loss recovery and FIFO drop-tail routers, it fails to
provide the best goodput performance in the more modern settings. Where AIMD fails, AIAD
proves to be a reasonable alternative.

Keywords: Congestion Control, Active Queue Management.



1 Introduction

The first sophisticated transport congestion control algorithms, developed almost simultaneously
for DECbit [1] and TCP [2], employed Additive-Increase Multiplicative-Decrease (AIMD) window
adjustment algorithms. A later theoretical study [3] confirmed, in a simple model with synchronous
congestion signals and static bandwidth, that AIMD was the only fair and stable choice among the
four linear alternatives AIMD, AIAD, MIMD and MIAD. In the past decade, due to the tremendous
success of TCP congestion control and to the enduring persuasiveness of [3], the superiority of AIMD
has become a widely accepted and deeply held belief.

As a result, there have been very few research studies advocating, or even exploring, linear
schemes other than AIMD. While there have been many papers on congestion control, most of
them investigate algorithmic issues that fall well within the AIMD paradigm. Of those departing
from the AIMD paradigm, the majority propose either non-linear congestion control algorithms [4]
or approaches that differ radically from TCP [5, 6]. Notable exceptions to this statement are [7]
(discussed in Section 5) and [8, 9] (discussed in Section 6) which propose linear control algorithms
other than AIMD.

In this paper, we revisit the question of whether AIMD is indeed the only reasonable choice
among the various linear congestion control schemes. We seek to explore these other options for
linear congestion control and to see if any of them could theoretically serve as a viable option for a
modern congestion control algorithm. As such, we are ignoring all issues of TCP compatibility (or
TCP-friendliness) and incremental deployment.

We ask this question because the early development of TCP congestion control was done in the
context of Reno-style loss recovery and FIFO drop-tail routers. TCP-Reno reacts fairly severely
to losses. If a Reno flow incurs more than a few losses within a given window, it times out and
restarts. Thus, in the past, it was important that the window adjustment algorithm increase its
window conservatively to avoid multiple losses. However, much progress has been made on loss
recovery algorithms in the past decade. The more modern loss recovery recovery schemes, like
SACK [10, 11], incur only a gentle penalty from losses since they can endure many packet drops
within a single window without restarting. Hence, there may be less of a need for conservative
window adjustment algorithms.

In addition, the drop and scheduling policies at routers have changed significantly from the early
days of TCP. The need for Active Queue Management (AQM) is widely accepted and the RED
algorithm [12] is widely implemented (although it isn’t clear how widely deployed it is). AQM
in general, and RED in particular, give flows early congestion signals – well before the physical
queue is exhausted – and can better absorb bursts of packets. This reduces the burstiness of the
loss patterns and lessens the chance that TCP needs to time-out and restart. Explicit congestion
notification (ECN) [1, 13] goes even further, giving congestion signals without losses. Thus there is
almost no penalty upon loss when TCP SACK is employed in conjunction with ECN.

In addition to modifying the drop-policies at routers, there have also been calls for routers to
adopt per-flow queueing schemes, like Deficit Round Robin (DRR) [14, 15], that explicitly ensure
fairness between flows. If such schemes became widely deployed (and some ISPs are now deploying
routers with this capability), then one need not require TCP’s window adjustment algorithm to
provide fairness. While the days of widespread deployment of DRR or similar algorithms are, at
best, far in the future, in this paper, we evaluate if such a deployment would allow us to use different
window adjustment schemes.

Most flows in the Internet carry only a few packets, and thus the available bandwidth seen by
long-lived flows can fluctuate substantially. Also, the traffic load model might change with time as
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new applications arise. Due to these reasons, in this paper we seek to evaluate the performance
of the congestion control algorithms under a wide variety of bandwidth variations, some of which
might even appear extreme at first sight. This is in contrast to most of the past congestion control
evaluation and simulation studies that looked primarily at cases where the available bandwidth was
constant.

In this paper, we use simulations in NS-2 [16] to evaluate how the four linear congestion control
scheme would function in the various settings of loss recovery mechanisms and queue management
schemes described above against the backdrop of a variety of bandwidth variations. We focus on
the effect that each setting has on the relative performances of the algorithms.

The primary metric by which we evaluate these various schemes is the goodput (fraction of
available bandwidth used to transmit distinct data packets) achieved in these various scenarios. In
the scenarios with varying bandwidth, the key to achieving high goodput is the ability to track
the available bandwidth, that is, the ability to keep up with its variations without significantly
overshooting or undershooting. We also evaluate the fairness, delay, and loss rate properties of these
congestion control schemes.

Our simulations show that AIMD is the superior design choice in the traditional setting of TCP
Reno loss recovery and FIFO drop-tail routers. However, when we consider the modern developments
mentioned above, AIMD is no longer superior. TCP SACK, active queue management techniques
and fair queueing in routers enable the other linear alternatives to provide comparable and sometimes
significantly better goodput performance. We observe that AIAD is always among the best linear
alternatives, and can even achieve fairness as long as routers are not FIFO drop-tail. Moreover,
we show, via analysis and simulations, that hybrid linear algorithms in which the linear increase
and decrease need not be purely additive or purely multiplicative can alleviate the fairness issues of
AIAD and also provide good performance.

The rest of the paper is organized as follows. In Section 2, we compare the tracking ability of
the various window adjustment schemes. In Section 3, we lay the framework used in this paper to
compare and contrast various congestion control algorithms. Section 4 presents the results of our
study. In Section 5, we briefly revisit the issue of fairness of linear congestion control schemes. In
Section 6, we present related work. Finally, Section 7 summarizes the paper.

2 Is AIMD Clearly Superior?

Our first question is whether AIMD is clearly superior to the other choices in terms of the goodput
achieved. If it was, then our subsequent analysis would be moot and the entire paper a misguided
exercise. However, as we show in this section, for each of the four algorithms we can find scenarios
in which it performs the best and the worst among the four algorithms. In fact, this suggests that
special care needs to be taken in deciding which algorithm is the best.

To maximize the usage of the available bandwidth, a congestion control scheme needs to balance
between (1) tracking rapid changes of the available bandwidth, and (2) minimizing packet losses.
The faster a sender modifies its window size, the faster the sender can track changes of the available
bandwidth. On the other hand, fast and large changes of the window size increase the probability
of the sender overshooting the available bandwidth, which may result in a large number of packets
being dropped. This has two negative implications. First, more losses mean that more packets are
retransmitted, and thus a higher fraction of the available bandwidth is devoted to retransmitting
old packets. Second, a burst of losses can hurt the loss recovery algorithm by forcing it to restart.
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Figure 1: Good cases for each of the four canonical choices. The goodput seen by the various
algorithms for the given variation is shown in the table below each plot. The goodput, measured as
the fraction of average available bandwidth used to transmit unique packets, is a number in [0, 1].

The canonical congestion control schemes we consider use either multiplicative or additive schemes
to vary the window size. When the available bandwidth increases slowly, an additive increase will
likely outperform a multiplicative increase since it is fast enough to track the changes and is less likely
to overestimate the available bandwidth. In contrast, a multiplicative increase will likely perform
better when bandwidth increases are large and abrupt. The same reasoning applies to bandwidth
decreases and the window decrease algorithms. Intuitively, this is the reason why no single canonical
congestion control scheme would be able to dominate across a wide range of scenarios. Next, we
present results supporting this observation.

Figure 1 shows four patterns of bandwidth variations. We measure the goodput for the four
linear algorithms in these four scenarios.1 The scenarios are chosen such that in each case there is
a different algorithm that achieves the highest throughput. We now describe the results in more
detail.

Figure 1(a) shows a saw-tooth bandwidth pattern under which AIMD performs the best. Com-
pared to AIMD, the window size under MIMD and MIAD increases too fast, while under AIAD
decreases too slowly. As a result these schemes experience more losses, and consequently more re-
transmissions than AIMD. The significantly worse goodput of MIAD is due to the fact that MIAD
experiences a larger number of timeouts.

1The simulation details are described in Section 3.3. For these simulations we use drop-tail FIFO routers with
TCP SACK.
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Figure 2: Bad cases for AIAD (Figure(a)) and MIMD (Figure (b)). Notice that the y-axes are on
different scales.

Figure 1(b) shows an example in which AIAD performs the best. The reason for this result is
somewhat more subtle. When the available bandwidth drops, AIAD reduces the window size slower
than the other disciplines (except MIAD). While this causes AIAD to lose slightly more packets, the
decrease of the window size is not enough to offset the increase of the window size during the previous
high bandwidth period. Thus, the window size of AIAD increases continuously over multiple high
bandwidth periods. Moreover, since the duration of a low bandwidth period is short, TCP SACK
recovers from packet losses without experiencing retransmission timeouts. In contrast, MIAD and
MIMD cannot avoid timeouts as they constantly overshoot the available bandwidth. Finally, AIMD
does not perform well because the window decrease during the low periods almost offsets the window
increase during the high periods.

Compared to the previous experiment, in the scenario presented in Figure 1(c) the high and
low periods are shorter and the high bandwidth value is larger. These changes are enough to give
advantage to MIAD over AIAD. MIAD no longer overshoots when the bandwidth increases, while
AIAD suffers from the fact that it cannot increase the window size fast enough during the high
periods.

Figure 1(d) presents a scenario which makes MIMD the winner. This is again a square pattern
bandwidth variation, but the periods are much longer. When the bandwidth decreases, AIAD and
MIAD lose too many packets, and TCP SACK is no longer able to avoid retransmission timeouts.
On the other hand, AIMD cannot exploit the available bandwidth as its window size increases too
slowly during the high periods. This leaves MIMD as the only discipline which can adequately track
the abrupt changes of the available bandwidth.

Not only we are able to construct scenarios that make any of the canonical congestion control
schemes a winner, but we can also construct scenarios that make any of these congestion control
schemes a loser. For instance, AIMD exhibits the worst performance in the experiments presented
in Figures 1(b), 1(c) and 1(d) and MIAD performs the worst in Figure 1(a). For completeness,
in Figure 2 we present two traffic scenarios in which AIAD and MIMD perform the worst. In
Figure 2(a), both the additive increase algorithms are too slow to catch up with the sudden increase
of the available bandwidth. Between AIAD and AIMD, AIAD cannot track the rapid decrease in
the available bandwidth as well, and thus it ends up losing more packets than AIMD. Figure 2(b)
shows an example where MIMD performs the worst. In this case, both the multiplicative increase
algorithms overshoot the available bandwidth by significant amounts and time-out often. MIAD
performs better than MIMD because the additive decrease allows it to keep substantially higher
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number of packets outstanding than MIMD.2

In summary, there is no clear winner or loser among the four canonical congestion control schemes.
As shown in this section, for each congestion control scheme, we can devise a bandwidth variation
pattern that can make that scheme either a winner or a loser. However, the relative performance of
the various schemes is different across scenarios. To better compare the behavior of these congestion
control schemes, we develop an evaluation methodology based on competitive analysis. This is the
subject of the next section.

3 Evaluation Methodology

In order to meaningfully compare the algorithms, we make two key guiding assumptions. Our first
guiding assumption is that congestion control algorithms should not be designed for any particular
scenario, no matter how realistic that scenario may be at the time. This is because, the load model
in the Internet may change abruptly as new applications arise or as the nature of the infrastructure
changes. Thus, congestion control algorithms should be evaluated across a wide variety of scenarios.
Our second guiding assumption is that robustness is more important than optimality, that is, we
demand that the congestion control algorithm perform reasonably in most situations and are more
concerned with its worst-case performance than its best-case performance.

To embody these guiding assumptions in a concrete methodology, we borrow an approach similar
to that used in the study of competitive algorithms [17]. Let A be the set of congestion control
algorithms that we wish to compare. For our study, A consists of AIMD, AIAD, MIMD and MIAD.
Let E be the set of possible environments or scenarios that these algorithms might be faced with,
where a scenario is a particular variation in the available bandwidth.

For the particular quantity of interest – be it goodput, fairness, loss, or delay – let sa(e) denote
the score of algorithm a in a given environment e. Let smax(e) = maxa∈A{sa(e)} denote the best
score achieved in scenario e among the algorithms in A. Let da(e) = smax(e) − sa(e); da(e) is
a measure, for a given environment e, of how close a comes to matching the best performance
among the algorithms in A. Out of these per-environment scores we define two aggregate scores.
The rank Ca is the worst-case score among the various environments: Ca = maxe∈E{da(e)}. The
rank measures the worst-case performance of the algorithm, and lower ranks represent more robust
algorithms, those that never do particularly poorly. The other measure is the aggregate value Da of
the differences: Da =

∑

e∈E da(e). The lower the values of Da and Ca are, the better the algorithm
a is, for the given metric. Table 1 outlines the notation used in this section.3

Our approach is intended to capture the basic qualitative behavior of these algorithms. However,
the approach does have a few limitations. If a wide enough range of algorithms are not explored,
then the scores da(e) do not really represent the deviations from what a good algorithm does on
that environment. They would only represent the deviations from the particular algorithms in A.
If a wide enough set of environments are not sampled, then similar problems arise. If one focuses
on environments that are too extreme, then these dominate the worst case results and may alter
the rankings. Thus, choosing the sets A and E is crucial to this method, and we now explain our
choices.

2Although these scenarios look extreme and abrupt, it is possible to construct traffic models (e.g., periodic packet
bursts or periodic outages) that result in variations roughly similar to the ones shown here.

3We could have also defined da(e) =
smax(e)

sa(e)
. We have tried this alternate definition and the results are similar

to the one we consider.
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Notation Description
sa(e) The score of algorithm a in environment e

smax(e) maxa{sa(e)}
da(e) smax(e) − sa(e)
Ca maxa{da(e)}, Rank of an algorithm a

(measuring worst-case performance)

Da

∑

e∈E
da(e)

‖E‖
, metric for average performance

Table 1: Notation

Environment Variation in per-flow available bandwidth (Bt)
1 cons-low (CL) constant at 1Mbps
2 cons-high (CH) constant at 10Mbps
3 sq-low (SQL) 10Mbps→5Mbps→10Mbps. . .,

at regular intervals (5s)
4 sq-high (SQH) 10Mbps→1Mbps→10Mbps. . .,

at regular intervals (5s)
5 rw-low (RWL) Bt+1 ∈ [Bt −∆, Bt + ∆],

B0 = 1Mbps, ∆ = 0.5B0

6 rw-high (RWH) same as above except that B0 = 10Mbps
7 rd-low (RDL) Bt ∈ [0, B0], B0 = 1Mbps
8 rd-high (RDH) Bt ∈ [0, B0], B0 = 10Mbps
9 rw-additive (RWA) Bt+1 ∈ [0, Bt + ∆], B0 = 1Mbps,

∆ = 0.25B0

10 rw-multiplicative (RWM) Bt+1 ∈ [0, µBt], B0 = 1Mbps, µ = 5/3
11 real-cons-low (RCL) Pareto length flows arrive with

Poisson inter-arrival times
12 real-cons-high (RCH) Same as in real-cons-low, except that

the mean inter-arrival time is very low
13 real-sq (RSQ) Mean inter-arrival time varies in a square manner

Table 2: Environments

3.1 Choosing the Set E of Environments

In choosing the components of E, we aim to include enough environments to cover a wide variety of
situations while still keeping the set small enough to be manageable. We deliberately choose some
of the environments to be fairly extreme. The goal for these is not to be realistic, but to test the
algorithms under unusually harsh conditions. We include a few environments that reflect reasonably
realistic scenarios. Finally, we add few other environments that we hope would help reveal key
aspects of the algorithms’ behavior. The resulting composition for the set E is shown in Table 2.

Most of the scenarios are on a simple topology (described later) where the single congested link
has varying available bandwidth. The basic bandwidth variations we consider are described below
(we describe the variation in per-flow available bandwidth):

• Constant: The available bandwidth is constant. We included a cons-low (CL) environment
where the constant bandwidth is low (1Mbps) and a cons-high (CH) environment where the
constant bandwidth is high (10Mbps).

• Square-Wave: The available bandwidth undergoes square wave oscillations, with the band-
width variations occurring every 5 seconds. In the sq-low (SQL) scenario, the bandwidth
varies between 5Mbps and 10Mbps. In the sq-high (SQH) scenario, the bandwidth varies
between 1Mbps and 10Mbps.

• Random Walk (RWL, RWH): Here the bandwidth varies according to a random walk. If the
bandwidth at time t is Bt then the next bandwidth is chosen uniformly from the interval
[Bt −∆, Bt + ∆] where ∆ = 0.5B0. For rw-low (RWL), B0 = 1Mbps and for rw-high (RWH),
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B0 = 10Mbps.

• Random (RDL, RDH): The bandwidth is chosen uniformly randomly from the interval [0, B0]
where B0 = 1Mbps for rd-low (RDL) and B0 = 10Mbps for rd-high (RDH).

• Additive Random Walk (RWA): For the environment rw-additive (RWA), the available band-
width is chosen from an additively constrained interval [18]. That is, the bandwidth at time
t+1 is chosen uniformly at random from the interval [0, Bt+∆]. Here, B0 = 1Mbps, ∆ = 0.25.

• Multiplicative Random Walk (RWM): In the environment rw-multiplicative (RWM), the avail-
able bandwidth is picked from a multiplicatively constrained interval [18]. In other words, Bt+1

is chosen uniformly at random from the interval Bt+1 ∈ [0, µBt]. Here B0 = 1Mbps, µ = 5/3.

• Realistic Cross Traffic: The variation in available bandwidth is determined by pareto-length
flows arriving at the bottleneck router with Poisson inter-arrival times. For the environment
real-cons-low (RCL), the mean inter-arrival time is 0.03s, while for real-cons-high (RCH) it is
0.01s. For the environment real-sq (RSQ), the mean varies in a square manner between 0.03s
and 0.01s, where the variation in mean occurs every 5 seconds. These scenarios were chosen
to reflect realistic load and cross-traffic models.

In all the cases 1 through 10 listed in Table 2, whenever Bt exceeds the capacity of the link, C,
we set it to C.

3.2 Choosing the Set A of Algorithms

For LC ∈ {AIMD, AIAD, MIMD, MIAD}, letLC(a, b) denote a linear congestion control scheme
with an increase parameter of a and a decrease parameter of b. For example, the window increase
and decrease equations for MIMD(1.5, 0.5) are Wt+1 = 1.5Wt and Wt+1 = 0.5Wt, respectively.

For each of the four linear control schemes, we would like to pick a single set of parameters
that provides reasonable performance across all possible settings of loss recovery schemes, router
algorithms and bandwidth variations. Such a choice would ensure two key properties: (1) the single
algorithm in each case (for example, AIMD(1,0.1)) would best summarize the overall behavior of
the entire family of linear control schemes that the algorithm belongs to (for example, AIMD). (2)
the single algorithm would ensure near-optimal performance across all possible settings.

In addition, while choosing the parameters (a, b) of such a representative algorithm we try to
ensure that the choice does not obscure the core qualities of increase and decrease of each linear
control algorithm. For example, we do not want to pick the decrease parameter of the candidate
AIMD algorithm to be very close to 1, lest it should look similar to an additive decrease. Clearly,
this property needs to hold over the entire range of sizes of the congestion window spanned by the
bandwidth variations that the algorithms are exposed to. Subjectively, we list out the following
conditions to be satisfied by the linear control algorithms over all possible window sizes:

• Additive Increase (AI): The additive increase component should be such that at no instant of
time should the window undergo an increment greater than about 10% the current size. This
serves to distinguish an additive increase form a multiplicative increase.

• Additive Decrease (AD): The additive decrease component should be such that the decrement
in the window should never be more 10%. This serves to differentiate it from a multiplicative
decrease.
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• Multiplicative Increase (MI): The multiplicative increase component should be large enough
so that the increment in size of the window is larger than 10% always.

• Multiplicative Decrease (MD): The multiplicative decrease component should be so chosen
that the window decrement is never less than 10%.
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Figure 3: Topology for the simulations. Figure (a) shows the setting for simulations where a CBR
source starting on S1 was used to control the available bandwidth on the link R1 − R2. For the
simulations involving realistic traffic patterns, the setting shown in Figure (b) was used.

From the way the bandwidth variations were chosen, it is not hard to see that the lowest window
size to ever undergo an increment is about 12-15 (assuming a round-trip time of 120s. See Section 3.3
below). Similarly the lowest window size to ever undergo a decrement is about 25-20. Applying the
above four conditions, we get the following permissible values for the parameters, approximately:
AI ≤ 3, AD ≤ 3, MI > 0.1 and MD < 0.9. The results of the comparison between the various
candidate alogithms in each of the four classes – AIMD, AIAD, MIMD, MIAD – are shown in the
appendix. Based on these results, we choose the following four candidate linear control schemes
for comparison: AIMD(1,0.8), AIAD(1,3), MIMD(1.125, 0.8) and MIAD(1.125, 3). Henceforth, we
shall refer to these schemes as AIMD, AIAD, MIMD and MIAD, respectively.

3.3 Simulation Set-up

We use simulations in NS-2 to study the above congestion control schemes under the various com-
binations of loss recovery and router algorithms and against the environments described above. In
each simulation we have n identical TCP test flows using the particular linear congestion control
scheme under investigation, and we subject them to different variations in the available bandwidth.

The topology used for testing with variations 1 through 10 is shown in Figure 3(a). To implement
variations in the available bandwidth in these scenarios, we choose to keep the bandwidth of the
link constant and introduce CBR-like cross-traffic to consume varying amounts of bandwidth. If the
link bandwidth is B and the cross-traffic consumes Bc then we say that the available bandwidth
is Ba = B − Bc. The descriptions above of the bandwidth variation scenarios can be turned into
recipes for how the cross-traffic rate should be varied. When testing with Drop-Tail and RED router
mechanisms (at R1), we employ a single rate controlled CBR source (between end-points S1 and
D1) to realize the bandwidth variations 4. When testing with DRR schedulers, however, we use a

4The CBR source might incur a few losses and hence the available bandwidth might be slightly larger than expected.
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time-varying number of fixed rate CBR sources (between S1 and D1). This is because, if we have
n simultaneous TCP flows being tested, a single CBR source would be limited to at most 1

n+1 th of
the available bandwidth at any instant of time when DRR is used, and so the available bandwidth
would not vary as desired. Hence, we vary the number of CBR flows to accurately implement the
variation in available bandwidth. A simple calculation shows that to achieve an available bandwidth
of Ba we need n(C − Ba)/Ba CBR flows, where C is the capacity of the link R1 −R2 and n is the
number of test TCP flows. The test TCP flows are between Si and Di. Also, we randomize the
round-trip times slightly to avoid synchronization effects.

While the topology shown in Figure 3(a) is well suited for tests in which we control available
bandwidth directly, it is not amenable to the implementation of bandwidth variations 11 through
13. We use the topology shown in Figure 3(b) to implement variations 11 through 13. In what
follows, we first describe the set-up in detail and then explain the reasons for the difference from
that of Figure 3(a).

TCP-SACK flows implementing AIMD with pareto-distributed lengths and poisson inter-arrival
times run between nodes S′ and D. These constitute the cross traffic on the link R1-R2. The n
test TCP flows are between nodes Si (i = 1, . . . , n) and D. In addition, we have n “place-holder”
long-lived flows between nodes S ′ and D′. The router R0 employs DRR scheduling. The router at
R1 implements either DRR or RIO (explained in greater detail below). The TCP-SACK cross traffic
is given priority over the test traffic at router R1. In addition, the bandwidth between R0 and R1

equals that of link R1-R2.

While simulating the environments 11 through 13, we would like to ensure that the TCP flows
constituting the cross-traffic on link R1-R2 are allocated their fair-share of the R1-R2 capacity
irrespective of the congestion control algorithm employed by the test flows. This is ensured by using
DRR at router R0 and using n long-lived place-holder flows between S ′ and D′. The place-holder
flows emulate the n test-flows so that when the pareto-distributed TCP flows enter link R1-R2, their
aggregate occupies no more than the fair-share. However, we also want the TCP flows constituting
the cross-traffic to not incur any more losses beyond link R0-R1 since they already are at their
fair-share upon exiting this link. This is ensured by: (i) using RIO at router R1 and marking the
packets belonging to the cross traffic as high priority and (ii) using TCP-SACK for the cross traffic.
When testing with the setting of Drop-tail buffers, we modify the parameters for the low priority
packets at router R0 to implement Drop-tail behavior on packets belonging to the test flows. When
testing with the DRR setting, we use a DRR scheduler, instead of RIO, at router R1. Notice that
the flows belonging to the cross traffic do not incur any additional losses when DRR is employed at
router R1.

4 Results

As we discussed in the Introduction, we use four metrics in evaluating the performance of the different
congestion control schemes:

• goodput: We measure goodput as the fraction of available bandwidth used to transmit unique
packets. The goodput values all lie in [0, 1].

• delay: The queueing delay is measured in milliseconds.

• loss rate: The loss rate is measured in terms of the percentage of packets lost (so a score of 5
indicates a 5% packet loss).
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• fairness: The fairness metric is defined as gmax−gmin

gavg
where gmax, gmin and gavg are the

maximum, minimum and average goodputs of the test flows respectively.5

We present the results by first describing how the rankings change when going from the TCP-
Reno with its severe loss penalty to more gentle loss penalties. We then discuss the impact of
different router drop policies and queueing behavior. While presenting the results, we show both Ca

and Da for goodput. This is because these two aggregate scores show rather different behavior. We
only present the values of Da for fairness, loss, and delay because the ordering of the Da values for
these quantities is very similar to the ordering of the Ca values. For delay and loss, we also show the
raw values as the absolute magnitude of delays and losses cannot be easily inferred from the value
of Da.

In all our simulations we have 10 test flows. We have run our simulations with different number
of test flows and the results are qualitatively similar. For reasons of space, we do not show the
results for higher numbers of flows here.

4.1 The Impact of Loss Recovery Algorithms

As mentioned in Section 1, TCP Reno incurs a severe penalty when recovering from losses; TCP
SACK is more adept at handling losses and therefore incurs a much more gentle penalty. We
performed simulations of the four congestion control algorithms with these two types of loss recovery
(TCP Reno and TCP SACK). We simulated these schemes on the various scenarios; in these tests
the routers used FIFO, drop-tail routers with buffers sized to match the delay-bandwidth product
of the network.

4.1.1 TCP Reno Loss Recovery

The results for TCP Reno loss recovery are shown in figure 4. Here, and in subsequent tables, we
mark the algorithms with the best goodput (best values for both Ca and Da) by underlining them.
From the results, AIMD and AIAD deliver roughly similar goodput in all the test environments.
On the other hand, the multiplicative increase (MI) algorithms perform poorly, as indicated by the
large values of Da and Ca, because they often significantly overestimate the available bandwidth
and must invoke TCP Reno’s expensive loss recovery routines.

AIMD provides better fairness than AIAD, although AIMD is not perfectly fair. In addition,
AIMD suffers the fewest losses, with MIAD suffering the most. AIMD and AIAD have the highest
delay values; this is because the MI algorithms are frequently timed-out, leaving the queue empty.

To summarize, with TCP Reno loss recovery and FIFO drop-tail routers, AIMD and AIAD
provide the best goodput performance. However, AIAD is not as fair.

4.1.2 TCP SACK Loss Recovery

Figure 5 shows the results for TCP SACK loss recovery, again with FIFO drop-tail routers. The
absolute values (which we don’t show in our tables) of the goodputs are significantly higher than
with TCP Reno. As expected, the loss and delay values are higher too. In comparative terms,
MIMD achieves high goodput, and in fact, is marginally better than AIMD and AIAD. However, in
terms of delay and loss rate, MIMD provides the worst performance.

5We have also employed the Chiu-Jain Fairness Index [3] for comparison, and the results are qualitatively identical.
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TCP Reno Goodput Fairness Delay Loss
DROPTAIL Da Ca Da Da Da

AIMD 0.15 0.06 8.12 332 0.11
AIAD 0.02 0.01 15.92 440 3.26
MIMD 3.34 0.54 0.32 21 15.46
MIAD 3.32 0.52 0.56 47 19.72
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Figure 4: FIFO Drop-Tail buffers with TCP Reno loss recovery. The table compares the different
algorithms on the basis of the four metrics. The algorithms achieving the best goodput performance
are underlined. The figure on the bottom shows the raw delays and loss rates. In each column in
the figure, the algorithms are presented in the order AIMD, AIAD, MIMD, MIAD.

Also, AIMD remains the only algorithm to achieve reasonable levels of fairness. In fact, the
gentle loss recovery of TCP SACK makes the fairness properties of the non-AIMD algorithms worse.
This is because without the timeout-induced restarts invoked by TCP Reno, flows that get more
than their fair share can continue to exploit their advantage for longer periods of time.

TCP SACK Goodput Fairness Delay Loss
DROPTAIL Da Ca Da Da Da

AIMD 0.25 0.12 0.67 23 0.00
AIAD 0.26 0.12 19.27 99 13.04
MIMD 0.12 0.03 9.72 115 40.70
MIAD 0.65 0.16 24.00 145 60.87
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Figure 5: FIFO Drop-Tail buffers with TCP SACK loss recovery.

To summarize, TCP SACK loss recovery reduces some of the distinguishing factors between the
different schemes. All schemes, except MIAD, provide roughly comparable goodput performance.
Moreover, AIMD provides the highest levels of fairness.

11



4.1.3 An Aside: The Impact of Multiple Congested Bottleneck Links

The persistent high loss rate of AIAD might raise concerns about the validity of its goodput results in
scenarios with multiple congested bottleneck links. It is possible that a high loss-rate at a congested
down-stream link might affect the goodput of competing flows at up-stream links. To check if this is
indeed the case, we perform a few simulations in which the test flows traverse multiple, congested,
distinct bottleneck links.6 We do not show details of these simulations here.

We observe that even in the situations with multiple congested bottlenecks, AIAD continues
to have identical goodput as AIMD. This is mainly a consequence of AIAD’s ability to keep more
packets outstanding than AIMD at any instant. This ability more than offsets the negative impact of
AIAD’s higher loss rate on its goodput and helps AIAD utilize available bandwidth more effectively
than AIMD under most situations.

4.2 The Impact of Router Queuing Behavior (and ECN)

A variety of router configuration settings affect the behavior of end-to-end congestion control
schemes. Some of the important factors here include the drop policy (drop-tail or AQM), early
congestion notification (ECN), fair scheduling (DRR) and buffer sizing. We consider each of these
in turn.

4.2.1 Effect of Active Queue Management

A router employing a drop-tail policy does not help senders gauge incipient congestion. The only
indication of congestion, an actual buffer overflow, is drastic and frequently results in burst losses
and long queues at the routers. RED active queue management attempts to provide an earlier and
more gradual indication of congestion to network endpoints.

TCP Reno Goodput Fairness Delay Loss
RED Da Ca Da Da Da

AIMD 0.06 0.02 1.07 102 0.00
AIAD 0.08 0.04 5.22 115 3.94
MIMD 0.75 0.19 0.82 45 6.08
MIAD 1.40 0.30 2.44 55 8.22
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Figure 6: RED gateways with TCP Reno loss recovery.

The objective of the RED style of feedback is to reduce loss rates and delays by managing
buffer occupancy at the router more actively. Thus, when the end-hosts use TCP Reno, having

6We simulated a circular topology in which each test flow traverses two bottleneck links. Each of these links is in
turn shared with different competing test flows.
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the routers employ RED active queue management (see Figure 6) does reduce loss rates and delays
significantly across all the schemes. However, RED does not greatly alter the relative goodputs of
the four algorithms, with AIMD and AIAD still achieving the best goodput results, just as with
FIFO drop-tail buffers and TCP Reno end-points.

RED significantly improves the fairness of all schemes (AIAD is the worst in this regard, but the
difference is relatively small).7 This increased fairness with RED can be explained as follows: With
FIFO drop-tail routers (and also in the model considered by Chiu and Jain [3]), packet drops are
synchronous and deterministic resulting in all flows experiencing similar loss epochs. RED, on the
other hand, randomizes losses across flows and across time. Thus, RED effectively decouples the
loss epochs of the flows. This helps punish flows with a greater number of packets outstanding at a
rate higher than those with fewer packets outstanding. Hence, RED can achieve long-term fairness.

In summary, with RED routers and TCP Reno loss recovery, AIMD and AIAD provide the best
goodput, and they are both reasonably fair.

TCP SACK Goodput Fairness Delay Loss
RED Da Ca Da Da Da

AIMD 0.41 0.13 1.81 11 0.00
AIAD 0.25 0.10 9.85 39 6.28
MIMD 0.19 0.07 1.41 65 9.97
MIAD 1.64 0.41 16.37 71 22.26
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Figure 7: RED gateways with TCP SACK loss recovery.

When end-hosts use TCP SACK (Figure 7), RED routers cause a more significant shift in
performance. As expected, the loss rates, delays and fairness are worse than with TCP Reno for all
algorithms. In terms of goodput, MIMD provides the best performance with AIAD being not too
far behind. The reason for MIMD and AIAD doing significantly better than AIMD when compared
to FIFO drop-tail buffers is because RED is much more tolerant to bursty traffic patterns. Thus
while TCP SACK times-out occasionally with FIFO drop-tail buffers when aggressive congestion
control schemes like MIMD are employed (due to large bursts of packet losses), such time-outs are
rare in RED. MIAD, however is much more aggressive and times-out more often, thus providing
poor performance.

Thus, with RED routers and TCP SACK loss recovery MIMD and AIAD achieve the highest
goodput. MIMD is reasonably fair while AIAD is slightly unfair. AIMD continues to provide the
lowest loss and delay and the highest fairness.

7We have checked that this increased fairness persists when one looks at scenarios when the flows have differing
RTTs; in such a case, the algorithms give roughly the same RTT-biased allocations as AIMD.
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4.2.2 Effect of Early Congestion Indications

RED routers can provide Explicit Congestion Notification (ECN) by marking a bit in the headers of
forwarded packets to indicate incipient congestion. This marking is a more gentle form of feedback
to end-systems since packets are not lost to providing congestion indications. Consequently, as the
simulations below confirm, with both Reno and SACK loss recovery, the loss rates are significantly
reduced (compared to RED and drop-tail) and delays are slightly increased. However, just as TCP
SACK loss recovery exacerbates the fairness issues with FIFO drop-tail routers, added gentleness
due to ECN helps aggressive flows hold onto additional bandwidth without incurring much penalty.
This also results in slightly worse fairness with ECN, under either form of loss recovery.

TCP Reno Goodput Fairness Delay Loss
ECN Da Ca Da Da Da

AIMD 0.37 0.18 1.33 69 0.38
AIAD 0.30 0.16 3.48 154 0.61
MIMD 0.44 0.10 1.26 83 3.65
MIAD 0.37 0.13 13.49 55 5.23
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Figure 8: ECN with TCP Reno loss recovery.

When hosts employ TCP Reno loss recovery, using ECN (Figure 8) produces a dramatic change
with all algorithms providing identical goodput performance. All algorithms provide identical per-
formance in terms of goodput and loss rate. MIAD provide poor fairness, while AIAD provide
somewhat poor performance in terms of delay.

Therefore, with TCP-Reno loss recovery and routers employing ECN, all algorithms provide
near-identical performance. Morover, MIAD is the only unfair algorithm.

With TCP SACK loss recovery (Figure 9), the same general conclusions as above, hold along
with two key side effects. Firstly, MIAD and MIMD’s superiority in goodput increases considerably.
Secondly, AIAD also performs as well, and is somewhat better than AIMD in terms of goodput
when compared to the TCP-Reno case presented above.

In summary, with ECN and TCP-SACK end-points, MIAD and MIMD have a moderate goodput
advantage. AIAD also provides good performance (comparable to MIAD and MIMD) in terms of
goodput. However, AIMD, being the least aggressive, shows relatively poor goodput performance.

4.2.3 Effect of Smaller Buffers

In our previous experiments, we configured our routers to have queue sizes roughly equal to the delay-
bandwidth product of the congested link. This rule-of-thumb has been adopted in the Internet to
enable TCP’s AIMD (with the default setting of (1,0.5) to fully utilize the network capacity. We
performed simulations with reduced router buffer size (only 10% of the delay-bandwidth product)
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TCP SACK Goodput Fairness Delay Loss
ECN Da Ca Da Da Da

AIMD 0.41 0.18 1.13 21 0.41
AIAD 0.28 0.15 2.45 152 3.80
MIMD 0.13 0.05 7.49 51 7.81
MIAD 0.05 0.02 20.65 78 15.25
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Figure 9: ECN with TCP SACK loss recovery.

to see which congestion control schemes can best cope with small buffers. Due to limited space,
we do not include the detailed results here but merely summarize them. The fairness properties
are largely unchanged by the small buffers. The goodput and loss rates of the MI algorithms,
with either form of loss recovery, deteriorate significantly with reduced buffers due to excessive
overshooting. With drop-tail routers, AIAD achieves better goodput than AIMD, largely because
AIMD’s relatively conservative back-off upon drops occasionally leaves the queue empty. Small
buffers have little impact on the results using RED routers since the RED system is designed to
ensure low average queue occupancy. In essence, the use of smaller drop-tail router buffers makes
more gradually adapting schemes such as AIAD look better. With RED, however, the performance
ordering does not change much with smaller buffers.

4.2.4 Effect of DRR

In our evaluation, we consider fairness as an important metric of a congestion control algorithm’s
performance. However, an alternative approach to providing fairness is to rely on router mechanisms
such as DRR [15]. The question we seek to answer here is: which congestion control algorithms
perform well when routers provide fairness explicitly?

In our simulations, we use a DRR scheduler at the bottleneck router to provide instantaneous
per-flow max-min fairness. Figures 10 and 11 show the results with Reno and SACK loss recovery
respectively. Firstly, all the schemes are equally fair. Also, under either form of loss recovery, the less
aggressive AI algorithms provide significantly better goodput performance than the MI algorithms.
In addition, the AI algorithms are similar in terms of delay and loss rate.

Thus, when routers provide fairness explicitly, AI algorithms provide significantly better goodput
performance than the MI algorithms. All algorithms are equally fair.

4.3 Discussion

If the goal of congestion control is to maximize fairness and minimize loss and delay while still
achieving reasonable levels of goodput, then AIMD is the clear choice no matter what form of loss
recovery or router queueing discipline is employed. In almost every setting AIMD achieved low
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TCP Reno Goodput Fairness Delay Loss
DRR Da Ca Da Da Da

AIMD 0.05 0.02 2.35 168 0.02
AIAD 0.10 0.08 4.20 135 2.18
MIMD 1.37 0.23 1.34 71 14.65
MIAD 1.87 0.28 2.51 78 24.74
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Figure 10: DRR with TCP Reno loss recovery.

TCP SACK Goodput Fairness Delay Loss
DRR Da Ca Da Da Da

AIMD 0.01 0.00 0.69 128 0.00
AIAD 0.15 0.07 2.28 189 5.33
MIMD 0.77 0.21 5.15 82 36.25
MIAD 1.41 0.29 4.16 44 40.67
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Figure 11: DRR with TCP SACK loss recovery.

delays and loss rates and high levels of fairness.

On the other hand, if the goal of congestion control is to maximize goodput while still achieving
reasonable levels of fairness, loss rates and delay, then the situation is considerably different. Fig-
ure 12 may be helpful in understanding how the various algorithms compare under this goal. For
each combination of the loss recovery algorithm and router algorithm, the table depicts the con-
gestion control algorithms that achieve the highest goodput. Those algorithms that do not achieve
reasonably fair performance are circled.

When TCP flows incur a large penalty for losses and routers employ packet drops to indicate
congestion or when routers ensure perfect isolation between flows (scenarios outside the dotted box in
Figure 12), the congestion control schemes of AIMD and AIAD are clearly superior. These schemes
have a conservative increase and as a result a sending rate that is less bursty than MIMD and MIAD.
In particular, within the traditional setting of TCP Reno loss recovery and FIFO drop-tail routers,
AIMD achieves the highest goodput.

However, when the penalty due to losses is minimal either due to flows employing more tolerant
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Figure 12: A plot showing the algorithms that achieved the highest goodput in each of the settings
considered in the previous section. The encircled algorithms are unfair.

loss recovery schemes or due to routers either using marked packets to indicate congestion (scenarios
inside the dotted box in Figure 12), aggressive congestion control algorithms stand to gain in terms
of goodput. In particular, AIMD being the most conservative, both in its increase and in its decrease,
sometimes provides inferior performance in these settings. One the other hand, schemes with an
aggressive increase (MIMD), or an aggressive decrease (AIAD) or both (MIAD) provide significantly
better goodput in this situation.

A key observation that stands out from the above evaluation is the fact that AIAD is among
the leading goodput performers in all the scenarios we have considered. Moreover, AIAD achieves
reasonable levels of fairness as long as the routers are not FIFO drop-tail. This suggests that as
we deploy more of either the modern loss recovery mechanisms or the router queue management
schemes, AIAD is definitely a viable choice for congestion control. In fact, if we could alleviate the
fairness issues of AIAD in the FIFO drop-tail case, it would be the best overall choice in terms of
efficiency and fair bandwidth allocation.

So far we have only considered the four pure linear schemes. To address the issue of fairness we
now consider hybrid schemes.

5 Hybrid Congestion Control Algorithms

In this section, we try to address two different issues. First, we ask how we might solve the fairness
problems of AIAD with drop-tail FIFO routers. Second, we ask what are the advantages or dis-
advantages of hybrid linear congestion control algorithms; these are algorithms in which the linear
increase and decrease need not be purely additive or purely multiplicative. It turns out that hybrid
algorithms are solutions to the AIAD fairness problem, so we address both issues at once. We start
by revisiting the Chiu-Jain [3] analysis and deriving necessary conditions for fairness.

5.1 Hybrid Algorithms and Fairness

Linear congestion control algorithms are governed by the following update equations:
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w(t + 1) =

{

aI + bIw(t) upon success
aD + bDw(t) upon loss

In what follows, we consider a system with synchronous congestion signals and static bandwidth
as [3] does. We argue that, unless bI , bD = 1 (which is true for AIAD) or aI , aD = 0 (which is true
for MIMD), most combinations of the four parameters yield a fair congestion control algorithm.

We assume the system reaches a steady state with a nonzero window size, in which the updates
to a flow’s window would follow a periodic cycle of increases and decreases (it is easy to see from
the analysis below that this excludes MIAD). At the end of each such cycle, the size of the window
is identical to that at the start. For simplicity, we assume that this sequence consists of kI increases
followed by kD decreases (this sequence repeats itself indefinitely in steady state) as shown in figure
5.1. We would like to stress that our argument applies to more general steady states.

D D D . . . . DI I I . . . . ID D D . . . . D I I I . . . . I D . .. . I

k k k k
D I D I

Figure 13: A window update sequence in steady state.

Using the fact that after sequence of k linear increases, a window of size w0 becomes aI

(
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+
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Iw0 and that after a sequence of k linear decreases it becomes aD
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the following equation for the window in steady state:
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If the algorithm were completely multiplicative (aI , aD = 0), then α = 0, implying that βw = w;
since we assume w 6= 0 this means that β = 1 and so any value of w is allowable. This means
that not all flows need to have the same window size. On the other hand, if the algorithm were
completely additive (bI , bD = 1), then β = 1 and α = 0, again allowing any value of w.

For the other cases, unless the parameter values were precisely tuned, we have β 6= 1 and α 6= 0
and so there is a single steady-state value of w to which all flows would converge. What this means
is that we can use hybrid algorithms to achieve fairness. We present two such algorithms in the next
section.8

8Chiu and Jain [3] establish the following conditions for convergence to fairness:

(I) aD = 0 and 0 ≤ bD < 1

(II) aI > 0, bI ≥ 1

Though these conditions are sufficient, they are not necessary. Hence, contrary to their conclusions, our analysis
allows an additive component in decrease.
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5.2 Two Hybrid Algorithms
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Figure 14: Figure showing the performance of hybrid algorithms. In each column, the algorithms are
presented in the order AIMD, AIAD, AIMAD and MAIMD. We choose the setting with TCP SACK
loss recovery and FIFO drop-tail routers, because AIAD had the worst fairness in this scenario.

In the Introduction, we mentioned that there were very few papers that proposed linear control
schemes that were different from AIMD. One of the notable exceptions is [7], which argues against
purely linear increase and proposes using a hybrid increase with both multiplicative and additive
terms. In [7], the particular parameter values are aI = 1, bI = 1.1 and bD = 0.5 (In the evaluation
below, we use bD = 0.8 since we found this to be a marginally better choice than bD = 0.5). We
call this the MAIMD linear control scheme, and note that it is a slight perturbation of the standard
AIMD(1, 0.5) with a small multiplicative component.

On the other hand, our previous results suggest that AIAD is, apart from fairness issues, a
desirable candidate for linear congestion control. We propose an AIMAD control algorithm which
adds only a bit of multiplicative decrease: aI = 1, aD = −1 and bD = 0.9 (Notice that the
multiplicative component allows for an aggressive additive decrease). We now examine the salient
features as well as the drawbacks of these schemes. As an example, we present the results for TCP
SACK loss recovery with FIFO drop-tail routers in Figure 14.

AIMAD achieves significantly better fairness than AIAD in most of the environments with FIFO
drop-tail routers and TCP SACK loss recovery. This improvement in fairness does not come at the
cost of worse goodput. In addition, AIMAD, as expected, has lower loss rates and lower delays than
AIAD. Note also that AIMAD, provides fairness comparative to AIMD. In addition, AIMAD’s delay
and loss rates are not higher than those of AIMD.

Similarly, MAIMD (with FIFO drop-tail routers and TCP SACK loss recovery) improves the
worst-case performance of AIMD and has reasonable goodput when compared with AIMD in all the
environments. However, due to its aggressive increase, the loss rate and fairness are not as good as
those of AIMD. Specifically, the fairness of MAIMD is slightly worse in environments where the raw
link capacity is very high.9 Finally, the delays of AIMD and MAIMD are similar.

In general, we observe that AIMAD performs at least as well as AIAD with respect to all the
four metrics in every situation discussed in this paper. On the other hand, MAIMD’s goodput
performance is comparable to AIMD’s only when used with TCP SACK loss recovery. This is true
across all the router configurations that we consider. Due to space constraints, we do not present
the detailed results here.

9When the alternate router configurations are considered, MAIMD’s fairness is very similar to that of AIMD under
either form of loss recovery.
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6 Related Work

In the past, there have been few research studies exploring linear alternatives to TCP’s congestion
control algorithms. Of these, two separate studies that bear similarity to our work are [8] and [9].

In [8], the authors present a study of the tracking abilities of various congestion control algorithms
in networks that provide fairness explicitly. In this study, the increase component of the congestion
control algorithms can be additive, multiplicative or non-linear. The decrease component is chosen
to be multiplicative. The paper shows via analysis that in such a fair network, MIMD is more
responsive to congestion notifications than the other schemes, including AIMD. Thus [8] concludes
that MIMD can track changes in bandwidth more effectively. This work differs from ours in two key
aspects: firstly, additive decrease schemes are outside the purview of the analysis in [8]; secondly,
the impact of loss recovery is not factored into the analysis. As a result, the conclusions in [8] are
different, qualitatively, from our observations about the impact of fair-queueing.10 (presented in
Section 4.2.4): We have shown that while under Reno-style loss recovery AI schemes are clearly
dominant, under SACK-style loss recovery all algorithms except MIAD provide identical goodput
performance.

In contrast, [9] employs simulations to study the relative performance of AIMD and AILD, where,
AILD has the same linear increase as AIMD, but the decrease is defined by the following equation:
wt+1 = wt −βf , where β is a constant and f is the loss ratio. Also, the available bandwidth is kept
constant. The authors observe that in networks that use RED-like gateways, AILD is both efficient
and fair and outperforms AIMD. However, the definition of linear decrease adopted in this study
does not produce a linear control scheme (in the sense we’ve defined in our paper) since the drop
rate f is a nonlinear function of the aggregate load.

To the best of our knowledge, our study is the first to compare all linear congestion control
schemes under a wide variety of router configurations, different loss recovery schemes and a wide
range of variations in available bandwidth.

There have been other studies on congestion control algorithms which propose slowly adaptive
alternatives to congestion control that are TCP-friendly and provide identical throughput as the
current TCP under a given steady state loss rate. For example, [4] proposes non-linear slowly-
adaptive window adjustment algorithms and [6] proposes rate-based schemes for congestion control.
The issues pertaining to the dynamic behavior of such schemes have been partially addressed in [19].
Though the work presented in our paper does not consider such non-linear algorithms and rate-based
schemes, we hope it provides sufficient intuition as to how these schemes should be evaluated in the
long run.

7 Summary

This paper was an attempt to revisit the original design decision to focus exclusively on AIMD linear
congestion control. We examined the impact of modern developments in loss recovery and in router
algorithms on the choice of the linear congestion control scheme. We tested the four basic linear
congestion control algorithms in a wide variety of settings.

We affirm that in the traditional context of TCP Reno loss recovery and FIFO drop-tail routers,
AIMD is clearly an aptly made choice. However the same cannot be said when we include these

10Notice, from the appendix, that MIMD(1.125, 0.5) provides performance similar to AIMD and AIAD when DRR
and TCP-SACK are employed. Thus our results do not negate those presented in [8]. Our results only show that
MIMD is not the absolute best choice.
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more modern developments. AIMD is no longer a compelling choice for congestion control with the
other congestion control algorithms providing better performance than AIMD by varying degrees.
In particular, we have shown that AIAD is a reasonable alternative choice for a modern congestion
control scheme. In fact, AIAD also provides reasonable fairness as long as routers do not employ
FIFO drop-tail queueing. Adding a small multiplicative component to the additive decrease of AIAD
is enough to ensure that fairness is guaranteed, even when FIFO drop-tail buffers are employed,
without compromising goodput.
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TCP Reno + DROPTAIL
AIMD AIAD MIMD MIAD

Alg Da Ca Alg Da Ca Alg Da Ca Alg Da Ca

(1, 0.5) 0.19 0.06 (1, 1) 0.10 0.03 (1.125, 0.5) 0.75 0.10 (1.125, 1) 0.27 0.08

(1, 0.65) 0.06 0.02 (1, 2) 0.05 0.02 (1.125, 0.65) 0.36 0.10 (1.125, 2) 0.15 0.05
(1, 0.8) 0.07 0.03 (1, 3) 0.06 0.03 (1.125, 0.8) 0.17 0.06 (1.125, 3) 0.09 0.03

(2, 0.5) 0.83 0.20 (2, 1) 0.56 0.19 (1.19, 0.5) 1.30 0.17 (1.19, 1) 0.68 0.11
(2, 0.65) 0.56 0.15 (2, 2) 0.62 0.21 (1.19, 0.65) 0.61 0.10 (1.19, 2) 0.51 0.09
(2, 0.8) 0.56 0.22 (2, 3) 0.59 0.22 (1.19, 0.8) 0.82 0.19 (1.19, 3) 0.58 0.11
(3, 0.5) 1.87 0.31 (3, 1) 1.11 0.25 (1.25, 0.5) 1.30 0.20 (1.25, 1) 1.30 0.25
(3, 0.65) 1.49 0.29 (3, 2) 1.15 0.25 (1.25, 0.65) 1.37 0.29 (1.25, 2) 1.33 0.37
(3, 0.8) 1.28 0.26 (3, 3) 1.17 0.27 (1.25, 0.8) 0.96 0.14 (1.25, 3) 1.31 0.31

TCP SACK + DROPTAIL
AIMD AIAD MIMD MIAD

Alg Da Ca Alg Da Ca Alg Da Ca Alg Da Ca

(1, 0.5) 0.26 0.12 (1, 1) 0.50 0.11 (1.125, 0.5) 0.21 0.12 (1.125, 1) 1.56 0.34

(1, 0.65) 0.16 0.11 (1, 2) 0.47 0.11 (1.125, 0.65) 0.16 0.11 (1.125, 2) 0.76 0.26
(1, 0.8) 0.25 0.13 (1, 3) 0.52 0.12 (1.125, 0.8) 0.38 0.12 (1.125, 3) 0.96 0.26

(2, 0.5) 0.11 0.04 (2, 1) 0.41 0.11 (1.19, 0.5) 0.25 0.12 (1.19, 1) 2.03 0.58
(2, 0.65) 0.16 0.04 (2, 2) 0.44 0.11 (1.19, 0.65) 0.17 0.11 (1.19, 2) 1.19 0.30
(2, 0.8) 0.10 0.03 (2, 3) 0.39 0.11 (1.19, 0.8) 0.55 0.21 (1.19, 3) 1.29 0.32
(3, 0.5) 0.13 0.02 (3, 1) 0.31 0.11 (1.25, 0.5) 0.36 0.12 (1.25, 1) 2.07 0.57
(3, 0.65) 0.07 0.01 (3, 2) 0.15 0.11 (1.25, 0.65) 0.14 0.11 (1.25, 2) 1.17 0.35
(3, 0.8) 0.03 0.01 (3, 3) 0.35 0.11 (1.25, 0.8) 0.55 0.16 (1.25, 3) 0.91 0.28

TCP Reno + RED
AIMD AIAD MIMD MIAD

Alg Da Ca Alg Da Ca Alg Da Ca Alg Da Ca

(1, 0.5) 0.60 0.15 (1, 1) 0.32 0.06 (1.125, 0.5) 0.21 0.06 (1.125, 1) 0.25 0.06

(1, 0.65) 0.59 0.15 (1, 2) 0.29 0.08 (1.125, 0.65) 0.13 0.05 (1.125, 2) 0.23 0.07
(1, 0.8) 0.38 0.12 (1, 3) 0.14 0.08 (1.125, 0.8) 0.06 0.04 (1.125, 3) 0.12 0.05

(2, 0.5) 0.50 0.09 (2, 1) 0.39 0.09 (1.19, 0.5) 0.56 0.08 (1.19, 1) 0.92 0.13
(2, 0.65) 0.26 0.06 (2, 2) 0.41 0.08 (1.19, 0.65) 0.44 0.09 (1.19, 2) 0.78 0.10
(2, 0.8) 0.29 0.07 (2, 3) 0.31 0.10 (1.19, 0.8) 0.63 0.14 (1.19, 3) 0.70 0.10
(3, 0.5) 0.47 0.06 (3, 1) 0.76 0.12 (1.25, 0.5) 0.93 0.13 (1.25, 1) 1.51 0.16
(3, 0.65) 0.31 0.04 (3, 2) 0.58 0.11 (1.25, 0.65) 0.91 0.16 (1.25, 2) 1.43 0.15
(3, 0.8) 0.27 0.06 (3, 3) 0.45 0.08 (1.25, 0.8) 0.94 0.16 (1.25, 3) 1.16 0.14

TCP SACK + RED
AIMD AIAD MIMD MIAD

Alg Da Ca Alg Da Ca Alg Da Ca Alg Da Ca

(1, 0.5) 0.68 0.16 (1, 1) 0.36 0.11 (1.125, 0.5) 0.52 0.09 (1.125, 1) 0.34 0.10

(1, 0.65) 0.47 0.14 (1, 2) 0.28 0.11 (1.125, 0.65) 0.20 0.04 (1.125, 2) 0.33 0.08
(1, 0.8) 0.32 0.11 (1, 3) 0.30 0.10 (1.125, 0.8) 0.01 0.01 (1.125, 3) 0.15 0.05

(2, 0.5) 0.42 0.09 (2, 1) 0.31 0.09 (1.19, 0.5) 0.58 0.11 (1.19, 1) 0.82 0.16
(2, 0.65) 0.30 0.08 (2, 2) 0.20 0.05 (1.19, 0.65) 0.26 0.05 (1.19, 2) 0.64 0.19
(2, 0.8) 0.06 0.03 (2, 3) 0.06 0.02 (1.19, 0.8) 0.09 0.28 (1.19, 3) 0.50 0.16
(3, 0.5) 0.36 0.07 (3, 1) 0.49 0.11 (1.25, 0.5) 0.11 0.61 (1.25, 1) 0.96 0.21
(3, 0.65) 0.26 0.07 (3, 2) 0.29 0.09 (1.25, 0.65) 0.33 0.08 (1.25, 2) 0.75 0.19
(3, 0.8) 0.01 0.01 (3, 3) 0.10 0.04 (1.25, 0.8) 0.66 0.16 (1.25, 3) 0.68 0.17

Based on the guidelines presented in Section 3 for the choice of the parameters, we evaluate:
AI ∈ {1, 2, 3}, AD ∈ {1, 2, 3}, MI ∈ {1.125, 0.19, 0.25} and MD ∈ {0.5, 0.65, 0.8}. This results
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in 9 instantiations of each of the four linear control schemes. The instantiations in each set are
compared with each other compared in scenarios with the different combinations of loss recovery
schemes and buffering mechanisms that we discuss in this paper against the backdrop of bandwidth
variations that we employed. We use the same method as that outlined in Section 3 to compare the
9 instantiations in each of the four classes.

Recall that when picking the best candidate, we do not seek to separately choose the potentially
distinct best candidates in each setting. Instead, we look for a uniform choice of parameters that
has reasonable performance across all settings. This way we can pick one instantiation that: (1)
summarizes the overall performance of the family of linear control schemes well (2) ensure near-
optimal performance in a variety settings.

Next, we present the full set of results for each of the eight scenarios discussed in this paper
(Droptail, RED, DRR and ECN router mechanisms with each of Reno and SACK-style loss recovery).
We present the values of Ca and Da for the goodput each instantiation since goodput is our primary
metric of comparison. We do not show the results for fairness, delay or loss, as the algorithms are
not significantly different in terms of these metrics.

It is not hard to see that the instantiation we pick for each scheme (shown in bold font, underlined)
shows reasonably good performs across all the scenarios. For all the other candidate instantiations,
there is at least one scenario resulting in very poor performance and others resulting in sub-optimal
performance.

Thus our final choices are – AIMD(1, 0.8), AIAD(1, 3), MIMD(1.125, 0.8) and MIAD(1.125, 3).

TCP Reno + DRR
AIMD AIAD MIMD MIAD

Alg Da Ca Alg Da Ca Alg Da Ca Alg Da Ca

(1, 0.5) 0.17 0.06 (1, 1) 0.20 0.05 (1.125, 0.5) 0.15 0.04 (1.125, 1) 0.20 0.07

(1, 0.65) 0.31 0.10 (1, 2) 0.15 0.06 (1.125, 0.65) 0.13 0.04 (1.125, 2) 0.22 0.08
(1, 0.8) 0.21 0.12 (1, 3) 0.12 0.08 (1.125, 0.8) 0.22 0.09 (1.125, 3) 0.12 0.03

(2, 0.5) 0.17 0.03 (2, 1) 0.30 0.07 (1.19, 0.5) 0.78 0.11 (1.19, 1) 0.1.04 0.15
(2, 0.65) 0.17 0.03 (2, 2) 0.24 0.05 (1.19, 0.65) 0.69 0.10 (1.19, 2) 0.84 0.11
(2, 0.8) 0.18 0.04 (2, 3) 0.17 0.04 (1.19, 0.8) 0.76 0.16 (1.19, 3) 0.92 0.14
(3, 0.5) 0.21 0.04 (3, 1) 0.33 0.06 (1.25, 0.5) 0.93 0.15 (1.25, 1) 1.54 0.20
(3, 0.65) 0.19 0.03 (3, 2) 0.26 0.04 (1.25, 0.65) 0.92 0.15 (1.25, 2) 1.42 0.18
(3, 0.8) 0.28 0.05 (3, 3) 0.23 0.04 (1.25, 0.8) 1.24 0.24 (1.25, 3) 1.34 0.16

TCP SACK + DRR
AIMD AIAD MIMD MIAD

Alg Da Ca Alg Da Ca Alg Da Ca Alg Da Ca

(1, 0.5) 0.11 0.05 (1, 1) 0.07 0.02 (1.125, 0.5) 0.02 0.01 (1.125, 1) 0.14 0.03

(1, 0.65) 0.15 0.07 (1, 2) 0.07 0.03 (1.125, 0.65) 0.09 0.03 (1.125, 2) 0.20 0.06
(1, 0.8) 0.12 0.06 (1, 3) 0.06 0.03 (1.125, 0.8) 0.60 0.14 (1.125, 3) 0.08 0.04

(2, 0.5) 0.08 0.02 (2, 1) 0.14 0.03 (1.19, 0.5) 0.08 0.03 (1.19, 1) 0.58 0.11
(2, 0.65) 0.16 0.09 (2, 2) 0.07 0.02 (1.19, 0.65) 0.57 0.28 (1.19, 2) 0.51 0.14
(2, 0.8) 0.09 0.02 (2, 3) 0.11 0.04 (1.19, 0.8) 1.51 0.35 (1.19, 3) 0.49 0.14
(3, 0.5) 0.08 0.04 (3, 1) 0.14 0.04 (1.25, 0.5) 1.02 0.27 (1.25, 1) 0.90 0.17
(3, 0.65) 0.09 0.03 (3, 2) 0.14 0.04 (1.25, 0.65) 1.41 0.36 (1.25, 2) 0.82 0.20
(3, 0.8) 0.03 0.01 (3, 3) 0.09 0.03 (1.25, 0.8) 1.64 0.40 (1.25, 3) 0.90 0.18
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TCP Reno + ECN
AIMD AIAD MIMD MIAD

Alg Da Ca Alg Da Ca Alg Da Ca Alg Da Ca

(1, 0.5) 0.73 0.15 (1, 1) 0.43 0.12 (1.125, 0.5) 0.90 0.13 (1.125, 1) 0.81 0.15

(1, 0.65) 0.49 0.15 (1, 2) 0.35 0.12 (1.125, 0.65) 0.44 0.07 (1.125, 2) 0.18 0.06
(1, 0.8) 0.28 0.12 (1, 3) 0.44 0.15 (1.125, 0.8) 0.08 0.02 (1.125, 3) 0.06 0.02

(2, 0.5) 0.48 0.09 (2, 1) 0.37 0.06 (1.19, 0.5) 1.00 0.13 (1.19, 1) 1.65 0.27
(2, 0.65) 0.25 0.06 (2, 2) 0.25 0.05 (1.19, 0.65) 0.59 0.09 (1.19, 2) 1.03 0.22
(2, 0.8) 0.15 0.05 (2, 3) 0.09 0.05 (1.19, 0.8) 0.20 0.07 (1.19, 3) 0.62 0.10
(3, 0.5) 0.41 0.08 (3, 1) 0.81 0.16 (1.25, 0.5) 0.75 0.13 (1.25, 1) 1.93 0.35
(3, 0.65) 0.20 0.04 (3, 2) 0.28 0.07 (1.25, 0.65) 0.31 0.06 (1.25, 2) 1.87 0.30
(3, 0.8) 0.11 0.03 (3, 3) 0.16 0.04 (1.25, 0.8) 0.14 0.05 (1.25, 3) 1.43 0.28

TCP SACK + ECN
AIMD AIAD MIMD MIAD

Alg Da Ca Alg Da Ca Alg Da Ca Alg Da Ca

(1, 0.5) 0.75 0.18 (1, 1) 0.41 0.12 (1.125, 0.5) 0.77 0.13 (1.125, 1) 0.14 0.06

(1, 0.65) 0.49 0.14 (1, 2) 0.28 0.13 (1.125, 0.65) 0.36 0.07 (1.125, 2) 0.11 0.04
(1, 0.8) 0.36 0.13 (1, 3) 0.39 0.13 (1.125, 0.8) 0.11 0.03 (1.125, 3) 0.07 0.02

(2, 0.5) 0.51 0.10 (2, 1) 0.15 0.06 (1.19, 0.5) 0.78 0.13 (1.19, 1) 0.33 0.09
(2, 0.65) 0.27 0.05 (2, 2) 0.11 0.04 (1.19, 0.65) 0.38 0.06 (1.19, 2) 0.07 0.01
(2, 0.8) 0.14 0.04 (2, 3) 0.15 0.04 (1.19, 0.8) 0.13 0.06 (1.19, 3) 0.08 0.01
(3, 0.5) 0.46 0.08 (3, 1) 0.05 0.02 (1.25, 0.5) 0.75 0.13 (1.25, 1) 0.32 0.04
(3, 0.65) 0.21 0.05 (3, 2) 0.10 0.04 (1.25, 0.65) 0.30 0.06 (1.25, 2) 0.24 0.06
(3, 0.8) 0.01 0.01 (3, 3) 0.17 0.11 (1.25, 0.8) 0.01 0.00 (1.25, 3) 0.05 0.01
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