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Abstract: Network functions virtualization (NFV) allows
operators to employ NF chains to realize custom poli-
cies, and dynamically add instances to meet demand or for
failover. NFs maintain detailed per- and cross-flow state
which needs careful management, especially during dynamic
actions. Crucially, state management must: (1) ensure NF
chain-wide correctness and (2) have good performance. To
this end, we built CHC, an NFV framework that leverages
an external state store coupled with state management al-
gorithms and metadata maintenance for correct operation
even under a range of failures. Our evaluation shows that
CHC can support ⇠10Gbps per-NF throughput and < 0.6µs
increase in median per-NF packet processing latency, and
chain-wide correctness at little additional cost.

1 Introduction

NFV vastly improves network management. It allows oper-
ators to implement rich security and access control policies
using NF chains [5, 14, 10, 6, 1]. Operators can overcome
NF failure and performance issues by spinning up additional
instances, and dynamically redistributing traffic [15, 29].

To be applicable to enforcing policies correctly, NFV must
provide chain output equivalence (COE): given an input
packet stream, at any point in time, the collective action
taken by all NF instances in an NFV chain (Figure 1a) must
match that taken by an hypothetical equivalent chain with in-
finite capacity always available single NFs (Figure 1b). COE
must hold under dynamics: under NF instance failures/slow-
downs, traffic reallocation for load balancing/elastic scaling,
etc. Given that NFV is targeted for cloud and ISP deploy-
ments, COE should not come at the cost of performance.

These goals are made challenging by NFs’ statefulness.
Most NFs maintain detailed internal state that could be up-
dated as often as per packet. Some of the state may be shared
across instances. For example, the IDS instances in Figure 1a
may share cross-flow state, e.g., per port counters. They may
also maintain per-flow state, e.g., bytes per flow, which is
confined to within an instance.
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Figure 1: (a) Example NFV chain with many instances per NF (b) logical
view with infinite capacity NFs/links for COE.

Ensuring COE under statefulness requires that, as traffic
is being processed by many instances, or being reassigned
across instances, updates to state at various NFs must happen
in a “correct” fashion. For example, shared state updates due
to packets arriving at IDS1 must be reflected at IDS2; like-
wise, when reallocating a flow, say f1, from IDS1 to 2, f1’s
state should be updated due to in-flight f1 packets arriving
at both IDSes 1 and 2. Finally, how the state is updated can
determine an NF’s action. For example, the off-path Trojan
detector [12] in Figure 2 relies on knowing the exact order
in which connection attempts were made. When there is a
discrepancy in the order observed w.r.t. the true order – e.g.,
due to intervening NFs running slow or failing – the Trojan
detector can arrive at incorrect decisions, violating COE.

Many NFV frameworks exist today [29, 25, 26, 20, 11,
17, 32]. Several of them focus on managing NF state mi-
gration or updates upon traffic reallocation during scaling or
failover [29, 25, 26, 16, 32]. However, they either violate
COE, or suffer from poor performance (or both).

First, most systems ignore shared state [29, 25, 26, 20].
They assume that NFs do not use cross-flow state, or that
traffic can be split across NF instances such that sharing is
completely avoided. Unfortunately, neither assumption is
valid; many NFs [21, 30, 8, 22] have cross-flow state, and
the need for fine-grained traffic partitioning for load balanc-



ing can easily force cross-flow state sharing across instances.
Because shared state is critical to NF processing, ignoring
how it is updated can lead to inconsistent NF actions under
dynamics, violating COE (§2.2).

Second, existing approaches cannot support chain-level
consistency. They cannot ensure that the order of updates
made to an NF’s state (e.g., at the Trojan detector [12] in Fig-
ure 2) are consistent with the input packet stream. This in-
ability can lead to NFs arriving at incorrect decisions, e.g.,
missing out on detecting attacks (as is the case in Figure 2),
violating COE. Similar issues arise in the inability to cor-
rectly suppress spurious duplicate updates observed at an NF
due to recovery actions at upstream NFs (§2.1).

Finally, existing frameworks impose high overhead on
state maintenance, e.g., 100s of milliseconds to move per-
flow state across instances when traffic is reallocated (§2.2).

We present a new NFV framework, CHC (“correct, high-
performance chains”), which overcomes these drawbacks.
For COE, CHC uses three building blocks. CHC stores NF
state in an in-memory external state store. This ensures
that state continues to be available after NF instances’ re-
cover from failure, which is necessary for COE. Second, it
maintains simple metadata. It adds a “root” at the entry
of a chain that: (1) applies a unique logical clock to every
packet, and (2) logs packets whose processing is still ongo-
ing in the chain. At the store and NFs, CHC tracks packet
clocks along with update operations each NF issues. Clocks
help NFs to reason about relative packet ordering irrespec-
tive of intervening NFs’ actions, and, together with datastore
logs, help suppress duplicates. We develop failure recovery
protocols which leverage clocks and logs to ensure correct
recovery from the failure. In the extended version of our
paper [18], we prove their correctness by showing that the
recovered state is same as if no failure has occurred, thereby
ensuring COE.

State externalization can potentially slow down perfor-
mance of state reads/writes. Thus, for performance, CHC
introduces NF-aware algorithms for shared state manage-
ment. It uses scope-awareness of state objects to partition
traffic so as to minimize cross-instance shared state coordi-
nation. It leverages awareness of the state access patterns of
NFs to implement strategies for shared state caching. Be-
cause most NFs today perform a simple set of state update
operations, CHC offloads operations to the state store, which
commits them in the background. This speeds up shared
state updates – all coordination is handled by the store which
serializes the operations issued by multiple NF instances.

We built a multi-threaded C++ prototype of CHC along
with four NFs. We evaluate this prototype using two campus-
to-EC2 packet traces. We find that CHC’s state management
optimizations reduce latency overhead to 0.02µs - 0.54µs
per packet compared to traditional NFs (no state external-
ization). CHC failover offers 6X better 75%-ile per packet
latency than [29]. CHC is 99% faster in updating strongly

consistent shared state, compared to [16]. CHC obtains
per-instance throughput of 9.42Gbps – same as maximum
achievable with standalone NFs. CHC’s support for chain-
wide guarantees adds little overhead, but eliminates false
positives/negatives seen when using certain security NFs in
existing NFV frameworks. Thus, CHC is the only frame-
work to support COE, and it does so at state-of-the-art per-
formance.

2 Motivation

NFV allows operators to connect NFs together in chains,
where each type of NF can use multiple instances to process
input traffic demand. Use of software NFs and SDN [24]
means that when incoming traffic load spikes, or process-
ing is unbalanced across instances, operators can scale up
by adding NF instances and/or reallocate flow processing
across instances. Furthermore, hot-standby NFs can be used
to continue packet processing when an instance crashes. Due
to these benefits, cloud providers and ISPs are increasingly
considering deploying NFV in their networks [4].

2.1 Key Requirements for COE
NFV chains are central to security and compliance poli-
cies, they must always operate correctly, i.e., ensure COE
(§1). Ensuring COE is challenging: (1) NFs are stateful;
they maintain state objects for individual and group of flows.
These state objects may be updated on every packet and the
value of these state objects may be used to determine the ac-
tion on the packet. This requires support for fine gained NF
state management. (2) In addition to this, COE also require
that the per-NF and chain-wide state updates are consistent
with the input packet stream. (3) Since chaining may create a
dependency between the action taken in upstream instances
and its downstream instances, it is important that the impact
of a local action taken for failure recovery should be isolated
from the rest of the chain. These challenges naturally map to
three classes of requirements for supporting COE:

State Access: The processing of each packet requires access
to up-to-date state; thus, the following requirement are nec-
essary to ensure COE under dynamics:
• (R1) State availability: When an NF instance fails, all

state it has built up internally disappears. For a failover in-
stance to take over packet processing it needs access to the
state that the failed instance maintained just prior to crashing.
• (R2) Safe cross-instance state transfers: When traf-

fic is reallocated across NF instances to rebalance load, the
state corresponding to the reallocated traffic (which exists at
the old instance where traffic was being processed) must be
made available at the reallocated traffic’s new location.

Consistency: Action taken by a given NF instance may de-
pend on shared-state updates made by other instances of the
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Figure 2: Illustrating violation of chain-wide ordering.

same NF, or state actions at upstream NFs in the chain. En-
suring that said NF instances’ actions adhere to COE boils
down to following requirements:

• (R3) Consistent shared state: Depending on the nature
of an NF’s state, it may not be possible to completely avoid
sharing a subset of it across instances, no matter how traffic is
partitioned (e.g., port counts at the IDSes in Figure 1a). Such
state needs to be kept consistent across the instances that
are sharing; that is, writes/updates made locally to shared
state by different instances should be executed at all other
instances sharing the state in the same global order. Other-
wise, instances may end up with different views of shared
state leading to inconsistent and hence incorrect actions.

• (R4) Chain-wide ordering: Some NFs rely on knowing
the order in which traffic entered the network. Consider Fig-
ure 2. The off-path Trojan detector [12] works on a copy of
traffic and identifies a Trojan by looking for this sequence
of steps: (1) open an SSH connection; (2) download HTML,
ZIP, and EXE files over an FTP connection; (3) generate IRC
activity. When a Trojan is detected, the network blocks the
relevant external host. A different order does not necessarily
indicate a Trojan. It is crucial that the Trojan detector be able
to reason about the true arrival order as seen at traffic input.

In Figure 2, either due to one of the scrubbers being
slowed down due to resource contention or recovering from
failure [29], the order of connections seen at the Trojan de-
tector may differ from that in the traffic arriving at the input
switch. Thus, the Trojan detector can either incorrectly mark
Trojan traffic as benign, or vice versa. When multiple in-
stances of the Trojan detector are used, the problem is com-
pounded because it might not be possible to partition traffic
such that all three flows are processed at one instance.

• (R5) Duplicate suppression: In order to manage strag-
gler NFs, NFV frameworks can adopt the following ap-
proach: (a) deploy clones initialized with the state of a slow
NF instance; (b) use packet replay to bring the clone up to
speed with the straggler’s state since state initialization; and
(c) replicate packets to the straggler and clone (§5.3). De-
pending on when the clone’s state was initialized, replay can
lead to duplicate state updates at the straggler. Also, the
original and clone instances will then both generate dupli-
cate output traffic. Unless such duplicate updates and traf-
fic are suppressed, the actions of the straggler and of down-
stream NFs can be impacted (spurious duplicates may trigger
an anomaly). The need for duplicate suppression also arises
during fault recovery (§5.4).

Isolation: NFs in a chain should not be impacted by failure
recovery of other NFs. Specifically:

• (R6) Safe chain-wide recovery: When NF failures occur
and recovery takes place, it is important that the state at each
NF in the chain subsequent to recovery have the same value
as in the no-failure case. In other words, actions taken during
recovery should not impact the processing, state, or decisions
of NFs upstream or downstream from the recovering NF —
we will exemplify this shortly when we describe failings of
existing systems in meeting this requirement.

The network today already reorders or drops packets. Our
goal is to ensure that NF replication, chaining, and traffic re-
allocation together do not induce artificial ordering or loss
on top of network-induced issues. This is particularly cru-
cial for many important off-path NFs (e.g., DPI engines and
exfiltration checkers) which can be thwarted by artificially
induced reordering or loss.

2.2 Related work, and Our Contributions
A variety of NFV frameworks exist today [29, 16, 17, 25, 26,
20, 23, 11, 9, 28, 14, 32]. We review their drawbacks below.

Incomplete support for correctness requirements:
Most existing frameworks focus on handling requirements
R1 and/or R2. Split/Merge [26], OpenNF [16] and S6 [32]
support cross-instance state transfers (R2). FTMB [29] and
Pico Replication [25] focus on state availability (R1).

More fundamentally, Split/Merge, Pico Replication and
FTMB focus on availability of the state contained entirely
within an NF instance. They either ignore state shared across
instances, or focus on the small class of NFs where such state
is not used. Thus, these frameworks cannot handle R3.

Among existing frameworks, only OpenNF and S6 can
support consistency for shared state (R3), but this comes
at high performance cost. For example, OpenNF imposes
a 166µs per packet overhead to ensure strong consistency!
(§7). Similarly, S6 cannot support frequent updates to
strongly consistent shared state.

Equally crucially, all of the above frameworks focus on a
single NF; they cannot handle chains. Thus, none of them
support chain-wide ordering (R4).

Support for R5 is also missing. StatelessNF [17] and
S6 [32] update shared state in an external store or remote
NF, respectively, but they do not support atomic updates to
all state objects an instance can access. Thus, when a clone
is created to mitigate a straggler off-path NF (as outlined
above), the straggler may have updated other state objects
that are not reflected in the clone’s initialized state. Upon
replay, the straggler can make duplicate state updates (like-
wise, duplicate packets can also arise). For the same reason,
R6 is also violated: when an NF fails over, replaying packets
to bring the recovery NF up to speed can result in duplicate
processing in downstream NFs.

State management performance is poor: FTMB’s peri-
odic checkpointing significantly inflates NF packet process-
ing latency (§7). As mentioned above, OpenNF imposes per-
formance overhead for shared state. The overhead is high
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Figure 3: (a) CHC architecture; (b) Physical chain that CHC runs.

even for cross-instance transfers of per-flow state: this is
because such transfers require extracting state from an in-
stance and installing it in another while ensuring that incom-
ing packets are directed to the state’s new location.

Our contributions: How do we support requirements
R1-R6 while ensuring good state management performance?
Some NFs or operating scenarios may just need a subset of
R1-R6. However, we seek a single framework that meets all
requirements/scenarios because, with NFV becoming main-
stream, we believe we can no longer trade-off general cor-
rectness requirements for performance or functionality (spe-
cific NFs). Thus, we identify basic building blocks and study
how to synthesize them into one framework. We have set
ourselves the ambitious goal of designing a single generic
NFV framework to support all of these requirements, though
some NFs may only need support for a subset of these re-
quirements. Building such a framework is especially chal-
lenging because we must carefully deal with shared state and
NF chaining.

Our system, CHC, has three building blocks (Figure 3a):
We maintain NF state in an in-memory state store external
to NFs ( 1 ; §4). NFs access the store to read/write relevant
state objects. This ensures state availability (R1). The store’s
state object metadata simplifies reasoning about state own-
ership and concurrency control across instances ( 2 ; §4.3).
This makes state transfer safety (R2) and shared state consis-
tency (R3) simple and efficient (§5.1).

We propose NF state-aware algorithms for good state
read/write performance which is a key concern with state ex-
ternalization. These include (§4.3): automatic state scope-
aware traffic partitioning to minimize shared-state coordina-
tion ( 3 ); asynchronous state updates for state that is up-
dated often but read infrequently; this allows packet process-
ing to progress unimpeded ( 4 ); NFs sending update opera-
tions, as opposed to updated state, to the store, which simpli-
fies synchronization and serialization of shared-state updates
( 5 ); scope- and access pattern-aware state caching strate-
gies, which balances caching benefits against making cache
updates immediately visible to other instances ( 6 ).

Finally, we maintain a small amount of metadata – clocks
and logs. We insert per packet logical clocks ( 7 ; §5) which
directly supports cross-instance ordering (R4). We couple
clocks with logs to support duplicate suppression (R5; §5.3)
and COE under failover of NFs and framework components

(R6; §5.4). We log every packet that is currently being pro-
cessed at some NF in the chain ( 8 ). Logged packets are
replayed across the entire chain during failover. At the state
store, we store logical clocks of packets along with the state
updates they resulted in, which aids duplicate suppression.
At each NF, we store packet clocks along with the update op-
erations issued and the most recently read state value ( 9 ).
Together with state store snapshots, these NF-side logs sup-
port COE under datastore recovery.

Though StatelessNF [17] first advocated for externalizing
state, but it has serious issues. Aside from a lack of support
for R4–R6, it lacks atomic state updates: when a single NF
fails after updating some but not all state objects, a failover
NF can boot up with incorrect state! It requires locks for
shared state updates, which degrades performance. Also, it
assumes Infiniband networks for performance.

3 Framework: Operator View

In CHC, operators define “logical” NF chains (such as Fig-
ure 1b) using a DAG API. We elide low level details of the
API, such as how policies are specified, and focus on aspects
related to correctness and performance. Each “vertex” of the
DAG is an NF and consists of operator supplied NF code, in-
put/output, configuration, and state objects. Edges represent
the flow of data (packets and/or contextual output).

The CHC framework compiles the logical DAG into a
physical DAG with logical vertex mapped to one or more
instances (Figure 3b). For example, the IDS in Figure 1b is
mapped to three instances in Figure 3b. The operator can
provide default parallelism per vertex, or this can be deter-
mined at run time using operator-supplied logic (see below).
CHC deploys the instances across a cluster. Each instance
processes a partition of the traffic input to the logical vertex;
CHC automatically determines the traffic split to ensure even
load distribution (§4).

The CHC framework supports chain elastic scaling and
straggler mitigation. Note that the logic, e.g., when to scale
is not our focus; we are interested in high performance state
management and COE during such actions. Nevertheless,
we outline the operator-side view for completeness: opera-
tors must supply relevant logic for each vertex (i.e., scaling1;
identifying stragglers2). CHC executes the logic with input
from a “vertex manager”, a logical entity is responsible for
collecting statistics from each vertex’s instances, aggregating
them, and providing them periodically to the logic.

Based on user-supplied logic, CHC redirects traffic to
(from) scaled up (down) NF instances or clones of strag-
gler NFs. CHC manages state under such dynamic actions
to ensure COE. CHC also ensures system-wide fault toler-
ance. It automatically recovers from failures of NFs or of

1e.g., “when input traffic volume increased by a certain q”
2when an instance processing q% slower than other instances



CHC framework components while always preserving COE.

4 Traffic and State Management

We discuss how CHC processes traffic and manages state.
The framework automatically partitions traffic among NF
instances (§4.1) and manages delivery of packets to down-
stream NFs (§4.2). As packets flow, different NFs process
them and update state in an external store; CHC leverages
several algorithms for fast state I/O; the main challenge here
is dealing with shared state (§4.3).

4.1 Traffic partitioning

CHC performs scope-aware partitioning: traffic from an up-
stream instance is partitioned across downstream instances
such that: (1) each flow is processed at a single instance, (2)
groups of flows are allocated to instances such that most state
an instance updates for the allocated flows is not updated by
other instances, and (3) load is balanced. #1 and #2 reduce
the need for cross-instance coordination for shared state.

In CHC, state scope is a first-class entity. A function
.scope() associated with a vertex program returns a list of
scopes i.e., the set of packet header fields which are used
to key into the objects that store the states for an NF; i.e.,
these are the different granularities at which states can be
queried/updated. CHC orders the list from the most to least
fine grained scope. Suppose the DPI vertex in Figure 1b has
two state objects: one corresponding to records of whether
a connection is successful or not; and another corresponding
to the number of connections per host. The scope for the for-
mer is the 5-tuple (src IP, dst IP, src port, dst port, protocol);
the scope for the latter is src IP.

CHC first attempts to partition traffic at instances imme-
diately upstream (which, for the DPI in Figure 1b would
be the IDSes) based on the most coarse-grained state scope
(for the DPI this is src IP); such splitting results in no state
sharing at the downstream (DPI) instances. However, being
coarse grained, it may result in uneven load across instances.
The framework gathers this information via the (DPI) vertex
manager. It then considers progressively finer grained scopes
and repeats the above process until load is even.

The final scope to partition on is provided in common to
the splitters upstream. The framework inserts a splitter after
every NF instance (Figure 3b). The splitter partitions the
output traffic of the NF instance to instances downstream.

The root of a physical DAG is a special splitter that re-
ceives and splits input traffic. Roots can use multiple in-
stances to handle traffic; in CHC, we fix root parallelism to
some constant R. Network operators are required to statically
partition traffic among the R roots such that the traffic pro-
cessed by a root instance has no overlap in any of the 5-tuple
dimensions with that processed by another instance.

Scope Any Per-flow Cross-flow Cross-flow
Access
pattern

Write mostly,
read rarely

Any Write rarely
(read heavy)

Write/read
often

Non-blocking
ops. No
caching

Caching \w
periodic non-
blocking flush

Caching \w
callbacks

Depends upon
traffic split.
Cache, if split
allows; flush
periodically

Table 1: Strategies for state management performance

4.2 Communication

Inter-NF communication is asynchronous and non-blocking.
Each NF’s outputs are received by the CHC framework
which is responsible for routing the output to downstream
instances via the splitter. The framework stores all the out-
puts received from upstream instances in a queue per down-
stream instance; downstream instances poll the queue for in-
put. This approach offers three benefits: (a) upstream in-
stances can produce output independent of the consumption
rate of downstream instances, (b) the framework can operate
on queue contents (e.g., delete messages before they are pro-
cessed downstream), which is useful for certain correctness
properties, e.g., duplicate suppression (§5), (c) user logic can
use persistent queues to identify stragglers/uneven load.

4.3 State Maintenance

CHC externalizes NF state and stores it in an external
distributed key-value datastore. Thus, state survives NF
crashes, improving availability and satisfying requirement
R1 (§2). All state operations are managed by the datastore
(Figure 3a). As described below, CHC incorporates novel
algorithms and metadata to improve performance (Table 1).

State metadata: The datastore’s client-side library ap-
pends metadata to the key of the state that an NF instance
stores. This contains vertex ID and instance ID, which are
immutable and are assigned by the framework. In CHC, the
key for a per-flow (5 tuple) state object is: vertex ID + in-
stance ID + obj key, where obj key is a unique ID for the
state object. The instance ID ensures that only the instance
to which the flow is assigned can update the corresponding
state object. Thus, this metadata simplifies reasoning about
ownership and concurrency control. Likewise, the key for
shared objects, e.g., pkt count, is: vertex ID + obj key. All
the instances of a logical vertex can update such objects.
When two logical vertices use the same key to store their
state, vertex ID prevents any conflicts.

Offloading operations: Most NFs today perform sim-
ple operations on state. Table 2 shows common examples.
In CHC, an instance can offload operations and instruct the
datastore to perform them on state on its behalf (developed
contemporarily with [32]). Developers can also load custom
operations. The benefit of this approach is that NF instances
do not have to contend for shared state. The datastore seri-
alizes operations issued by different instances for the same
shared state object and applies them in the background (In



Operation Description
Increment/ decre-
ment a value

Increment or decrement the value stored
at key by the given value.

Push/pop a value
to/from list

Push or pop the value in/from the list
stored at the given key.

Compare and update Update the value, if the condition is true.
Table 2: Basic operations offloaded to datastore manager

[18], we prove that updates will always result in consistent
state.). This offers vastly better performance than the natural
approach of acquiring a lock on state, reading it, updating,
writing it back, and releasing the lock (§7).

Non-blocking updates: In many cases, upon receiving a
packet, an NF updates state, but does not use (read) the up-
dated value; e.g., typical packet counters (e.g., [21, 22, 30])
are updated every input packet, but the updated value is only
read infrequently. For such state that is written mostly and
read rarely, we offer non-blocking updates (Table 1): the
datastore immediately sends the requesting instance an ACK
for the operation, and applies the update in the background.
As a further optimization, NFs do not even wait for the ACK
of a non-blocking operation; the framework handles opera-
tion retransmission if an ACK is not received before a time-
out. If an instance wishes to read a value, the datastore ap-
plies all previous outstanding updates to the value, in the or-
der NFs issued them, before serving the read.

Caching: For all the objects which are not amenable to
non-blocking updates, we improve state access performance
using novel caching strategies that leverage state objects’
scope and access patterns (ready-heavy vs. not).

Per-flow state: CHC’s scope-aware partitioning ensures
that flows that update per-flow state objects are processed
by a single instance; thus, these objects do not have cross-
instance consistency requirements. The datastore’s client-
side library caches them at the relevant instance, which im-
proves state update latency and throughput. However, for
fault tolerance, we require local updates made to cached ob-
jects to be flushed to the store; to improve performance, these
flush operations have non-blocking semantics (Table 1).

Cross-flow state: Cross-flow state objects can be updated
by multiple instances simultaneously. Unlike prior works
that largely ignore such state, CHC supports high perfor-
mance shared state management. Some shared objects are
rarely updated; developers can identify such objects as read-
heavy. CHC (1) caches such an object at the instances need-
ing them; and (2) the client-side library at each of these in-
stances registers a callback with the store, which is invoked
whenever the store updates the object on behalf of another in-
stance. The NF developer does not need to provide callbacks
to update state; they are handled by the client-side library.

The cached objects only serve read requests. Whenever
an (rare) update is issued by an instance - operation is im-
mediately sent to the store, The store applies the operation
and sends back the updated object to the update initiator. At
the same time, the client-side library of other instances re-

ceives callback from the store and updates the locally cached
value (Table 1). We prove this approach results in consistent
updates to shared state in [18]

For other cross-flow objects (not rarely-updated), the data-
store allows them to be cached at an instance only as long
as no other instance is accessing them (Table 1); otherwise,
the objects are flushed. CHC notifies the client-side library
when to cache or flush the state based on (changes to) the
traffic partitioning at the immediate upstream splitter.

For scale and fault tolerance we use multiple datastore
instances, each handling state for a subset of NF instances.
Each datastore instance is multi-threaded. A thread can han-
dle multiple state objects; however, each state object is only
handled by a single thread to avoid locking overhead.

5 Correctness

So far, we focused on state management and its performance.
We also showed how CHC supports requirement R1 (state
availability) by design. We now show how it supports the re-
quirements R2–R6. This is made challenging both by shared
state and by chaining. To support R2-R6, CHC maintain-
s/adds metadata at the datastore, NFs and to packets. We first
describe how the most basic of the metadata – logical packet
clocks and packet logs – are maintained. We describe other
metadata along with the requirements they most pertain to.

Logical clocks, logging: The root (§4.1) attaches with ev-
ery input packet a unique logical clock that is incremented
per packet. The root also logs in the datastore each packet,
the packet clock, and to which immediate downstream in-
stance the packet was forwarded. When the last NF in a chain
is done processing a packet, updating state and generating
relevant output, it informs the CHC framework. CHC sends
a “delete” request with the packet’s clock to the root which
then removes the packet from the log. Thus, at any time, the
root logs all packets that are being processed by one or more
chain instances. When any NF in the chain cannot handle the
traffic rate, the root log builds in size; CHC drops packets at
the root when this size crosses a threshold to avoid buffer
bloat. When multiple root instances are in use (§4.1), we en-
code the identifier of the root instance into the higher order
bits of the logical clock inserted by it to help the framework
deliver “delete” requests to the appropriate root instance.

5.1 R2, R3: Elastic scaling

In some situations, we may need to reallocate ongoing pro-
cessing of traffic across instances. This arises, e.g., in elas-
tic scaling, where a flow may be processed at an “old” in-
stance and reallocated to a “new” scaled up instance. We
must ensure here that the old and new instances operate on
the correct values of per- and cross-flow state even as traffic
is reassigned (requirements R2 and R3).
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Specifically, for cross-flow shared state, we require that:
updates made to the shared state by every incoming packet
are reflected in a globally consistent order irrespective of
which NF instance processed the corresponding packet.

Existing systems achieve this at high overhead:
OpenNF [16] copies shared internal state from/to the
instances sharing it, each time it is updated by an incoming
packet! In contrast, ensuring this property in CHC is
straightforward due to externalization and operation offload-
ing (§4.3): when multiple instances issue update operations
for shared state, the datastore serializes the operations and
applies in the background. All subsequent accesses to the
shared state then read a consistent state value.

Per-flow state’s handling must be correctly reallocated
across instances, too (R2). One approach is to disassociate
the old instance from the state object (by having the instance
remove its instance ID from the object’s metadata) and asso-
ciate the new instance (by adding its instance ID). But, this
does not ensure correct handover when there are in-transit
packets that update the state: even if the upstream splitter im-
mediately updates the partitioning rules and the traffic starts
reaching the new instance, there might be packets in-transit
to, or buffered within, the old instance. If the new instance
starts processing incoming packets right away then state up-
dates due to in-flight/buffered packets may be disallowed by
the datastore (as a new instance is now associated with the
state object) and hence the updates will be lost.

Thus, to satisfy R2, we require: Loss-freeness, i.e., the
state update due to every incoming packet must be reflected
in the state object. Furthermore, some NFs may also need
order-preservation: updates must happen in the order of
packet arrivals into the network.

These properties are crucial for off-path NFs, e.g., IDS.
Such NFs cannot rely on end-to-end retransmissions to re-
cover from lost updates induced by traffic reallocation [16].
Similarly, they may have to process packets in the order in
which they are exchanged across two directions of a flow,
and may be thwarted by a reordering induced by reallocation
(resulting in false positives/negatives).

Figure 4 shows the sequence of steps CHC takes for R2:
1 The splitter marks the “last” packet sent to the old in-

stance to inform the old instance that the flow has been
moved. This mark indicates to the old instance that it should
flush any cached state associated with the particular flow(s)
to the datastore and disassociate its ID from the per flow
state, once it has processed the “last” packet. 2 The splitter

also marks the “first” packet from the traffic being moved
to the new instance. 3 When the new instance receives
the “first” packet, it tries to access the per flow state from
the datastore. If the state is still associated with the old in-
stance ID, it registers a callback with the datastore to be noti-
fied of metadata updates. 4 The new instance starts buffer-
ing all the packets associated with the flow which is being
moved. 5 After processing the packet marked as “last”, the
old instance flushes the cached state and updates the meta-
data to disassociate itself from the state. 6 The datastore
notifies the new instance about the state handover. 7 The
new instance associates its ID with the state, and flushes its
buffered packets.

The above ensure that updates are not lost and that they
happen in the order in which packets arrived at the upstream
splitter. In contrast, OpenNF provides separate algorithms
for loss-freeness and order-preservation; an NF author has
the arduous task of choosing from them!

Note also that packets may arrive out of order at a down-
stream instance, causing it to make out-of-order state up-
dates. To prevent this: 8 The framework ensures that pack-
ets of the moved flow emitted by the new instance are not en-
queued at the downstream instance, but instead are buffered
internally within the framework until the packet marked as
“last” from the old instance is enqueued at the new instance.

5.2 R4: Chain-wide ordering
To support R4, we require that: Any NF in a chain should be
able to process packets, potentially spread across flows, in
the order in which they entered the NF chain. CHC’s logical
clocks naturally allow NFs to reason about cross-flow chain-
wide ordering and satisfy R4. E.g., the Trojan detector from
§2.1 can use packets’ logical clocks to determine the arrival
order of SSH, FTP and IRC connections.

5.3 R5: Straggler mitigation
R5 calls for the following: All duplicate outputs, duplicate
state updates, and duplicate processing are suppressed.

A key scenario in which duplicate suppression is needed is
straggler mitigation. A straggler is a slow NF that causes the
entire NF chain’s performance to suffer. We first describe
CHC’s mechanism for straggler mitigation (which kicks in
once user-provided logic identifies stragglers; §3), followed
by duplicate suppression.

Clone and replay: To mitigate stragglers CHC deploys
clones. A clone instance processes the same input as the
original in parallel. CHC retains the faster instance, killing
the other. CHC initializes the clone with the straggler’s latest
state from the datastore. It then replicates incoming traffic
from the upstream splitter to the straggler and the clone.

This in itself is not enough, because we need to satisfy R2,
i.e., ensure that the state updates due to packets that were
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in-transit to the straggler at the time the clone’s state was
initialized are reflected in the state that the clone accesses. To
address this, we replay all logged packets from the root. The
root continues to forward new incoming packets alongside
replayed ones. The clone processes replayed traffic first, and
the framework buffers replicated traffic. To indicate end of
replay traffic, the root marks the “last” replayed packet (this
is the most recent logged packet at the time the root started
replaying). When replay ends (i.e., the packet marked “last”
was processed by the clone), the framework hands buffered
packets to the clone for processing.

Given the above approach for straggler mitigation, there
are three forms of duplicates that can arise. CHC suppresses
them by maintaining suitable metadata.

1. Duplicate outputs: Replicating input to the clone re-
sults in duplicate outputs. Here, the framework suppresses
duplicate outputs associated with the same logical clock at
message queue(s) of immediate downstream instance(s).

2. Duplicate state updates: Some of the replayed pack-
ets may have already updated some of the stragglers’ state
objects. For example, an IDS updates both the total packet
count and the number of active connections per host. A clone
IDS may have been initialized after the straggler updated the
former but not the latter. In such cases, processing a replayed
packet can incorrectly update the same state (total packet
count) multiple times at the straggler (Figure 5a). To address
this, the datastore logs the state value corresponding to each
state update request issued by any instance, as well as the
logical clock of the corresponding packet. This is only done
for packets that are currently being processed by some NF in
the chain. During replay, when the straggler or clone sends
an update for a state object, the datastore checks if an update
corresponding to the logical clock of the replayed packet has
already been applied; if so, the datastore emulates the execu-
tion of the update by returning the value corresponding to the
update (Figure 5b). In [18], we describe how CHC handles
non-deterministic state update operations.

3. Duplicate upstream processing: NFs upstream from
the clone/straggler would have already processed some of
the in-transit packets. In such cases, reprocessing replayed
packets leads to incorrect actions at upstream NFs (e.g., an
IDS may raise false alarms). To address this, each replayed
packet is marked and it carries the ID of the clone where it
will be processed. Such packets need special handling: the

intervening instances recognize that they are not suspicious
duplicates; if necessary, the instances read the store for state
corresponding to the replayed packet, make any needed mod-
ifications to the packet’s headers, and produce relevant out-
put; the instances can issue updates to state, too, but in such
cases the datastore emulates updates as before. The clone’s
ID is cleared once it processed the packet.

5.4 R6: Safe Fault Recovery
Our description of R6 in §2 focused on NF failures; however,
since CHC introduces framework components, we general-
ize R6 to cover other failures as well. Specifically, we require
the following general guarantee:

Safe recovery Guarantee: When an NF instance or a
framework component fails and a recovery occurs, we must
ensure that the state at each NF in the chain has the same
value as under no failure.

We assume the standard fail-stop model, that a machine/n-
ode can crash at any time and that the other machines/nodes
in the system can immediately detect the failure.

First, we show how CHC leverages metadata to handle the
failure of individual components. Then, we discuss scenarios
involving simultaneous failure of multiple components.

NF Failover: When an NF fails, a failover instance takes
over the failed instance’s processing. The datastore man-
ager associates the failover instance’s ID with relevant state.
Packet replay brings state up-to-speed (from updates due to
in-transit packets). Similar to cloning (§5.3), we suppress
duplicate state updates and upstream processing.

Since “delete” requests are generated after the last NF is
done processing a packet, failure of such an NF needs spe-
cial handling: consider such an instance T failing after gen-
erating an output packet for some input packet P, but before
the framework sends a “delete” request for P. When P is re-
played, T’s failover instance produces output again, result-
ing in duplicate packets at the receiving end host. To pre-
vent this, for the last NF in the chain, our framework sends
the “delete” request for P before the NF generates the output
packet. If the NF fails before the “delete” request, then P will
be replayed, but this does not result in duplicate downstream
processing since the NF did not generate output. If the NF
fails after the “delete” request but before generating output,
then P is not replayed, and hence the end host will not receive
any output packet corresponding to P. To the host, this will
appear as a packet being dropped by the network, causing P
to be retransmitted from the source and resulting in correct
overall behavior. In [18], we show that using this protocol
an NF instance recovers with state similar to that under no
failure.

Non-blocking operations: Non-blocking updates, where
NF instances don’t wait for ACKs, instead relying on the
framework to handle reliable delivery, can introduce the fol-
lowing failure mode: a instance may fail after issuing state
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Figure 6: Recovery under non-blocking operations. Consider a packet Pi

which is processed by NFN, followed by NFM, the last NF in the chain. NFN
and NFM update objects ob jY and ob jZ , respectively.

update but before the update is committed and an ACK was
received. In such cases, to ensure R6, we need that the frame-
work must re-execute the incomplete update operation.

Suppose an instance N fails after processing packet Pi (i
is the logical clock) but before the corresponding state up-
date operation Ui

N,ob j (ob j is the state object ID) completes.
Pi may have induced such operations at a subset of NF in-
stances {N} along the chain. A natural idea to ensure the
above property is to replay packets from the root to repro-
duce Ui

N,ob j at various N’s. For this, however, Pi must be
logged and should not have been deleted. If Pi is deleted it
can’t be replayed.

We need to ensure Pi continues to be logged as long as
there is some N for which Ui

N,ob j is not committed. Our ap-
proach for this is shown in Figure 6: 1 Each packet carries
a 32-bit vector vi (object ID and instance ID; 16b each) that
is initialized to zero. Each NF instance where processing
the packet resulted in a state update XORs the concatena-
tion of its ID and the corresponding state objects’ IDs into
the bit vector. 2 When committing a given NF’s state up-
date, the state store signals to the root the clock value of the
packet that induced the update as well as the concatenated
IDs. 3 The last instance sends the final vector along with
its “delete” request to the root. 4 When a delete request and
the final vector are received, the root XORs the concatenated
IDs with the concatenated IDs reported by each signal from
the state store in step 2. If the result is zero, this implies that
updates induced by the packet at all NF instances {N} were
committed to the store; the root then proceeds to delete the
packet from the log. Otherwise, the packet updated state at
some NF, but the NF has not yet reported that the state was
committed; here, the root does not delete the packet.

Root: To ensure R6 under root failover, we need that a
new root must start with the logical clock value and current
flow allocation at the time of root failure. This is so that the
new root processes subsequent packets correctly. To ensure
this, the failover root reads the last updated value of the log-
ical clock from the datastore, and retrieves how to partition
traffic by querying downstream instances’ flow allocation.
The framework buffers incoming packets during root recov-
ery. We prove this approach ensures recovery with a state
similar to that under no failure in [18].

Datastore instance: Recall that different NFs can store
their states in different storage instances (§4.3). This ensures
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Figure 7: Recovering shared state at the datastore. Ik are instances.
Ulogical clock and Rlogical clock represent “update” and “read”.

that store failures impact availability of only a portion of the
overall state being tracked. Now, to ensure R6 under the
failure of a datastore instance, we need that the recovered
state in the new store instance must represent the value which
would have resulted if there was no failure. The recovered
state must also be consistent with the NF instances’ view of
packet processing thus far (i.e., until failure).

To support this property we distinguish between per-flow
and shared state. For the former, we leverage the insight that
all the NFs already maintain an updated cached copy of per-
flow state. If a datastore instance fails, we can simply query
the last updated value of the cached per-flow state from all
NF instances that were using the store.

Recovering shared state is nuanced. For this, we use
checkpointing with write-ahead logging [19]. The datastore
periodically checkpoints shared state along with the meta-
data, “T S”, which is the set of logical clocks of the pack-
ets corresponding to the last state operation executed by the
store on behalf of each NF instance. Each instance locally
writes shared-state update operations in a write-ahead log.
Say the latest checkpoint was at time t and failure happens at
t +d . A failover datastore instance boots with state from the
checkpoint at t. This state now needs to be “rolled forward”
to t +d and made consistent with the NF instances’ view of
packet processing at t +d . Two cases arise:

(Case 1) If NF instances that were using the store instance
don’t read shared state in the d time interval, then to recover
shared state, the framework re-executes state update opera-
tions from the local write-ahead log on behalf of each NF,
starting from the logical clocks included in the metadata T S
in the checkpoint. Recall that in our design the store applies
updates in the background, and this update order is unknown
to NF instances. Thus, our approach ensures that the state
updates upon re-execution match that produced by a plau-
sible sequence of updates that the store may have enforced
prior to failure. This consistency property suffices because,
in Case 1, NFs are not reading shared state in the d interval.

(Case 2) Say an NF instance issues a read between t and
t + d ; e.g., I3 in Figure 7 issues R18. Following the above
approach may lead to an order of re-execution such that the
actual state I3 read in R18 is different from the state in the
store after recovery. To ensure that the store’s state is consis-
tent with all Ik’s current view, the framework must re-execute
operations in such an order that the datastore would have pro-



NF instance Root
Store instance 3⇤ 3⇤

NF instance 3 3

Table 3: Handling of correlated failures (⇤Cannot recover if component and
the store instance storing its state fail together).

duced the same value for each read in [t, t +d ].
To ensure this, on every read operation, the datastore re-

turns T S along with the latest value of the shared state (e.g.,
T S19 is returned with I4’s R19). The instance then logs
the value of the shared state along with the corresponding
T S. Re-execution upon failure then needs to select, among
all T S’s at different instances, the one corresponding to the
most recent read from the store prior to the crash (i.e., T S18,
since R18 in the most recent read; most recent clock does
not correspond to most recent read). How selection is done
is explained shortly; but note that when the framework re-
executes updates starting from the clock values indicated by
this selected T S that would bring the store in sync with all
NFs. In our example, T S18 is the selected T S; we initial-
ize the store state with the value in the corresponding read
(R18). From the write-ahead log of each NF, the framework
re-executes update operations that come after their corre-
sponding logical clocks in T S18. At instance I1, this is the
update after U15, i.e., U35. At I3 and I4 these are U23 and
U32, respectively. Shared state is now in sync with all NFs.

T S selection works as follows: first we form a set of all the
T S’s at each instance, i.e., Set = {T S18,T S19,T S27

}. Since
the log of operations at an instance follows a strict clock or-
der we traverse it in the reverse order to find the latest update
operation whose corresponding logical clock value is in Set.
For example, if we traverse the log of I1, we find that the log-
ical clock of U15 exists in Set. After identifying such a log-
ical clock value, we remove all the entries from Set which
do not contain the particular logical clock value (such T Ss
cannot have the most recent read); e.g., we remove T S19 as
it does not contain logical clock 15. Similarly, we remove
T S27, after traversing I2’s log. Upon doing this for all in-
stances we end up selecting T S18 for recovery. In [18], we
prove that using this protocol the store recovers with state
similar to that under no failure.

Correlated failures: Using the above approaches, CHC
can also handle correlated failures (Table 3) of multiple NF
instances, root, and storage instances. However, CHC cannot
withstand correlated failure of a store instance with any other
component that has stored its state in that particular instance.
Replication of store instances can help recover from such
correlated failures, but that comes at the cost of increasing
the per packet processing latency.

6 Implementation

Our prototype consists of an execution framework and a
datastore, implemented in C++. NFs runs in LXC contain-
ers [3] as multithreaded processes. NFs are implemented

NF Description of state object Scope; access pattern
Available ports Cross-flow; write/read often

NAT Total TCP packets Cross-flow; write mostly, read rarely
Total packets Cross-flow; write mostly, read rarely
Per conn. port mapping Per-flow; write rarely, read mostly

Trojan
detector

Arrival time of IRC, FTP and
SSH flows for each host

Cross-flow; write/read often

Portscan
detector

Likelihood of being mali-
cious (per host)

Cross-flow; write/read often

Pending conn. initiation req.
along with its timestamp

Per-flow; write/read often

Load Per server active # of conn. Cross-flow; write/read often
balancer Per server byte counter Cross-flow; write mostly, read rarely

Conn. to server mapping Per-flow; write rarely, read mostly

Table 4: NFs and description of their state objects

using our CHC library that provides support for input mes-
sage queues, client side datastore handling, retransmissions
of un-ACK’d state updates (§4.3), statistics monitoring and
state handling. Packet reception, transmission, processing
and datastore connection are handled by different threads.

For low latency, we leverage Mellanox messaging ac-
celerator (VMA) [31] which enables user-space network-
ing with kernel bypass similar to DPDK [13]. In addition
to this, VMA also supports TCP/UDP/IP networking proto-
cols and does not require any application modification. Even
though we use VMA, we expect similar performance with
other standard kernel bypass techniques. Protobuf-c [7] is
used to encode and decode messages between a NF instance
and the datastore. Each NF instance is configured to con-
nect to a “framework manager” to receive information about
it’s downstream instances (to which it connects via tunnels),
datastore instances and other control information.

The framework manager can dynamically change the NF
chain by instantiating new types of NFs or NF instances and
updating partitioning information in upstream splitters3. Our
datastore implements an in-memory key-value store and sup-
ports the operations in Table 2. We reimplemented four NFs
atop CHC. Table 4 shows their state objects, along with the
state’s scope and access patterns.

NAT: maintains the dynamic list of available ports in the
datastore. When a new connection arrives, it obtains an avail-
able port from the datastore (The datastore pops an entry
from the list of available ports on behalf of the NF). It then
updates: 1) per-connection port mapping (only once) and, 2)
(every packet) L3/L4 packet counters.

Portscan detector [27]: detects infected port scanner
hosts. It tracks new connection initiation for each host and
whether it was successful or not. On each connection at-
tempt, it updates the likelihood of a host being malicious,
and blocks a host when the likelihood crosses a threshold.

Trojan detector: implementation here follows [12].
Load balancer: maintains the load on each backend

server. Upon a new connection, it obtains the IP of the least
loaded server from the datastore and increments load. It
then updates: 1) connection-to-server mapping 2) per server
#connections and, 3) (every packet) per server byte counter .

3based on statistics from vertex managers



Figure 8: 5%ile, 25%ile, median, 75%ile and 95%ile pkt processing times.
(T = Traditional NF, EO = Externalized state operations, C = with caching,
NA = without waiting for the ACK)

7 Evaluation

We use two packet traces (Trace{1,2}) collected on the link
between our institution and AWS EC2 for trace-driven eval-
uation of our prototype. Trace1 has 3.8M packets with 1.7K
connections and Trace2 has 6.4M packets with 199K con-
nections. The median packet sizes are 368B and 1434B. We
conducted all experiments with both traces and found the re-
sults to be similar; for brevity, we only show results from
Trace2. We use six CloudLab [2] servers each with 8-core
Intel Xeon-D1548 CPUs and a dual-port 10G NIC. One port
is used to forward traffic, and the other for datastore com-
munication and control messages. To process at 10Gbps,
each NF instance runs multiple processing threads. CHC
performs scope-aware partitioning of input traffic between
these threads. Our datastore runs on a dedicated server.

7.1 State Management Performance
Externalization: We study three models which reflect the
state access optimizations discussed in (§4.3): #1) All state
is externalized and non-blocking operations are used. #2)
Further, NFs cache relevant state objects. #3) Further, NFs
do not wait for ACKs of non-blocking operations to state ob-
jects; the framework is responsible for retransmission (§4.3).
The state objects per NF that benefit from #2 and #3 can
be inferred from Table 1 and Table 4; e.g., for NAT, per-
connection port mapping is cached in #2, and the two packet
counters benefit from non-blocking updates in #3. We com-
pare these models with a “traditional” NF where all state is
NF-local. We study each NF type in isolation first.

Figure 8 shows the per packet processing times. The me-
dian times for traditional NAT and load balancer are 2.07µs
and 2.25µs, respectively. In model #1, this increases by
190.67µs and 109.87µs, respectively, with network RTT
contributing to most of this (e.g., NAT needs three RTTs on
average per packet: one for reading the port mapping and
other two for updating the two counters). We don’t see a
noticeable impact for scan and Trojan detectors (they don’t
update state on every packet).

Relative to #1, caching (#2) further lowers median pro-
cessing times by 111.98µs and 55.94µs for NAT4 and load
balancer. For portscan and Trojan detector, reduces it by
0.54µs and 0.1µs (overhead becomes +0.1µs as compared to

4NAT needs 2 RTTs to update counters as port mapping is cached.

Figure 9: Per packet processing latency with cross-flow state caching

traditional NFs) as CHC caches the cross-flow state. Later,
we evaluate the benefits of cross-flow caching in detail. Fi-
nally, #3 results in median packet processing times of 2.61µs
for NAT (which now needs 0 RTTs on average) and 2.27µs
for load balancer. These represent small overheads compared
to traditional NFs: +0.54µs for NAT, and +0.02µs for the
load balancer (at the median). Note that for portscan and
Trojan detector the performance of #3 is comparable to #2 as
they don’t have any blocking operations.

We constructed a simple chain consisting of one instance
each of NAT, portscan detector and load balancer in se-
quence, and the Trojan detector operating off-path attached
to the NAT. With model #3, the median end-to-end overhead
was 11.3µsec compared to using traditional NFs.

Operation offloading: We compare CHC’s operation of-
floading against a naive approach where an NF first reads
state from the datastore, updates it, and then writes it back.
We turn off caching optimizations. We now use two NAT
instances updating shared state (available ports and coun-
ters). We find that the median packet processing latency of
the naive approach is 2.17X worse (64.6µs vs 29.7µs), be-
cause it not only requires 2 RTTs to update state (one for
reading the state and the other for writing it back), but it
may also have NFs wait to acquire locks. CHC’s aggregate
throughput across the two instances is >2X better.

Cross-flow state caching: To show the performance of
our cross-flow state caching schemes (Table 1; Col 5), we run
the following experiment: we start with a single portscan de-
tector. After it has processed around 212K packets, we add a
second instance and split traffic such that for particular hosts,
captured by the set H , processing happens at both instances.
At around 213K packets, we revert to using a single instance
for all processing. Figure 9 shows the benefits of caching
the shared state. At 212K packets, when the second instance
is added, the upstream splitter signals the original instance
to flush shared state corresponding to hosts 2 H (Table 4).
From this point on, both instances make blocking state up-
date operations to update the likelihood of hosts 2 H being
malicious on every successful/unsuccessful connection ini-
tiation. Thus, we see an increase in per packet processing
latency for every SYN-ACK/RST packet. At packet num-
ber 213K, all processing for H happens at a single instance
which can start caching state again. Thus, the processing la-
tency for SYN-ACK/RST packets drops again, because now
state update operations are applied locally and updates are
flushed in a non-blocking fashion to the store.

Throughput: We measure degradation in per NF through-
put for models #1 and #3 above compared to traditional NFs.



Figure 10: Per instance throughput. (T = Traditional NF, EO = Externalized
state operations, C = with caching, NA = without waiting for the ACK)

Figure 10 shows that the max. per NF throughput for tra-
ditional NFs is around 9.5Gbps. Under model #1, load bal-
ancer and NAT throughput drops to 0.5Gbps. The former
needs to update a byte counter (which takes 1 RTT) on every
packet; likewise, the NAT needs three RTTs per packet. The
port scan and Trojan detectors do not experience throughput
degradation because they don’t update state on every packet.
Model #3 increases throughput to 9.43Gbps, matching tradi-
tional load balancer and NAT. We repeated our experiment
with the aforementioned single-instance NF chain and ob-
served similar maximal performance (9.25Gbps with both
CHC and traditional NFs) in Model #3.

Datastore performance We benchmarked the datastore
using the workload imposed by our state operations. We
used 128bits key and 64bits value to benchmark the datas-
tore. The datastore was running four threads. Each thread
handled 100k unique entries. As discussed in §4.3, state is
not shared between these threads. We found that a single in-
stance of our datastore supports ⇠5.1M ops/s (increment at
5.1M ops/s, get at 5.2M ops/s, set at 5.1M ops/s; Table 2).
The datastore can be easily scaled to support a greater rate of
operations by simply adding multiple instances; each state
object is stored at exactly one store node and hence no cross-
store node coordination is needed.

7.2 Metadata Overhead

Clocks: The root writes packet clocks to the datastore for
fault tolerance. This adds a 29µs latency per packet (domi-
nated by RTT). We optimize further by writing the clock to
the store after every nth packet.5 The average overhead per
packet reduces to 3.5µs and 0.4µs for n = 10,100.

Packet logging: We evaluated two models of logging: 1)
locally at the root, 2) in the datastore. The former offers bet-
ter performance, adding 1µs latency per packet, whereas the
latter adds 34.2µs but is more fault tolerant (for simultaneous
root and NF failures). We also studied the overhead imposed
by the framework logging clocks and operations at NFs, the
datastore logging clocks and state, and the XOR-ing of iden-
tifiers (§5.4); the performance impact for our chain (latency
and throughput overhead) was negligible (< 1%).

XOR check and delete request: (§5.4) XOR checks of
bit vectors are performed asynchronously in the background
and do not introduce any latency overhead. However, ensur-

5After a crash, this may lead the root to assign to a packet an already
assigned clock value. To overcome this issue, the root starts with n + last
update so that clock values assigned to packets represent their arrival order.

Figure 11: State sharing. Figure 12: Fault recovery.

ing the successful delivery of “delete” request to root before
forwarding the packet introduces a median latency overhead
of 7.9µsec. Asynchronous “delete” request operation elimi-
nates this overhead but failure of the last NF in a chain may
result in duplicate packets at the receiver end host.

7.3 Correctness Requirements: R1–R6

R1: State availability: Using our NAT, we compare
FTMB’s [29] checkpointing approach with CHC writing all
state to a store. We could not obtain access to FTMB’s code;
thus, we emulate its checkpointing overhead using a queu-
ing delay of 5000µs after every 200ms (from Figure 6 in
[29]). Figure 12 (with 50% load level) shows that check-
pointing in FTMB has a significant impact: the 75th%-ile la-
tency is 25.5µsec – which is 6X worse than that under CHC
(median is 2.7X worse). FTMB’s checkpointing causes in-
coming packets to be buffered. Because of externalization in
CHC, there is no need for such checkpointing. Also, FTMB
does not support recovery of the packet logger [29]. CHC
intrinsically supports this (§5.4), and we evaluate it in §7.3.

R2: Cross-instance state transfers: We elastically scale
up NAT as follows: we replay our trace for 30s through a
single instance; midway through replay, we reallocate 4000
flows to a new instance, forcing a move of the state corre-
sponding to these flows. We compare CHC with OpenNF’s
loss-free move; recall that CHC provides both loss-freeness
and order preservation. CHC’s move operation takes 97% or
35X less time (0.071ms vs 2.5ms), because, unlike OpenNF,
CHC does not need to transfer state. It notifies the datastore
manager to update the relevant instance IDs. However, when
instances are caching state, they are required to flush cached
state operations before updating instance IDs. Even then,
CHC is 89% better because it flushes only operations.

R3: Cross-instance state sharing: We compare CHC
against OpenNF w.r.t. the performance of strongly consis-
tent shared state updates across NAT instances, i.e., updates
are serialized according to some global order. Figure 11
(with 50% load level) shows that CHC’s median per-packet
latency is 99% lower than OpenNF’s (1.8µs vs 0.166ms).
The OpenNF controller receives all packets from NFs; each
is forwarded to every instance; the next packet is released
only after all instances ACK. CHC’s store simply serializes
all instances’ offloaded operations.

R4: Chain-wide ordering: We revisit the chain in Fig-
ure 2. Each scrubber instance processes either FTP, SSH, or



30%load 50%load
Duplicate packets 13768 34351
Duplicate state updates 233 545

Table 5: Duplicate packet and state update at the downstream portscan
detector without duplicate suppression.

IRC flows. To measure the accuracy of the Trojan detector,
we added the signature of a Trojan at 11 different points in
our trace. We use three different workloads with varying up-
stream NF processing speed: W1) One of the upstream NFs
adds a random delay between 50-100µs to each packet. W2)
Two of the upstreams add the random delay. W3) All three
add random delays. We observed that CHC’s use of chain-
wide logical clocks helps the Trojan detector identify all 11
signatures. We compare against OpenNF which does not of-
fer any chain-wide guarantees; we find that OpenNF misses
7, 10, and 11 signatures across W1–W3.

R5: Duplicate suppression: Here, we emulated a strag-
gler NAT by adding a random per packet delay between be-
tween 3-10µs. A portscan detector is immediately down-
stream from the NAT. CHC launches a clone NAT instance
according to §5.3. We vary the input traffic load. Table 5
shows the number of duplicate packets generated by the NAT
instances under different loads, as well as the number of du-
plicate state updates at the portscan detector – which happen
whenever a duplicate packet triggers the scan detector to spu-
riously log a connection setup/teardown attempt. Duplicate
updates create both false positives/negatives and their inci-
dence worsens with load. No existing framework can detect
such duplicate updates; CHC simply suppresses them.

R6: Fault Tolerance: We study CHC failure recovery.
NF Failure: We fail a single NAT instance and measure

the recovery and per packet processing times. Our NAT per-
forms non-blocking updates without waiting for the frame-
work ACK; here, we use the 32bit vector (§5.4) to enable re-
covery of packets whose non-blocked operations are not yet
committed to the store. To focus on CHC’s state recovery,
we assume the failover container is launched immediately.
Figure 13 shows the average processing time of packets that
arrive at the new instance at two different loads. The average
is calculated over 500µs windows. Latency during recovery
spikes to over 4ms, but it only takes 4.5ms and 5.6ms at 30%
and 50% loads, respectively, for it to return to normal.

Root failure: Recovering a root requires just reading the
last updated logical clock from the datastore and flow map-
ping from downstream NFs. This takes < 41.2µs.

Datastore instance failure: Recovering a datastore in-
stance failure requires reading per-flow state from NFs using
it, and replaying update operations to rebuild shared state.
Reading the latest values of per-flow state is fast. Recov-
ering shared state however is more time-consuming. Fig-
ure 14 shows the time to rebuild shared state with 5 and 10
NAT instances updating the same state objects at a single
store instance. We replayed the state update operation logs
generated by these instances. The instances were processing

Figure 13: Packet proc time. Figure 14: Store recovery.

9.4Gbps of traffic; periodic checkpoints occurred at intervals
of 30ms, 75ms, and 150ms. The recovery time is  388.2ms
for 10 NATs with checkpoints at 150ms intervals. In other
words, a storage instance can be quickly recovered.

8 Conclusion

We presented a ground-up NFV framework called CHC to
support COE and high performance for NFV chains. CHC
relies on managing state external to NFs, but couples that
with several caching and state update algorithms to ensure
low latency and high throughput. In addition, it leverage
simple metadata to ensure various correctness properties are
maintained even under traffic reallocation, NF failures, as
well as failures of key CHC framework components.
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