
Peeking into the Cloud:
Toward User-Driven Cloud Management

Theophilus Benson, Aditya Akella
University of Wisconsin, Madison

Sambit Sahu, Anees Shaikh
IBM Research, TJ Watson

1. INTRODUCTION
The emergence and growing popularity of cloud computing signals
an evolution in the way IT infrastructure and services are deliv-
ered and consumed. Cloud services have a number of essential
characteristics, such as self-service on-demand consumption, lo-
cation independence, and rapid elasticity. There are also evolving
cloud delivery models, including infrastructure-as-a-service (IaaS),
platform-as-a-service, and software-as-a-service, which provide IT
infrastructure, application development services, and software ap-
plications from the cloud, respectively [2].

The IaaS delivery model is perhaps the best known cloud service
type. With IaaS, users have the ability to easily acquire and release
infrastructure resources on-demand with an accompanying pricing
model in which users pay for only what they use. The IaaS model of
cloud computing is best exemplified in services such as Amazon’s
Elastic cloud computing (EC2) [1]. These providers give users easy
and inexpensive access to virtual computing resources. However,
this high degree of virtualization comes with a significant draw-
back: it limits users’ ability to efficiently diagnose problems with
their applications in the cloud. By hiding information about the
underlying infrastructure, IaaS providers leave users with little al-
ternative except trial-and-error troubleshooting. These approaches
are effective, but take several hours to days to resolve problems.

Our aim is to develop a framework for IaaS cloud offerings which
provides support for more streamlined, informed and automated
user-driven troubleshooting and management. To design this frame-
work we investigate the extent to which information hiding in IaaS
clouds impacts the problem diagnosis and resolution process. We
studied 3 years worth of user problem data containing over 9000
reported problems.

As a result of our study, we found that the problems can be broadly
classified into 4 groups based on the symptoms identified by the
users; Instance unreachable: users are unable to log in or perform
other actions on their instance, Instance unbootable: users are un-
able to boot up an image on their instance, Component unattach-
able: users are unable to detach virtualized infrastructure from an
instance, and Performance problems: users face abnormally long
wait times. Of the 4 symptoms, we observed that the “Instance un-
reachable” symptom was the most prevalent symptom, constituting
44% of the reported problems. In evaluating the resolution times,
we discovered that about 60% of the problems were resolved in
under 25 hours while for the next 20% the resolution time took as
long as addtitional 100 hours. We believe a large number of these
resolutions can be significnatly sped up by simply exposing a small
amount of additional information about the cloud’s infrastructure.

2. CLOUD PRIMITIVES
Building on the problems observed in our study, we developed a
framework for IaaS clouds, that enables better management by pro-
viding users with a set of primitives that expose hidden information
about the virtualized infrastructure. The framework implements the
following primitives:
Virtual Console: The current abstraction of IaaS implementations
limit user access to the cloud only via their in-band channel, i.e. via
SSH. In our study, we observed that due to the circular dependency
between management and the liveness of the instance, users have
to rely on the cloud provider entirely if an instance is not loaded
successfully, or the guest operating system crashes. We propose
that the cloud provider equipt the cloud with an out-of-band chan-
nel to a user’s instance. Using this primitive, users can better debug
"Instance unreachable" problems.
Component Health State: In our study, we saw several instances
where the user was unsure why the instance was not responding or
malfunctioning. This ambiguity was caused by the virtualization of
physical resources which strips the users of visibility into the health
of the resources that can affect the user’s instance We propose that
having binary information on the dependent set of resources would
provide the user the required information for making decisions such
as whether to restart a new instance or debug the application. Us-
ing this primitive, users can better debug "Instance unreachable"
and "Instance unbootable" problems.
Component Status Logs: We observed many cases where the user
was unable to attach virtual components due to issues with a previ-
ous instance. The root cause of many of these problems is that there
is currently no way for a user to know if a submitted task succeeded
or not as the cloud provider does not provide the status of task that
cross the user-infrastructure boundary. We propose that the cloud
provider logs the status of tasks required to complete a user’s re-
quests and expose these logs to the user. Using this primitive, users
can better debug "Component unattachable" problems.
Performance Benchmarks: Our study of the corresponding per-
formance problem tickets indicated that, more often than not, the
root cause resided with the provider; however in some cases, user
errors could also lead to performance problems. To disambiguate
between user and provider side problems, we propose that the providers
expose a set of benchmark numbers for operating system and net-
work actions that the users depend on. For example, this set of
performance counters would include time to attach virtualized in-
frastructure, or time to transfer blocks to disk. Using this primitive,
users can better debug "Performance" problems.

3. REFERENCES
[1] Amazon ec2. http://aws.amazon.com/ec2/.
[2] P. Mell and T. Grance. Draft NIST working definition of cloud computing, June

2009.

1


	Introduction
	Cloud Primitives
	References

