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ABSTRACT

Enterprises today face several challenges when hosting line-of-business

applications in the cloud. Central to many of these challenges is the
limited support for control over cloud network functions, such as,
the ability to ensure security, performance guarantees or isolation,
and to flexibly interpose middleboxes in application deployments.
In this paper, we present the design and implementation of a novel
cloud networking system called CloudNaaS. Customers can lever-
age CloudNaaS to deploy applications augmented with a rich and
extensible set of network functions such as virtual network isola-
tion, custom addressing, service differentiation, and flexible inter-
position of various middleboxes. CloudNaaS primitives are directly
implemented within the cloud infrastructure itself using high-speed
programmable network elements, making CloudNaaS highly effi-
cient. We evaluate an OpenFlow-based prototype of CloudNaaS
and find that it can be used to instantiate a variety of network func-
tions in the cloud, and that its performance is robust even in the face
of large numbers of provisioned services and link/device failures.
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C.2.3 [COMPUTER-COMMUNICATION NETWORKS]: Net-
work Operations
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Design, Performance
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1. INTRODUCTION

Cloud computing is an emerging new model for the delivery
and consumption for IT resources. Given the economic appeal and
agility of this model, both small and large companies are increas-
ingly leveraging cloud computing for their workloads [42} 43]]. De-
spite this growing adoption, however, key challenges remain when
migrating line-of-business production applications, including lack
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of fine-grained security, privacy, audit compliance, unpredictable
performance, and poor reliability [48].

Underlying many of these challenges is the absent or limited
control available to customers to configure the network in cur-
rent cloud computing environments. The cloud network model has
largely focused on providing basic reachability using dynamic or
static IP addresses assigned to customer VMs, with basic firewall
capabilities available at each virtual server. Several key network
functions are generally not available, e.g., fine-grained network iso-
lation for security or service differentiation, policy-based routing
through middleboxes (for intrusion detection or audit compliance),
control over addressing, and optimizations like protocol acceler-
ation, path control, and distributed caching for improved perfor-
mance and availability.

In this paper, we present the design, implementation, and evalua-
tion of CloudNaaS (Cloud Networking-as-a-Service), a networking
framework that extends the self-service provisioning model of the
cloud beyond virtual servers and storage to include a rich set of
accompanying network services. CloudNaaS gives customers de-
ploying their applications on the cloud access to virtual network
functions such as network isolation, custom addressing, service
differentiation, and the ability to easily deploy a variety of mid-
dlebox appliances to provide functions such as intrusion detection,
caching, or application acceleration. Unlike solutions based on
third-party add-on virtual appliances and overlay networks, Cloud-
NaaS primitives are implemented within the cloud infrastructure,
and hence are highly efficient and transparent to cloud tenants and
end-users. In CloudNaas$, all of these network services are unified
in a single, extensible framework. This model has the potential
to save cost and complexity compared to the current approach in
which cloud customers must integrate a variety of point solutions
from cloud providers and third parties to implement networking
services.

The design of CloudNaaS$ leverages techniques such as software-
defined networking to provide flexible and fine-grained control of
the network (e.g., with OpenFlow-enabled devices), indirection to
provide added control over addressing, and host-based virtual
switches to extend the network edge into hypervisors. In an envi-
ronment as large and dynamic as a cloud, however, a number of
challenging issues must be addressed. For example, network de-
vices are limited in the amount of control state, such as ACL-based
tables, that they can maintain, and the rate at which state can be
updated. Also, the dynamic nature of customer applications and
infrastructure failures or downtime requires that network services
be maintained or re-established under varying amounts of churn
in the system. Our design and implementation of CloudNaaS$ in-
cludes algorithms and optimizations that reduce the impact of these



hardware limitations, and also improve its ability to manage the dy-
namic nature of cloud-delivered services.
The contributions of CloudNaaS may be summarized as follows:

e design of an integrated provisioning system for cloud applica-
tions and network services with simple and flexible interfaces
for customers to specify network requirements

e optimizations to improve scalability and overcome hardware
limitations of network devices to support cloud-scale multite-
nancy with tens of thousands of application deployments and
hundreds of thousands of VMs

e an implementation of the system, with experimental and
simulation-based evaluation using a variety of common cloud
application workload models

We demonstrate the benefits of CloudNaaS using extension ex-
periments and simulation experiments on a prototype implementa-
tion. The flexibility of CloudNaaS in supporting network services
in the cloud is demonstrated through evaluation in a lab testbed with
commercial programmable network switches. Using this environ-
ment, we validate that fine-grained access control, VLAN-based
isolation, service differentiation, IP address mapping, and middle-
box interposition can be easily specified and deployed using Cloud-
NaaS.

We evaluate the performance and scalability of CloudNaaS using
a number of emulated scenarios with typical multi-tier interactive
and batch application models. We focus on the performance of
CloudNaaS in the face of dynamics such as network and host fail-
ures, and also as the number of customers and the size of the cloud
varies. We use realistic reference applications including interactive
n-tiered and batch applications. CloudNaaS scales to the dynamics
of a large cloud with 270K VMs by recovering (i.e., re-establishing
network services as well as connectivity) from link failures and de-
vice failures in well under .1 seconds and 6 seconds, respectively.
By using techniques such as caching and precomputation, the pro-
cessing overhead and recomputation time for recovery is reduced
significantly.

Our evaluation shows that CloudNaaS imposes low memory over-
head on the network devices in the cloud, requiring, for example,
only 96 MB of memory per endhost. We also show that simple
heuristics can be employed to effectively manage limited network
device memory for holding the forwarding state for large num-
bers of cloud tenants. These heuristics help reduce network switch
memory usage by 96-99% compared to naive routing and forward-
ing, thereby helping CloudNaaS scale to host many enterprise ap-
plications. Our experiments show that our network aware VM
placement strategy, in which VMs belonging to the same applica-
tion deployment are placed topologically near each other, is better
able to accommodate network service requests, particularly for ap-
plications with many VMs. Network-aware placement reduces the
pathlength between VMs belonging to such applications by a fac-
tor of 3, and can support nearly 10% more applications than non
network-aware algorithms.

2. BACKGROUND

In this section, we motivate the need for additional network-level
support when moving typical multi-tier enterprise applications to
the cloud. First, we argue that the lack of sufficient network sup-
port in current clouds deters enterprises from redeploying their ap-
plications, and then we identify the design requirements that allow
our system to overcome these challenges.

Network On-path Layer 2 QoS | ACL Static
Functions Middlebox | Broadcast Addressing
EC2 [ N N N Y N
EC2+VLAN N Y N Y N
EC2 w/VPC [2] N N N Y Y
VPN-Cubed [5] N Y N Y Y
CloudNaaS Y Y Y Y Y

Table 1: Policies supported by the networking layers of various
clouds.

2.1 Limitation of Current Cloud Networking
Mechanisms

Below, we focus on three important challenges that arise from
limited control over the networking capabilities in current clouds.
In each case, we suggest a design requirements to address each
limitation.

Limitation 1: Application performance. Many tiered applica-
tions require some assurances of the bandwidth between server in-
stances to satisfy user transactions within an acceptable time frame
and meet predefined SLAs. For instance, the “thumbnail” appli-
cation described in [32] generates and sends different versions of
photos between the business logic servers before they are finally
returned to the user. Insufficient bandwidth between these servers,
e.g., at times of high cloud utilization, will impose significant la-
tency on user interactions [32]]. Also, recent studies [37] point to
the slow rise in the average latency within the EC2 cloud, possibly
due to oversubscription. Thus, without explicit control, variations
in cloud workloads and oversubscription can cause delay and band-
width to drift beyond acceptable limits, leading to SLA violations
for the hosted applications.

Requirement: Cloud tenants should be able to specify bandwidth
requirements for applications hosted in the cloud, ensuring similar
performance to on-premise deployments.

Limitation 2: Flexible middlebox interposition. Enterprises
deploy a wide variety of security middleboxes in their data centers,
such as deep packet inspection (DPI) or intrusion detection systems
(IDS), to protect their applications from attacks. These are often
employed alongside other middleboxes [23] that perform load bal-
ancing [3]], caching [27] and application acceleration [[13]]. When
deployed in the cloud, an enterprise application should continue to
be able to leverage this collection of middlebox functions.

Today, there are a limited number of solutions to address this

need. IDS providers, such as SourceFire [[14]], have started pack-
aging their security software into virtual appliances that can be de-
ployed within the cloud. Similarly, EC2 provides a virtual load
balancer appliance for cloud-based applications [6]. Unfortunately,
there is no means today to specify and control middlebox traver-
sal, i.e., the series of virtual appliances that traffic should traverse
before arriving at, or after leaving, a node in the enterprise applica-
tion. A common practice when using virtual appliances is to install
all the virtual appliances in the same VM as the application server.
However, this approach can degrade application performance sig-
nificantly. It also increases the cost of the cloud-based deployment
as the customer will have to buy as many appliance instances as
there are application servers.
Requirement: 1deally, tenants should have the ability to realize an
identical data-plane configuration in the cloud to on-premise; this
includes the ability to flexibly interpose a variety of middleboxes
such as firewalls, caches, application accelerators, and load bal-
ancers.

Limitation 3: Application rewriting for consistent network
operation. The cost and difficulty of application rewriting places
a significant barrier to migrating enterprise applications into the
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Figure 1: Various steps in the CloudNaaS framework.

cloud. Applications may need to be rewritten or reconfigured be-
fore deployment in the cloud to address several network-related
limitations. Two key issues are: (i) lack of a broadcast domain
abstraction in the cloud and (2) cloud-assigned IP addresses for
virtual servers.

Cloud providers such as EC2 do not allow broadcast traffic [20],
which precludes important mechanisms such as broadcast-based
failover. Applications may have to be rewritten to employ alternate
failover mechanisms in the cloud. For example, backend database
servers must be rewritten to use other failover mechanisms such as
Layer-3 heartbeats [45] and third-party cluster resource managers
(e.g., PaceMaker [12]).

When writing configuration files for their applications, some ap-
plications may have hardcoded IP addresses for servers in various
tiers or for external services on which the applications depend (see
examples in [36]). When redeploying applications within the cloud,
virtual servers are likely to be given new addresses in the cloud,
requiring, at a minimum, updates to their configurations. Depend-
ing on whether or not the services that the applications depend on
have also been migrated into the cloud, further updates to configu-
rations may be necessary. Configurations can be quite complex for
production 3-Tier applications [29], hence retooling them to ensure
consistency in IP addresses is challenging and difficult to automate.
Requirement: Applications should require little or no rewriting to
handle networking (i.e., applications should run “out of the box™ as
much as possible), in particular for IP addresses and for network-
dependent failover mechanisms.

As mentioned in Section [l some cloud providers do support
some specific network-level functionality, but these are generally
point solutions that only partially address the limitations described
above. For example, in Table[ll we list a number of network func-
tions and consider to what extent they are supported by some com-
mercially available cloud serviced]. We see that each of the avail-
able mechanisms addresses a subset of the desired functions, while
CloudNaaS provides a framework with more comprehensive sup-
port for network-layer policies in the cloud.

3. RELATED WORK

Network services have started to receive more attention recently
from cloud providers, but the network support is primarily targeted
at a small set of capabilities. For example, Amazon recently ex-
tended its VPN services to include secure connectivity to isolated
virtual instances with the ability to segment them into subnets and
specify private address ranges and more flexible network ACLs [2]].
Similarly, the Microsoft Windows Azure virtual network provides
services for customers to integrate on-premise applications [[16].
Both Amazon and Azure also provide network-related add-on ser-
vices such as traffic load balancing across clustered VMs, and con-
tent distribution services using their distributed platforms.

"Note that EC2+VLAN is not actually available, but represents an
IaaS service with the ability for customers to create VLANSs.

There are also a number of third-party providers of network-
related services delivered as virtual cloud appliances. Some avail-
able functions include fast data replication [8]], application acceler-
ation [[I7] and intrusion prevention [I4]. Another delivery model
is via overlays using nodes in the cloud to provide services such as
custom addressing and encrypted communications [4} 5].

Both of these types of cloud network services (i.e., cloud-provided
or third-party) address some of the gaps discussed in SectionPl But
neither offers a single cloud networking framework that supports a
wide variety of services without the need to integrate multiple of-
ferings from multiple vendors, each with its own service model and
management interface. Overlays have the advantage of supporting
a greater variety of services, but usually with a negative impact on
performance. In CloudNaaS, an extensive list of services can be
provided under a single framework (from both customer and cloud
provider perspectives), while also retaining the performance and
efficiency of a network-level solution.

The research community has also advanced its view of the re-
quirements and challenges in deploying diverse workloads in the
cloud [22L47]. Some network-related issues have been specifically
addressed, including better control over routing [35]], over band-
width [24, B31]], architectures for access control, privacy and isola-
tion in the cloud [51} B3], or reducing disruption of services during
migration [SO]. Our goals are broader in the sense that CloudNaaS
spans services that include access control, performance isolation,
and control over network paths, e.g., through intermediaries. Con-
trol over middlebox placement in data centers has been also been
considered in prior research [34]] — our approach for managing mid-
dleboxes is conceptually similar to this work. Other recent work
has also suggested frameworks for network services, e.g., access
control in the cloud [44], or distributed network management [28]],
but these focus primarily on security issues and are not integrated
with cloud provisioning.

Some experimental platforms also have similar goals to Cloud-
NaaS$, in terms of providing some measure of control over the testbed
network [21, 30]]. In Emulab, for example, users can specify the
network topology and link characteristics using a modeling lan-
guage similar to popular network simulation tools. Since these en-
vironments are designed for experimentation, they expose consid-
erable low-level control over the network. In a multi-tenant cloud
environment the network services exposed to customers need to be
standardized, and designed to support application needs rather than
low-level control over the network infrastructure for emulation.

4. CloudNaaS SYSTEM DESIGN

In this section, we describe the architectural components of the
CloudNaasS cloud networking framework and their interactions. This
high-level description is followed by more details on the design and
implementation of each component.

CloudNaaS overview. Figure [l illustrates the sequence of main
operations in CloudNaaS.

First, a cloud customer or tenant uses a simple policy language
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to specify the network services required by his application (Fig-
ure [[la)). We describe the syntax and semantics of the network
policy specification below in Section FET1

Next, the network policy is translated from the high level con-
structs into a canonical description of the desired network com-
munication patterns and network services; we refer to this as the
“communication matrix” (Figure [l (b)). This represents the logical
view of the resource demand of the customer. At the end of this
step, the communication matrix is used to determine the optimal
placement of the new VMs such that the cloud is able to satisfy
the largest number of global policies in an efficient manner. This
is done based on the knowledge of other customers’ requirements
and/or their current levels of activity. This step determines whether
it is possible to map the new customer’s logical requirements into
the cloud’s physical resources.

We then translate the logical communication matrix along with
knowledge of the placement of VM locations into network-level
directives (i.e., configuration commands or rules) for devices in the
cloud (Figure [l (c)). The customer’s VM instances are deployed
by creating and placing the specified number of VMs. We describe
this in Section EE21

The final step is to install the configuration commands or rules

into the devices within the network (Figure[ll(d)), thereby creating
the necessary physical communication paths that satisfy the cus-
tomer’s needs. In addition, address-rewriting rules are instantiated
within appropriate network locations to ensure that applications can
use custom IP addresses within the cloud. We describe the last two
steps in Section B3 The new cloud application deployment is then
ready to run as per the customer’s specifications.
CloudNaaS components: The CloudNaaS architecture consists of
two primary communicating components, namely the cloud con-
troller and the network controller. The cloud controller manages
both the virtual resources and the physical hosts, and supports APIs
for setting network policies. It addresses the steps shown in Fig-
ure [l (a) and (b). The network controller is responsible for moni-
toring and managing the configuration of network devices as well
as for deciding placement of VMs within the cloud. It handles the
tasks outlined in Figure[ll(c) and (d).

4.1 Network Policy Specification

As part of the CloudNaaS system, we have developed a policy
language that cloud customers can use to specify network services
associated with their application deployments. The CloudNaaS
specification language complements user-facing constructs in cur-

rent clouds such as Amazon EC2 and Windows Azure. For exam-
ple, our policy language could work with EC2’s virtual instance
identifiers when specifying network policies.
While the CloudNaaS policy language is just one candidate among

a number of possibilities, we have found it to be sufficient to real-
ize the requirements outlined in SectionPl and also extensible and
intuitive to use. The constructs in the CloudNaaS policy language
could also be leveraged in ongoing work to develop standard APIs
for cloud networking in efforts such as OpenStack [[L1]].

4.1.1 Network Policy Constructs

Our policy language provides a set of constructs for identifying
the set of VMs that comprise an application and their network ser-
vices. The basic abstraction is that of a virtual network segment that
connects VMs together. Various functions and capabilities may be
attached to a virtual network segment to define its behavior. Traffic
is only allowed to reach a VM over an explicitly defined virtual net-
work segment, hence providing a secure “default-off”” model. This
approach can be used to provide standard templates of network ser-
vices and segments that implement pre-defined policies (e.g., for
security). A brief description of the main constructs is given below.
A more detailed description may be found in [23]].

e address: specify a custom (e.g., private) address for a virtual
machine. Other VMs on the same virtual network segment will
be able to reach it using either the specified private address or
the cloud address.

e group: create a logical group containing one or more virtual
machines. Grouping VMs with similar function, e.g., members
of a cluster, makes it possible for modifications to apply across
the entire group without requiring changing the service attached
to individual VMs.

e middlebox: name and initialize a new virtual middlebox by
specifying its type and a configuration file. The list of available
middleboxes and their configuration syntax is supplied by the
cloud provider.

e networkservice: specify a set of capabilities to attach to a
virtual network segment. The current CloudNaaS implemen-
tation supports 3 services: i) layer 2 broadcast domains, ii)
link QoS (either standard best-effort or bandwidth reservation
in Mbps), and iii) middlebox interposition (list of middleboxes
that must be traversed in sequence). A virtual network segment
may contain a combination of these three services.

e virtualnet: virtual network segments connect groups of



address dbserver] = {128.1.104.103}

address dbserver2 = {128.1.104.13}

group frontend = {httpdserver}

group businesslogic = {jboss1,jboss2, jboss3}

group backend = {dbserverl, dbserver2}

middlebox Class = {type=classifier, config=""}

middlebox DPI = {type=dpi, config=""}

networkservice protectFrontEnd =

{12broadcast=no, qos=standard, mb=DPI}

networkservice connectBL =

{I12broadcast=no, qos=standard, mb=none }

10 networkservice reservedBW =
{12broadcast=no, qos=10mbs, mb=Class }

11 networkservice allowFailover =
{I2broadcast=yes, qos=standard, mb=none }

12 virtualnet allowFailover (backend)

13 virtualnet protectFrontEnd(frontend, EXTERNAL)

14 virtualnet connectBL(frontend,businesslogic)

15 virtualnet reservedBW(businesslogic,backend)

(eI e Y R R S

N=l

Figure 3: Network policies for example 3-tier application

VMs and are associated with network services. A virtual net-
work can span 1 or 2 groups. With a single group, the ser-
vice applies to traffic between all pairs of VMs in the group.
With a pair of groups, the service is applied between any VM
in the first group and any VM in the second group. Virtual
networks can also connect to some pre-defined groups, such as
EXTERNAL, which indicates all endpoints outside of the cloud.

4.1.2 Network Policy Example

To illustrate how the policy language is used in practice, we
show an example specification for the 3-tier application deploy-
ment shown in Figure 2l In this example, middleboxes are used
to perform deep packet inspection for incoming traffic and also to
perform packet classification to distinguish high priority requests
between the business logic and backend database servers. In the
backend, a broadcast-based failover mechanism is used for notifi-
cation in case the current master fails [[7]. The database servers also
use customer-specified addresses.

Figure B shows the corresponding network service specification
using the constructs described above. The customer assigns the
enterprise addresses to the database VMs (lines 1-2), and defines
groups for the VMs in each tier (lines 3-5). The two middleboxes
are named next, both using the default configuration (lines 6-7).
The next lines define the network services required for each vir-
tual network segment (lines 8—11). Note that the standard, i.e.,
best-effort, service is also defined to establish basic connectivity
between the front-end server and the business logic tier. The other
services specify middlebox traversal, bandwidth reservations, or
layer 2 broadcast services. Finally, the last lines attach network
segments between or within corresponding groups of VMs (lines
12-15).

4.2 Cloud Controller

In a typical cloud, the cloud controller is responsible for manag-
ing physical resources, monitoring the physical machines, placing
virtual machines, and allocating storage. The controller reacts to
new requests or changes in workload by provisioning new virtual
machines and allocating physical resources. CloudNaaS extends
the cloud controller in several ways in order to facilitate better con-
trol over the network:

(1) accepts network policy specifications (in addition to requests
for VMs) and parses them to generate a communication matrix for
the tenant’s resources. The matrix captures the requirements for
the network between tenant VMs. An entry in the matrix indicates
whether the virtual network between the source and the destination

VM (row and column, respectively) should permit packets; if so,
whether layer 2 broadcast is allowed, or layer 3 traffic is allowed,
or both are allowed. And when layer 3 traffic is allowed, the entry
also specifies bandwidth reservations and any middlebox traversal
required by traffic between the endpoints. The matrix is then passed
to the network controller which interfaces with the programmable
switches.

(2) prior to placing a VM on a physical host, the cloud controller
consults the network controller to determine which hosts are candi-
dates for placing the VM. The network controller utilizes a place-
ment algorithm designed to minimize the network state and maxi-
mize the performance and the number of virtual networks that can
be supported in the cloud (described further in Section EE3).

(3) manages a software programmable virtual switch on each phys-
ical host that supports network services for tenant applications. The
software switch is configured to connect any number of virtual ma-
chines to the physical network. The software switches are crucial
for extending network control beyond the physical switches and
into the end-hosts themselves. Once configured, the cloud con-
troller informs the network controller of the location of the soft-
ware switches and subsequently sends updates about the set of vir-
tual machines attached to the switches (e.g., if a VM is removed or
moves to a different host).

4.3 Network Controller

The network controller is a new component that CloudNaaS in-
troduces into the cloud management system. It is responsible for
configuring virtual network segments throughout the cloud by map-
ping the logical requirements in the communication matrix onto
the physical network resources. It also controls resources, e.g.,
by determining VM placement and performing re-mapping when
available resources change, to ensure that tenant requirements are
consistently satisfied in an efficient manner.

Setup virtual
Switch on host

Network Device

Status

Matrix Placement

Network
Topolog

Placement
Optimizer

Network
Provisioner

| State Optimizer

Network Controller

Figure 4: Internal components of the network controller.

Figure @l shows the main modules of the network controller. It
takes two inputs from the cloud controller: the communication ma-
trix for a new request, and a list of physical hosts and available
resources on each physical host. In addition, the network controller
collects the current status of switches and links (along with link
utilizations) and the current mapping of flows corresponding to the
virtual network segments deployed in the cloud’s physical network.
The cloud monitor module periodically polls the devices for this
state, but it can also receive triggered state updates from devices
when they come up or when they detect a neighbor failure.

Based on these inputs, the controller first invokes the placement
optimizer to determine the best location to place VMs within the
cloud (and reports it to the cloud controller for provisioning). The



controller then uses the network provisioner module to generate the
set of configuration commands for each of the programmable de-
vices in the network and configures them accordingly to instantiate
the tenant’s virtual network segment. A similar set of actions must
be taken by the network provisioner when remapping tenant virtual
network segments in case of network failures. In addition to these
basic actions, the network provisioner performs other control func-
tions in the network, such as tearing down a tenant’s application,
and installing address rewriting rules in host virtual switches. We
discuss these tasks in more detail below.

Provisioning and De-provisioning Virtual Network Segments
To provision a virtual network segment between a pair of virtual re-
sources (VMs, or a VM and a middlebox), the network controller
first determines the constraints that apply to the path between the
resources based on the requested attributes. The constraints can re-
sult in various computations. They might involve simply finding a
loop-free path when the user requests best-effort connectivity be-
tween two VMs, or identifying the amount of bandwidth needed
along a path when QoS is required. Once the constraints have
been gathered, the network controller searches the graph reflect-
ing the current network state and resources for a physical path that
satisfies these constraints. We use widest-shortest path [49] com-
putations for generating paths with QoS requirements, standard
shortest-paths for best-effort paths, and spanning tree algorithms
for generating broadcast paths.

If a path is found, the controller generates the appropriate con-
figuration commands and executes them on the network devices on
the path. The nature of the configuration commands generated is
specific to the type of programmable devices used in the network.
We discuss the details of how rules are created and allocated to the
appropriate devices while taking into account limited ruleset mem-
ory in Section &1l

De-provisioning the virtual network segments belonging to a cus-
tomer application happens in a similar fashion; we omit the details
for brevity.

VM Placement using bin-packing One of the key optimiza-
tions in CloudNaasS is the joint placement of virtual machines with
virtual network segment provisioning. The programmable network
devices used in our design provide the fine-grained control required
for per-customer network services, but, as we discuss below in Sec-
tion [l they have limited resources available to store state for the
virtual network segments. Hence, the objective of the optimization
is to place a VM so that the number of networking entries that the
controller installs on the physical network devices is minimized.
We further try to minimize the number of network devices between
communicating VMs to reduce network latency and limit the im-
pact of oversubscription in the cloud network topology (e.g., be-
tween server racks located behind different aggregation switches)t.
This has the benefit of improving application performance in addi-
tion to reducing state in the network devices.

We formulate the placement algorithm as an optimization prob-
lem that searches through the set of available physical hosts for an
optimal location to place a VM. The constraints are to (1) place
VMs on a physical host with sufficient free capacity to support the
VM’s minimum resource requirements and (2) to ensure that a path
exists between all communicating VMs. For efficiency and speed,
we employ a bin-packing heuristic (first-fit decreasing) that sorts
virtual network segments according to the number of communicat-
ing VMs. The virtual network segments to be created are processed
in order, starting by determining placement of the VMs in the larger

Recently proposed network topology designs can also help to im-
prove the “east-west” VM-to-VM bandwidth in cloud data centers
by reducing or eliminating oversubscription.

virtual network segments. The algorithm attempts to pack VMs for
a specific virtual network segment on the same physical host, then
within the same rack, then on hosts behind the same aggregation de-
vices, and finally on any available physical host with sufficient ca-
pacity. This ensures that VMs on the same virtual network segment
are co-located within the same region of the data center whenever
possible. To distribute load and improve tolerance to localized fail-
ures, when handling a new virtual network segment, the algorithm
starts placing VMs into a randomly chosen rack with sufficient free
capacity (or else at the rack with the highest available capacity).

Addresses Rewriting The final important function of the net-
work provisioner is to perform address mapping to allow enter-
prises to reuse existing addresses (i.e., custom addressing). To
achieve this, the cloud controller provides the network controller
with a map of the VM names to their custom addresses as well
as the set of VMs communicating within them as indicated in the
policy specification by the cloud customer. For each VM in the
list, the network controller installs a rewriting rule in the software
switch resident on the hosts for the set of VMs communicating with
it. This rule translates the destination address from the custom ad-
dress to the cloud-assigned address before forwarding. For other
VMs or traffic using cloud addresses, rules are installed for for-
warding without rewriting the destination address. In cases where
VMs are migrated, the rewriting rules are recreated at the appro-
priate software switches on the new hosts. Thus, we leverage pro-
grammability of the cloud, in particular the software switches to
enable customer applications to use their own custom addressing
schemes.

5. PROTOTYPE IMPLEMENTATION

In this section, we describe our prototype of the CloudNaaS
cloud networking framework.

OpenNebula cloud controller. We leverage the OpenNebula 1.4
cloud framework to implement the cloud controller component of
CloudNaaS. We chose OpenNebula as it provides an identical set
of abstractions to users as many prominent IaaS providers, such as
EC2, 3Tera, and Eucalyptus. We modified the OpenNebula source
to accept user requirements specified using the language described
in §&71 to keep the generate the communication matrix, to defer
VM placement decisions to the network controller and to instantiate
and configure software switches on hosts. Our modifications were
limited to 226 lines of code. We also built a parser to convert policy
specifications into communication matrices. Our Perl-based parser
has 237 lines.

NOX and OpenFlow for network control. We utilize OpenFlow-
enabled switches (specifically, HP Procurve 6400 series switches
flashed with the OpenFlow 1.0 firmware) within our lab-based set-
up. We chose OpenFlow because using OpenFlow does not require
a forklift change to the network; in most cases a simple firmware
upgrade of switches is sufficient.

The OpenFlow framework provides an API that allows exter-
nal software control of the flow tables of network switches. In
particular, it allows an authenticated software controller running
NOX [9] to dynamically install, update and delete flow-level en-
tries in switch flow tables. It also provides a variety of mechanisms
to track network state (e.g., switch and link states). The NOX con-
troller can also be configured to read state from external sources.

We implemented the CloudNaaS network controller atop NOX
using 2468 lines of C++ code. We interfaced the network con-
troller with cloud controller; the network controller constantly polls
the cloud controller and pulls new/updated communication matri-
ces and VM mappings as and when they are available. We imple-
mented the full set of functionality outlined in Section includ-



ing, provisioning and de-provisioning virtual networks, handling
host and network dynamics, VM placement and providing mecha-
nisms for address rewriting. Our controller runs on a commodity
Linux machine (2.4 GHZ, 4 cores, 4GB RAM).

We implemented end-host software switches using Open vSwitch.

For completeness, we also implemented the following functions:
(1) NAT functionality at the cloud gateway to allow customers to
use cloud-assigned internal IPs for their applications; this function
is configured and controlled by the network controller, and (2) ARP
functionality within customer applications; similar to Ethane [26],
we redirect all ARP traffic to the network controller who then pro-
vides the appropriate responses.

6. ADDRESSING PRACTICAL ISSUES

In managing the mapping of customer virtual network segment
to the physical network the network controller in CloudNaa$ has to
handle several challenges, namely: (i) installing forwarding state
to implement tenant policies while being constrained by network
device processing and memory limitations, and (ii) ensuring that
network policies persist in the face of dynamics such as device and
link failures. In this section, we discuss the techniques used by
CloudNaaS to deal with these practical issues.

6.1 Hardware Device Limitations

CloudNaaS uses the fine-grained control provided by programmable

devices to provide Quality-of-Service guarantees, middlebox inter-
position, tenant-defined broadcast domains, and address rewriting.
The drawback of using fine-grained controls to realize these ser-
vices is the state explosion they create in network devices. In using
the APIs provided by OpenFlow and NOX to configure the net-
work, CloudNaaS$ creates O(V * N?) forwarding entries per device
within the network, where V' is the number of virtual networks and
N is the number of virtual machines using these virtual networks.

Forwarding entries are stored in Ternary Content-Addressable
Memories (TCAMs) which are limited in size, ultimately limiting
the number of forwarding entries and virtual networks that can be
instantiated. Unless this memory is carefully managed, it may not
be possible to support a large number of virtual networks in the
cloud.

Below, we present several optimizations implemented at the net-
work controller to mitigate these limitations. These optimizations

leverage the distinction between host-based switches, i.e., OpenFlow-

capable software switches on the physical hosts, and physical Open-
Flow switches in the network. Flow tables in the former are stored
in the much larger host memory (DRAM), providing space for
many more rules, as opposed to the limited TCAMs used in the
latter. The goal of these optimizations is to provide CloudNaaS
with fine-grained control while limiting the in-network state.

Optimization 1: Best-effort traffic Our first optimization is
used for configuring flow table rules for best effort traffic. It works
simply as follows: we install full flow-based rules in the host’s
virtual switch, and simple destination-based rules in the physical
switches (i.e., source addresses are wild-carded in the latter case).
This optimization leverages the observation that best effort traffic
can be aggregated along a small collection of network paths. Thus,
each in-network device needs only to maintain rules for at most
one spanning tree per destination, thereby reducing storage require-
ments from O(N?) to O(N) per virtual network, where N is the
number of virtual machines in each virtual network. We illustrate
this optimization in Figure Bl In (a), we show the rule-set at dif-
ferent devices without the optimization. Device D carries 6 flow
table rules. As shown in (b), with the optimization device D holds
4 flow table rules, a 33% reduction.
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Figure 5: A network with 4 hosts, 4 switches, and 4 VMs. The
flow table for each switch is displayed in a white rectangle.
The flow entries in each table have the following format: {Src
IP:Dest IP:ToS:InPort}-> OutPort with a * indicating a wild-
card.

Using destination-based forwarding prevents middlebox traver-
sal, however. To allow middlebox traversal, CloudNaaS installs
rules in the software switches of the source VM and subsequent
middleboxes that encapsulate and tunnel packets from the source
VM or current middlebox to the next middlebox.

Optimization 2: QoS traffic. The second optimization extends
the idea for best-effort traffic to traffic with QoS requirements. The
behavior of host-based software switches remains qualitatively the
same as above. However, in-network switches forward on the basis
of both the destination information as well as the type-of-service
(ToS) bits in the packet header. ToS bits are used to select the
appropriate queue for network traffic.

If multiple reserved paths to the same destination use the same
underlying devices and links, then only one entry is needed per
physical device. If a pair of paths only share some links and de-
vices, then the controller uses different ToS values for each path,
which leads to separate entries in the in-network switches; the op-
timization is less effective in this situation. Although less effec-
tive, this approach reduces the storage requirements from O(N?)
to O(S * N) per virtual network, where NV is the number of virtual
machines and S is the maximum number of alternate paths from
any switch to the virtual machine.

Optimization 3: Forwarding entry aggregation. Given that
the earlier optimizations allow for simple destination based for-
warding, we can use the wildcard feature to aggregate forward-
ing entries with the same output port, in a fashion similar to how
IP address aggregation is done in Internet routers. To increase
the efficiency, we assign contiguous addresses to VM placed be-
hind the same Top-of-Rack (ToR) switch. This results in gains of
O((S) * N/P), where S is the number of distinct paths to a ToR
switch, IV is the number of virtual machines, and P is the size of
prefix assigned to each ToR switch.

As we show in Section [l the above optimizations coupled with
our bin-packing placement heuristic (SectionEE3) result in substan-



tial savings in network device switching memory, thereby helping
support several thousands of complex enterprise services.

6.2 Cloud Dynamics

Network services must be able to withstand dynamic events in
the cloud, such as link failures, device failures, or changes to the
network policy specification. To handle these events, CloudNaaS
employs precomputation and caching to reduce the impact of de-
vice or link failures on network services.

Policy Changes and Host/VM dynamics: When host condi-
tions change due to oversubscription or failure, the cloud controller
may migrate a customer’s VM to another host and regenerate the
communication matrix. The cloud controller also regenerates the
communication matrix when a customer submits changes to his net-
work policies. When the matrix is regenerated, the cloud controller
informs the network controller of the new matrix, which then trig-
gers reprovisioning of the corresponding virtual networks. To do
this without causing significant disruption to existing tenants, the
network controller performs reprovisioning for only the changed
portions of the communication matrix.

Device/link failures: When devices or links fail, virtual net-
works may be rendered invalid. In such situations, CloudNaaS tears
down and re-provisions all virtual networks which are dependent
on the failed links or devices. To reduce downtime CloudNaaS em-
ploys precomputation and caching of alternate paths. CloudNaaS
maintains an association between devices / links and the set of de-
pendent virtual networks, thus allowing it to quickly determine the
virtual networks to re-provision when a particular link or device
fails. To reduce the time to re-provision these virtual networks,
CloudNaaS precomputes network state for different failure scenar-
ios. In our current implementation CloudNaaS precomputes net-
work state to handle failure of core and aggregation layer devices
— a small number of devices having significant state. Failure of
these devices can be resolved by simply looking up and installing
the precomputed and cached network rules.

7. CloudNaaS SYSTEM EVALUATION

In this section, we present an experimental evaluation of the
CloudNaaS prototype in both a lab-based cloud as well as a large-
scale emulated cloud. In Section[ZJ] we describe our simulator and
experimental setup.

Our first goal is to demonstrate the key primitives supported in
CloudNaasS, validating the ability to flexibly specify and instantiate
a variety of network functions in the cloud and to help minimize
application rewrites and reconfigurations due to addressing changes
in the cloud (Section [Z2).

We then conduct a variety of experiments examining various key
aspects of CloudNaaS. In Section [[3] we examine the impact of
various optimizations described in Section [l and their ability to
help CloudNaaS operate in a scalable fashion under network de-
vice resource constraints. In Section[Z4] we study the performance
of the network controller in terms of the overhead of virtual net-
work computation at scale, and the ability to ensure that the cloud
operates gracefully under failures. We also examine the impact of
the bin-packing placement heuristic in facilitating the admission of
a large number of virtual network requests from applications and in
supporting high application performance.

On the whole, our experiments also show that CloudNaaS is
flexible in that it can support a variety of enterprise application re-
quirements, and its performance scales well as the number of provi-
sioned services grows, and when reconstituting the virtual network
after a link or device failure in clouds of varying sizes, despite host
and network device resource constraints.

OpenNebula
Cloud Controller

NOX Network
Controller

SWITCH3
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Figure 6: Experimental testbed.

7.1 Experiment Setup

We deployed and validated CloudNaaS on a cloud testbed con-
sisting of 5 physical hosts and 5 network switches connected as
shown in Figure [ Four of the five hosts are available for deploy-
ing virtual machines, while the fifth (Host5) is used to run the con-
troller services (i.e., cloud controller and network controller each
within a different VM). The 5 programmable network devices are
24 port HP Procurve 6400 switches with 20 1Gbps ports.

Simulator:In the absence of a real large-scale testbed to study
the impact of the proposed optimizations and the performance of
the network controller, we instead developed a simulator to model
the network controller. We emulate various network events as well
as the messages exchanged from the cloud controller and the net-
work devices to the network controller (e.g., the control messages
sent to the network controller by the switches when a link failure
occurs or when the switch is powered on). We also simulate the
user policy files and the equivalent communication matrix that the
cloud controller would send to the network controller. The network
controller operates as usual, determining VM placement and com-
puting the required flow table entries for each switch based on the
placement of the VMs, but does not install the entries. This ap-
proach allows us to focus on the performance of the network con-
troller in a large-scale setting unconstrained by the size and topol-
ogy of our lab testbed. In our simulations, the network controller
is deployed on a 2.40GHz quad core Intel Xeon PC with 4GB of
memory running Ubuntu 10.

Workloads: In these experiments, we use two types of refer-
ence enterprise applications: interactive multi-tiered applications
and batch multi-tiered applications. We generate network policies
and communication matrices consisting of varying sizes (number
of VMs) and numbers of each type of service.

Our interactive application model is typical of many enterprise
applications which separate presentation (front-tier), application
(business-logic tier), and data (database) components for scalability
and performance (e.g., SAP R/3 [18]).

For a “small”-sized interactive application, we use 5 VMs, in-
cluding 2 VMs for redundant databases, and a single VM for each
of the other 2 tiers. For the medium sized interactive application,
we expand this model to 12 VMs allowing for redundancy at all
tiers and introducing middle-boxes for IDS and DPI. Finally, for
the large sized 3-tier application, we build on the medium sized
model by further increasing the number VMs in the front-tier and
the business-logic tiers to accommodate a larger user base; the total
number of VMs is 19.

For the interactive applications, the following network primitives
are employed: (1) a VLAN isolating the application from other
applications in the cloud, (2) QoS requirements between the front-
tier and business-logic tier, and (3) on path middlebox traversal



between the front-end and end-users. The QoS requirements for the
different interactive applications are proportional to the size of the
applications with the small requiring 20Mbps, the middle requiring
70Mbps, and the large requiring 100Mbps on the paths connecting
the front-tier to the business-logic servers.

For the batch application, we model Microsoft’s SharePoint de-
ployments — we derive the networking requirements from the ref-
erence architecture [38] for small, medium, and large enterprises
which (as with the interactive applications described earlier) dif-
fer in the number of VMs hosting employee facing IIS and also in
the number of VMs in the service that are used to crawl, index, and
search data. The batch application consists of a cluster of VMs used
to host IIS and MSSQL applications and a second cluster of VMs
used to crawl and index the data in websites and databases stored
in the first cluster stored. The network requirements for the batch
applications are a VLAN isolating the service from other services
in the cloud.

Topology: For our data center network model, we consider a
canonical 3-tier network (consisting of Top-of-Rack (TOR), aggre-
gation, and core switches) and Fat-Tree [[19]. For each network
model, we generate three topologies with 6K, 20K, and 30K phys-
ical hosts capable of running a maximum of 54K, 140K, and 270K
VMs. In each topology, a physical hosts can support at most 9 VMs
and each physical host is connected to an edge switch with a 1Gbps
link.

We consider 3-tier topologies with 200, 500, and 1000 ToR switches,

each connected to 30 hosts. For the 3-tier network, these data center
models each have 2 core switches, and 20, 50, and 100 switches in
the aggregation layer, respectively. As is typical, each ToR switch
has two 10Gbps uplinks to the aggregation layer, and aggregation
switches are dual-homed to the core layer with 10Gbps links.

For the Fat-Tree topologies, we follow [19], varying the K pa-
rameter to accommodate varying numbers of physical hosts. All
links in the Fat-Tree topologies are assumed to be 1Gbps.

7.2 Functional Validation

We begin by demonstrating the flexibility and functionality of
CloudNaaS in implementing several different network functions
and policies.

By submitting different network policies to the user interface,
we were able to implement, within the confines of the cloud, the
different enterprise application networking scenarios below. We
perform the testing on the cloud testbed discussed earlier.

Our initial application deployment uses a policy that enables
point-to-point reachability between VMs 1-3 (which are all part
of the application deployment), but not to/from VMs belonging to
other applications (VMs 4-6). For the purpose of this evaluation,
we force the VMs to be placed as shown — this set-up helps us
study how effective CloudNaaS’s primitives are under various in-
teresting situations. Note that we evaluate the placement algorithm
(Section E3)) and the benefits it offers later in this section.

VLAN: In the VLAN scenario, we modify the baseline policy
above to place VM2 and VM3 in the same VLAN (broadcast do-
main) to enable the broadcast-based fail-over service. We verified
that VM2 and VM3 are able to communicate and then failed the
application running in VM2. The VLAN configuration allowed
VM3 to correctly detect the failure and take over the role of the
primary.

Quality-of-Service: To demonstrate the QoS primitive, we mod-
ify the baseline policy to reserve 900Mbps for traffic between VM1
and VM2. In this case, the Quality-of-Service constraint did not re-
sult in a change to the underlying paths, though in general a new
path may be computed to meet the requirement, as described earlier

Size of Ruleset | # of Large Interactive Apps. | Memory (in MB)
65536 3276 33
131072 6553 37
196608 9830 57
262144 13107 77
327680 16384 94

Table 2: Resource impact of flow entries in Open vSwitch.

in Section Bl We instantiated file transfers from VM1 to VM2 and
simultaneously from VM5 to VM4 which are deployed on the same
hosts as VM1 and VM2, respectively. We observe, with the aid of
IPerf, that flows between VM1 and VM2 received the requested
share of link bandwidth on the paths shared with flows between
VM4 and VM5.

Middlebox Interposition: To validate the correctness of our
framework to interpose virtual middleboxes on the network path,
we modified our policy between VM1, VM2 and VM3 to force all
traffic to and from VM1 through an DPI middle-box implemented
in snort. Over several runs of the experiments, we observed that
it takes an average of 12ms to modify the path so that traffic from
VM2 to VM1 is directed through VMS, where the DPI function is
hosted.

Address Rewriting: Finally, we demonstrated the ability of en-
terprise customers to retain their current IP addressing and connec-
tivity as they move their applications to the cloud. We deployed a
simple client-server application with the client in VM3 and server
on VM2. The client is configured to refer to the server in VM2 by
its original globally routable IP address. Without the address map-
ping policy installed, VM3 is unable to communicate with VM2
since each VM has been assigned a new private IP address in the
cloud. After adding a policy to remap VM2’s original address, we
observe that traffic from VM3 is able to reach VM2.

7.3 Impact on Cloud Infrastructure

The design of CloudNaaS introduces a number of changes to the
cloud infrastructure. In this section, we summarize our observa-
tions of the resource overheads of these changes.

One significant change is the modification of the cloud controller
to generate and transfer the communication matrix to the network
controller. Our experience with CloudNaaS revealed little negative
impact in terms of memory and CPU overhead in the cloud man-
agement system due to this change. Another change that might
raise some concern for a cloud provider is the introduction of the
Open vSwitch [10] at each host, which requires instantiation of
TAP interfaces [[1J] in place of the standard KVM public bridges.
We observed that the resource usage of the TAP interfaces was min-
imal, and should not impact the number of VMs that can be sup-
ported.

In examining the overhead of installing rulesets into Open vSwitch,
we find that the memory consumption is not significant. Table
shows the amount of memory consumed by the virtual switch. We
observe that a virtual switch is able to store 300K entries, suffi-
cient to support the virtual network segments for 16K large 3-tier
applications when viewed across the entire data center, in less than
100MB (of the 4GB available to the Open vSwitch) of memory
per host. With a limit of 300K rules, CloudNaaS is able to allocate
on average 10K forwarding rules, or 1.8K virtual network segments
for each VM on the host — indicating that most practical virtual net-
work segments sizes can be supported for each VM deployed on the
host for even large applications. We conclude that the host-based
Open vSwitches are able to efficiently hold a significant amount of
state and thus support our optimizations which increase the amount
of forwarding rules and state at the edge.



Algorithms Virtual Switch| ToR | Agg | Core |# of Large Apps
Default Placement 365 13K [235K[1068K 4K
w/o optimizations
Default Placement + 0% 3% | 21% | 39% 6.7K
Destination Forwarding
Default Placement + 0% 2% [20% | 30% 5.4K
Qos Forwarding
Default Placement 0% 93%195% | 99% 12.2K
+ Qos + Destination + Prefix

Table 3: Results indicating effect of flow entry optimizations
and the default VM placement strategy on switches at each tier.
The bottom four rows show the percentage reduction in flow
table size.

Algorithms Virtual Switch| ToR | Agg |Core|# of Large Apps
Bin-Packing 313 5K [13K[20K 15K
w/o optimizations
Bin-Packing + 0% 49% (47% |46% 15.7K
Destination Forwarding

Bin-Packing + 0% 41% [40% |40% 15.6K

Qos Forwarding

Bin-Packing + 0% 99.8% (99 % |99 % 15.9K

Qos + Destination + Prefix

Table 4: Results indicating effect of flow entry optimizations
and the bin-packing VM placement strategy on switches at each
tier. The bottom four rows show the percentage reduction in
flow table size.

In Section @l we described several optimizations to the network
provisioning algorithm to reduce the number of forwarding rules
in the network switches. Here, we show the quantitative impact
of those optimizations on the network state for the case of provi-
sioning 16K large instances of the reference interactive application
(i.e., 270K VMs) in the largest data center model (i.e., 1000 ToR
switches). Table Bl shows the maximum number of flow table en-
tries across the switches in each of the 3 tiers of the data center,
plus the Open vSwitches at the hosts. Our goal is to indicate the
relative benefits offered by our optimizations. The first row shows
the maximum number of flow table entries with no optimizations.
Subsequent rows show the number of entries after applying each
optimization separately and the last row shows the impact of all of
the optimizations taken together.

The best effort and QoS forwarding optimizations achieve sub-
stantial benefits each. As the results show, moving up from the host
virtual switch layer toward the data center core results in greater
benefits from the optimization since there are more flows available
for consolidation. On the whole, the optimizations are able to yield
between 93% and 99% reduction in flow table usage across diffe-
rent network switches. Finally, we observe that employing careful
placement decisions using our bin-packing heuristic results in fur-
ther reduction of the state for the ToR and Agg devices (Table H).
With all our optimizations taken together, we can support 15.9K
large interactive applications simultaneously, which is 4x more
that what can be supported without any optimizations (Table B).

7.4 Network Controller Performance

Next, we evaluate the ability of CloudNaaS’s network controller
to scale to provisioning and managing a large number of virtual
networks in a large-scale cloud data center.

7.4.1 Impact of Placement

Placement of VMs plays a crucial role in determining the per-
formance between VMs, the number of QoS requests that can be
satisfied, and the amount of state within the network. In this sec-
tion, we examine the benefits of careful VM placement. We com-
pare our bin-packing heuristic against the default placement strat-
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Figure 7: Number of virtual network segments successful sup-
ported by CloudNaaS under the bin-packing and the default
placement strategies as a percentage of those supported by an
optimal placement strategy.
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Figure 8: Length of paths, in # of links, between different VMs
under different VM placement strategies.

egy used by current cloud platforms, namely OpenNebula [39]] and
Eucalyptus [40]. The default placement algorithm used by both
platforms is a striping algorithm which aims to spread VMs across
physical hosts in a round robin fashion. Due to space constraints,
we only present our findings for deploying Large interactive and
batch services (Lg), medium interactive and batch services (Med),
and an equal combination (Eq) of small, medium, and large inter-
active and batch services on the canonical DC topology; however,
we observed similar findings for the Fat-Tree topology.

First, we examine the impact of placement on the ability of the
network to satisfy the varying QoS requirements placed on it by the
different applications. Figure [l presents a bar graph of the num-
ber of virtual network segments admitted as a fraction of the ideal
number that can be accommodated by an optimal placement algo-
rithm. The figure shows that both placement schemes satisfy all
QoS requirements when only small and medium-sized interactive
applications are run within the cloud. However, when only large-
sized services are used then our placement algorithm is able to sat-
isfy all requests whereas as uninformed placement approach denies
roughly 10% of the requests: in each case when a virtual network
segment is denied, the default placement algorithm is unable to sat-
isfy one or more of the network QoS requirements specified by the
virtual network segment.

To determine the performance implications of the different place-
ment algorithms, we examine the length of the paths between com-
municating VMs in Figure 8] for the requests that were accepted in
each case. For simplicity, we show our results only for large in-
teractive applications. We observe that paths are in general shorter
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Figure 9: Virtual network segment computation time for Large
interactive applications on a tree topology with 30K hosts.

with our placement algorithm: 99% of the paths created using the
heuristic are less than 2 links long indicating that these paths never
leave the ToR. The naive strategy results in longer paths, potentially
resulting in poorer application performance due to greater interac-
tion with cross traffic.

7.4.2  Virtual Network Computation

First, we examine the time taken to initialize several large inter-
active applications. Recall that each 3-tier application contains a
relatively large number of virtual machines and a complex set of
virtual networks and policies. We assume the canonical tree inter-
connect.

Figure 9 shows the amount of time taken to simultaneously in-
stantiate network services for as many as 270K VMs in total spread
across nearly 16K instances of the large interactive application (this
is the number of large interactive application instances that can be
“packed” onto the physical hosts using our placement algorithm;
details later in this section). The total time consists of the time
to compute corresponding flow table entries and paths in the net-
work. The controller would additionally need to install the flow
table entries in the appropriate switches — this time is not captured
in our experiments, but is expected to take less than 10ms per flow
entry [46]. From the figure, we observe that it takes about 120s in
total to instantiate the virtual network services for the 270K VMs in
the cloud. This delay is relatively small when considering the over-
all service provisioning time, including virtual machine provision-
ing. For example, experiments in Amazon EC2 showed that provi-
sioning 20 small virtual machine instances can take 180s, and that
this time grows with the number of instances being deployed [41].
We found similar scaling properties for other reference applica-
tions and application mixes, as well as for the Fat-Tree interconnect
(omitted for brevity).

7.4.3  Failure Handling

When data center elements such as links, switches, or hosts fail,
the virtual networks must be remapped and re-installed to restore
service. In this series of experiments, we measure the performance
of the network controller in re-establishing functional virtual net-
works in data centers of varying sizes when different components
fail. For simplicity, we focus on a scenario consisting of large in-
teractive application instances and a 3-tier network topology.

In our failure model, a link, switch, or host is randomly selected
to fail. We measure the time taken by CloudNaaS’s network con-
troller to recalculate the configuration state to be pushed to the de-
vices. We ignore the time to receive failure notifications which is
bounded by the frequency of device polling, and also the time to
install state in the device which is, again, assumed less than 10ms.

TR

0.9 ]

0.8 ]

0.7 | E

0.6 [ ; 1
w

g o5f e E

04 | ¥ E

0.3 ]

0.2 - Small —— 1

Fatl h
L *k Medium -]
0.01 0.1 1 10
Recovery Time (in Seconds)

w ]
a
o

Recovery Time (in Seconds)

(b)

Figure 10: Virtual network segment recomputation time under
link failures for large interactive applications on a tree topol-
ogy with 30K hosts. (a) Without caching and precomputation
(b) With caching and precomputation of core and aggregation
devices.

We run each experiment around 150 times to generate the distribu-
tion of re-computation times.

Link and Switch Failures. To understand the impact of link
failures, we randomly select and delete a link from the topology,
triggering the network controller to deprovision paths that use the
failed link, and reprovision them on alternate links. We examine the
recovery time for links with and without our precomputation and
caching. We observe in Figure that without precomputation
and caching the median recovery time for the largest cloud with
270K VMs is 2s, and the worst case is under 10s. With caching
and precomputation, we observe that the median recovery time for
the largest cloud is reduced to 0.2s. In examining the recovery
time for device failures, not shown here due to space constraints,
we observe that these numbers are in general an order of magnitude
worse than the link failure numbers. We note that by extending the
precomputation algorithm to precompute for the edge switches we
can reduce the recovery for all links and device to a constant time
of under 0.2 second (Cache look-up time). However, doing this will
require allocating more memory for the cache.

Host Failures. In our experiments with host failures, we ran-
domly select a host to fail and delete it from the topology. This
triggers the cloud controller to update the state of the affected VMs
and notify the network controller to remap the corresponding vir-
tual networks. Figure [Tl shows the time for the network controller
to do this; we can see that, compared to provisioning, this take very
little time. While provisioning requires searching the graph and
calculating paths, remapping requires only a look up in a data struc-
ture followed by a control message sent to the appropriate switches
(Section E).

8. ADDITIONAL CONSIDERATIONS

In this section, we briefly address some additional considerations



1 T T
3
Fa—
N ]
a
o
02 largeCloud —+—
MedCloud ----x----
0 ) ) SmallCloud ---*
0 0.05 0.1 0.15 0.2

Deprovision Time (in Seconds)

Figure 11: Virtual network deprovision time under host fail-
ures for large interactive applications on a tree topology with
30K hosts.

toward a more complete network services platform offering in the
cloud. As we do not lay out details of how these additional services
can be implemented in this limited space, they should be considered
as subjects for future work.

OpenFlow Programmable Devices In our current prototype we
use Openflow switches as the programmable devices within the net-
work. However, our design is not tied to the OpenFlow platform
and API. As stated earlier, the choice of programmable devices af-
fects the set of configuration commands that are generated, how
these commands are pushed to the devices, and how the effects of
the commands are undone from the devices. However, we believe
irregardless of the type of programmable devices used, these de-
vices will have physical limitations and the general optimizations
described in section &l will be required to overcome such restric-
tions.

Furthermore, unlike other programmable devices, the OpenFlow
platforms offers the advantage of easy deployment. Many device
vendors including Cisco, HP, and NEC have developed firmware
patches that transform existing data center grade switches into Open-
Flow enabled switches. Given these firmware patches, we believe
that out current implementation of CloudNaa$S can be easily adopted
and deployed by many existing cloud providers.

Managing Cloud Network Services: In this paper we described
CloudNaaS network services and primitives related primarily to the
data plane, e.g., traffic isolation, middleboxes, and QoS. An impor-
tant additional set of services are also needed for enterprise tenants
to monitor and manage the cloud virtual network, similar to what
they could do in a traditional data center. For example, we can ex-
tend the CloudNaaS framework to allow users to attach monitoring,
reporting, and logging functions to virtual network devices. The
management data can be processed and made available as a contin-
uous feed, or uploaded to a management application in the cloud
that provides the ability to visualize the virtual network operations.
Careful optimization is of course necessary to ensure privacy of the
network data, and to limit the overhead of collecting and transmit-
ting management data.

WAN Extension: Although cloud providers do not typically con-
trol the wide-area portion of the network, enhanced network ser-
vices that extend from the cloud into the WAN would further benefit
applications, particularly those that need to integrate with enterprise-
side service. This could be achieved by integrating the virtual
network in the cloud with a cooperating ISP or overlay network
provider. The CloudNaaS framework can be extended to support
new primitives that identify endpoints outside the cloud that are to
be integrated. The network controller can negotiate an overlay path,
for example, to provision wide-area paths that provide specific ser-

vices such as service differentiation, WAN acceleration, data dedu-
plication, encryption, etc.

9. CONCLUSION

We presented CloudNaaS, a network service platform that en-
ables tenants to leverage many of the network functions needed
for production enterprise applications to run in IaaS clouds. Our
prototype design and implementation of CloudNaaS leverages pro-
grammable network devices and supports isolation, middlebox func-
tions, and Quality-of-Service, and helps minimize application rewrites
and reconfigurations by allowing applications to use existing ad-
dress spaces. CloudNaaS primitives are specified as part of a cloud
deployment, and are installed in the network data plane automat-
ically, as the corresponding virtual servers are instantiated. We
demonstrated the flexibility of CloudNaaS in supporting a num-
ber of network functions in the cloud using a typical multi-tier
application model in our lab testbed with commercial OpenFlow-
enabled network devices. We showed how fine-grained access con-
trol, VLAN-based isolation, service differentiation, and middlebox
interposition can be easily specified and deployed in several scenar-
ios. We also showed that CloudNaaS performs well in the face of
large numbers of provisioning requests, and network and host dy-
namics. We showed that our optimizations for VM placement and
for forwarding table aggregation help in making more effective use
of the resources of the cloud’s physical hosts and network devices,
thus helping the cloud scale to support a multitude of enterprise
applications.
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