
Router-Level Spam Filtering Using TCP Fingerprints:
Architecture and Measurement-Based Evaluation

Holly Esquivel
University of Wisconsin -

Madison
1210 W. Dayton St.

Madison, WI 53706-1685

esquivel@cs.wisc.edu

Tatsuya Mori
NTT Service Integration

Laboratories
3-9-11 Midoricho Musashino

Tokyo, Japan 180-8585

mori.tatsuya@lab.ntt.co.jp

Aditya Akella
University of Wisconsin -

Madison
1210 W. Dayton St.

Madison, WI 53706-1685

akella@cs.wisc.edu

ABSTRACT
Email spam has become costly and difficult to manage in recent
years. Many of the mechanisms used for controlling spam are lo-
cated at local SMTP servers and end-host machines. These mech-
anisms can place a significant burden on mail servers and end-host
machines as the number spam messages received continues to in-
crease. We propose a preliminary architecture that applies spam de-
tection filtering at the router-level using light-weight signatures for
spam senders. We argue for using TCP headers to develop finger-
print signatures that can be used to identify spamming hosts based
on the specific operating system and version from which the email
is sent. These signatures are easy to compute in a light-weight,
stateless fashion. More importantly, only a small amount of fast
router memory is needed to store the signatures that contribute a
significant portion of spam.

We present simple heuristics and architectural enhancements for
selecting signatures which result in a negligible false positive rate.
We evaluate the effectiveness of our approach on data sets col-
lected at two different vantage points simultaneously, the Univer-
sity of Wisconsin-Madison and a corporation in Tokyo, Japan over
a one month period. We find that by targeting 100 fingerprint sig-
natures, we can reduce the amount of received spam by 28-59%
with false positive ratio less than 0.05%. Thus, our router-level
approach works effectively to decrease the workload of subsequent
anti-spam filtering mechanisms, such as, DNSBL look up, and con-
tent filtering. Our study also leverages the AS numbers of spam
senders to discover the origin of the majority of spam seen in our
data sets. This information allows us to pin-point effective network
locations to place our router-level spam filters to stop spam close
to the source. As a byproduct of our study, the extracted TCP fin-
gerprints reveal signatures which originate all over the world but
only send spam indicating the potential existence of global-scale
spamming infrastructures.

1. INTRODUCTION
Throughout the world, Internet users are being targeted by spam-

mers. Spam traffic is costly not only on infrastructure entities such
as mail servers but also on end-users. While there are several ap-
proaches to controlling spam, many of these apply spam detection
at local SMTP servers or at a user’s email inbox. In this paper, we
explore the role of network routers in filtering spam email. Filter-
ing spam at routers can help reduce both the network footprint of

CEAS 2009 - Sixth Conference on Email and Anti-SpamJuly 16-17, 2009,
Mountain View, California USA

spam messages, as well as the overhead imposed by spam filtering
on mail servers and end-users.

A key issue in designing router-based spam filters is the cost of
implementing the technique, versus the overall benefits it offers.
We present a preliminary architecture and empirical evaluation of
a router-level filtering system that offers substantial spam filtering
benefits while imposing a minimal load and low implementation
costs on network routers.

Our approach is collaborative in nature. SMTP servers who have
a more complete view of whether an email is spam or not, com-
pute light-weight signatures for spam senders and send signature
updates to network routers periodically. We assume a trust rela-
tionship between the SMTP servers and network routers, as might
exist between the servers and border routers of a single enterprise,
or the mail servers and network routers of an ISP. The routers apply
filtering to all traffic on port 25 and drop traffic matching the stored
signatures.

We consider a list of several candidate signatures that routers
could check against. A good set of signatures requires a small
amount of storage at the routers (and hence can be stored in high-
speed memory such as SRAM), is easy to compute and check against,
and is effective at filtering spam with a negligible false positive ra-
tio. We argue that signatures based on the TCP fingerprint of the
operating system of the email sender fully satisfies the above re-
quirements. The fingerprinting can be done passively without the
sender’s knowledge.

TCP-based operating system fingerprints form the cornerstone
of our router-based approach. There are many advantages to us-
ing TCP fingerprints as signatures: (1) Signatures can be com-
puted based on a single TCP SYN packet destined to the SMTP
port. Thus, signature computation is lightweight and requires no
state maintenance. (2) Since the signature can be computed from
the TCP connection establishment packets, spammers whose signa-
tures match a stored signature can be prevented from establishing
SMTP connections at the onset. (3) Matching TCP fingerprints is
a much simpler task than content-based spam message signature
matching and filtering. As well, numerous regular expressions and
content phrases need not be maintained in order for the filtering
to be effective. (4) Signatures are very few in number and thus,
routers incur very little overhead in storing them. In contrast, IP
address and prefix blacklists can contain millions of entries. Fi-
nally, (5) since our TCP fingerprinting approach is light-weight and
completely stateless, it can precede the other filtering mechanisms.

We address two key challenges that prevail with our router-level
mechanism: How do we identify a candidate set of signatures for
filtering at routers? And what is the overall effectiveness of router-
level filtering given a negligible false positive ratio? We address

these challenges through an empirical study of email andtcpdump
data collected at two different vantage points, the University of
Wisconsin-Madison, USA and a corporation in Tokyo, Japan. We
propose that receiving SMTP servers compute a list of TCP fin-
gerprints observed in the received emails, and the corresponding
ham ratioor the fraction of ham messages received out of the total
amount of email received from all hosts with that particular sig-
nature. Signatures whose ham ratios are below a certain thresh-
old (e.g. 0.001) are pushed to the routers after being observed in
logs for a given amount of time(e.g. a month) and surpassing a
minimum number of emails received. We find that the signatures
of offending operating systems are fairly stable across time. Our
analysis shows that this approach to router-level filtering can filter
28-59% of spam messages in the network with false positive rates
of less than 0.05%.

Our light-weight router-level filtering mechanism is meant to
supplement not supplant existing techniques, in order to reduce the
burden of spam on local entities. Effective signatures reduce the
amount of email that needs to be processed by subsequent anti-
spam mechanisms. Our research discusses the effects of router-
level filtering locally, but it could be applied universally across the
world. Placing light-weight router-level filters strategically through-
out the Internet could reduce the impact of spam worldwide. Al-
though resources to mitigate spam may be adequate in some places,
in others, spam remains a prevalent problem. Places where up-to-
date filters have failed to be installed or users who primarily use
dial-up connections are breeding grounds for spam to reach its in-
tended targets. Given additional monitoring vantage points, a more
comprehensive list of offending signatures could be developed that
would significantly improve the benefits of a system such as ours.
Our work indicates how to collect these signatures effectively.

Our study also leverages the IP addresses of spam senders to dis-
cover the origin of the majority of spam seen in our data sets. From
the IP addresses we find the country from which the email was sent
as well as the Autonomous System (AS) number. This information
allows an ISP to pin point the most effective locations to place our
router-level spam filters to prevent spam from reaching end-users.
The extracted TCP fingerprints reveal signatures which originate
all over the world but only send spam indicating the potential exis-
tence of global-scale spamming infrastructures.

The remainder of this paper is structured as follows. In Sec-
tion 2, we discuss background information and prior studies that are
related to our approach. In Section 3, we present the system archi-
tecture of our router-level filtering technique. Section 4 overviews
the data sets used in this work. In Section 5, we show how to ex-
tract appropriate signatures to be stored in routers and discuss the
performance of the filtration mechanism. In Section 6, we analyze
the origin and robustness of the extracted signatures. Section 7 dis-
cusses various deployment issues. We summarize our work and
outline future directions for this work in Section 8.

2. BACKGROUND
In this section, we first review router-level spam filtering tech-

niques and other commonpre-acceptancefiltering mechanisms,
e.g., DNSBL and greylisting, for spam mitigation. We also review
TCP fingerprinting techniques to see how they are used in the con-
text of spam filtering.

Pre-acceptance filtering tries to derive characteristics of the email
sender that can help in identifying an email as spam. These tests
apply to the initial handshake, prior to message reception. It has
been empirically validated that pre-acceptance filtering works quite
effectively if filters are managed carefully [15]. We note that post-
acceptance filtering is always preceded by pre-acceptance filtering.

Thus, effective and accurate pre-acceptance filtering can signifi-
cantly reduce the load on SMTP servers, and enhance their ability
to identify and thwart spam. Since our TCP fingerprinting approach
is light-weight and completely stateless, it can precede the other
pre- and post-acceptance filtering mechanisms.

2.1 Previous Techniques
Most spam filters are positioned at local SMTP servers or end-

host machines. We observe that few router-level filters exist, as this
research proposes. Deep packet inspection (DPI) is used in router-
level spam filtering schemes in commercial products such as [1].
In this approach, many rule-based scoring and other heuristics are
applied to each message. Although DPI filtering works well, it re-
quires a lot of computational resources; thus, as the number of spam
messages increases the amount of resources available must scale as
well. Another router-level mechanism proposed by Agrawal et al.
in [11], limits the bandwidth of spam flows by separating bulk
streams from other traffic and applying a Bayesian classifier on the
stream to determine if it is spam. Research studies show this ap-
proach to be extremely effective, but it requires the state of all the
incoming SMTP flows to be monitored. Depending on the router
location, the number of unique flows could be in the hundreds of
thousands, thus reducing the overall appeal of such a mechanism.

IP address reputation services are widely used to create pre-
acceptance filtering tools. DNS Blacklist (DNSBL) such as Spamhaus
DNSBL [10] is an example of IP reputation service that can be used
as a tool to detect potential spammers. These services collect and
publish a list of IP addresses that are linked to spamming activity.
These lists can be queried through a DNS interface and used for
spammer detection by network administrators. It is also possible
that a local SMTP server loads the list directly to drop connections
from IP addresses on these lists. However, the number of IP ad-
dresses is generally quite large and variable over time. Thus, it is
not a practical to have a router that implements the entire DNSBL
process inside of it.

Greylisting is another pre-acceptance spam filtering approach,
which rejects initial attempts to deliver a piece of email. Also lo-
cated on SMTP servers, it logstriplets containing the sender’s IP
address, and recipient and sender addresses of the halted email. If
the sender is a legitimate source, it is likely that the sender or mail
server will attempt to resend the email. It will then be matched to
the original entry in the log, resulting in the email being accepted
and subsequent delivery to the recipient being completed. This is
effective since spamming senders generally do not attempt to re-
send messages, because they blindly send to a variety of recipients,
many of which do not exist. We note that greylisting needs to han-
dle and keep track of the state of all incoming SMTP connections;
thus, it is unfeasible to implement this approach at routers.

2.2 TCP Fingerprinting
TCP fingerprinting, also known as operating system (OS) fin-

gerprinting, is used to identify the operating system and version of
a remote host without their knowledge for analysis. Fingerprint-
ing involves observing TCP packets and analyzing packet header
fields. Since different operating systems implement their own TCP
stack differently, a unique signature is created in TCP packets from
each individual operating system (and sometimes each version).

Examples of passive TCP fingerprinting tools arep0f, Ettercap
andSiphon [2, 9, 21]. In this work, we employp0f, which uses a
single TCP SYN or SYN/ACK packet to identify the remote host’s
fingerprint. P0f comes with fingerprints for many different oper-
ating systems and allows one to add fingerprints. Although p0f is
unable to identify all operating systems, it provides a good founda-

tion on which many systems can be fingerprinted.
TCP fingerprinting has already been used in efforts to further

understand the environments in which spam is sent. Ramachan-
dran and Feamster [17] analyzed SMTP traffic destined to their
spam sinkholeserver and found that approximately 95% of the
identified spam-sending hosts were running Windows. Similarly
to Ramachandran et al., we employ the tool p0f and analyze ASN
numbers. Our main differentiating contribution is that we present
an anti-spam filtering architecture, which is able to solely lever-
age TCP fingerprints for spam filtering based on a statistical signa-
ture selection mechanism. While their study analyzes the data col-
lected atspam sinkhole, which only receives spam messages, our
study analyzes twolive email data sets, which include both ham
and spam. This allows us to analyze the fraction of spam/ham seen
from particular signatures as well as the fraction they contribute to
all spam/ham seen. We present similar statistics for the fractions
of spam/ham sent by operating system genres, but our use of the
more fine grain fingerprints is what makes our approach successful
at filtering spam.

Calais et.al [13] proposes a methodology for characterizing email
based on spamming strategies. They group spam messages into
campaigns based on a technique which builds a frequent pattern
tree. This structure is able to capture invariants of the original
spam message content. They found a strong correlation between
various operating systems and types of abuse seen. Li et. al [14]
studied the clustering structures of spammers empirically. They in-
vestigated OS information of the spam host machine, using TCP
fingerprinting. They found that among the total spam messages,
74% of them were sent from Windows, around 10% were from
Linux, about 5% originated from BSD and Solaris machines, and
about 11% were from unclassified hosts. Although not exactly TCP
fingerprinting, Beverly and Sollins [12] proposed a technique to
detect spam based on the transport-layer characteristics of SMTP
flows, i.e., initial RTT estimate, congestion window size, number
of packets, etc. They noticed that the values of these fields typically
differed from that of a legitimate email.

There are several anti-spam mechanisms that adopt TCP finger-
printing to improve spam filtering.Amavisd-newhas provided ap0f
interface toSpamAssassin[8] which utilizesp0f to weight spam
probability scores based on three primary operating systems: Win-
dows, Unix and unrecognized systems [18,20].Milter, which is an
extension to the popular mail transfer agent (MTA) such assend-
mail [7] andpostfix[6], has also provided an interface between the
MTA and p0f, which runs as a daemon [5]. These tools classify
spam into only a handful of operating systems genres, instead of
analyzing more detailed fingerprints as our architecture proposes.

As we shall show in this work, building accurate signatures is
crucial when fingerprinting is used as a technique for spam source
filtration. For example, some signatures that are primarily based
on Windows operating systems exhibit a high fraction of ham mes-
sages. Thus, the naive selection of certain fingerprints, e.g., select-
ing versions of Windows OS, can cause a significant number of le-
gitimate messages to be dropped. For example, a legitimate email
server such as Microsoft Exchange Server could be running on a
version of the Windows OS, whose signature could be penalized
for the bad behavior of other bot-infected hosts that also are running
on that specific version. While many previous studies seemed to be
aware that coarse-grained information could be extracted about a
classifiedsender’s operating system, to the best of our knowledge
none of them paid a lot of attention to both theclassifiedandun-
classifiedsignatures and their characteristics as a whole. Although
the classifiedoperating systems genres, such as Windows, Linux,
FreeBSD, enables us to better understand the chances of a host be-

Figure 1: Architecture for router-level spam filtering.
ing a spam sender, they don’t reveal potentialnewsignatures that
could be associated with a new spamming entities, e.g., spamming
botnet with a dedicated TCP/IP engine.

3. SYSTEM ARCHITECTURE
Our proposed architecture for router-level filtering is simple and

is as illustrated in Figure 1. This protocol is a feedback-based archi-
tecture, where the SMTP server for the network computes a small
list of candidate signatures and pushes signature updates to border
routers on a periodic basis. The initial set of candidate signatures
is constructed over some reasonable amount of time, for example,
a month, and only applies to signatures who have a combined total
of over 2,000 entries in the master log of all incoming connections.
The minimum number of entries can be adjusted to ensure enough
emails have been seen to adequately calculate the ham ratio for a
given signature. As presented later, the feedback loop is crucial
to cope with the introduction of new signatures which may have
sparse locality at start-up.

We assume that the router has a small amount of fast memory
dedicated to storing signature fingerprints and that look ups to the
memory take just a few nano-seconds (current SRAMs offer 5 ns
latency per access). The number of fingerprints is bounded, to en-
sure that memory look-ups meet this requirement. The router runs
TCP header fingerprinting on all incoming TCP SYN packets in
order to compute the fingerprint of each sender. The signature is
hashed for looked up in the set of offending signatures. Assuming
the fingerprints are stored in a hash table, each fingerprint look up
will need one memory access (5 ns). If the signature is found in
the hash table, the SYN packet is immediately dropped, preventing
TCP channel communication establishment. If we prefer a more
relaxed mitigation policy, the matched packets can be throttled by
router instead of dropping all of them.

We also require that the fingerprinting mechanism be installed on
the local SMTP server. The SMTP server fingerprints all incoming
TCP SYN packets in a similar fashion to the router. In contrast with
the router, however, the SMTP server creates a table which tracks
the number of spam and legitimate emails, i.e., ham, received from
senders using that specific operating system signature.

Here we assume that the classification of the email as spam or
ham can be done on the SMTP server with a certain degree of accu-
racy. We use the output of an existing spam filtering software such
as SpamAssassin or other third party commercial software to do

this. We note though that outputs can be error-prone, but these fil-
tering techniques are still useful because of skewed statistics of ex-
tracted signatures. We investigate this property later. If the SMTP
server performs greylisting, this output log is also useful because
we can regard the filtered connections as spam-sending hosts in
general until retransmission is attempted. As we mentioned earlier,
our approach is collaborative in nature. That is, our router-level
filtering mechanism is meant to supplement not supplant existing
techniques.

After identifying the sender’s fingerprint from the TCP SYN
packet, the packet is then dropped or forwarded to the SMTP server
if the signature is not found in the list. The SMTP server accepts
the incoming SMTP connection from the sender and then apply
traditional post-filtering mechanisms. The final outcome is used
to update the spam/ham tally for the corresponding TCP signature
stored at the SMTP server.

The SMTP server tracks this information over a pre-determined
period of time,T , at the end of which, it computes the ham ratio
for the seen signatures. This is simply the number of ham messages
relative to all email messages sent by this particular signature. All
TCP fingerprints for which the ham ratio is less than a threshold,
e.g.,10

−4, are considered to be offending fingerprints. The list of
offending fingerprints is pushed to the router at the end of the time-
periodT and old signatures are flushed from the router. To prevent
the vacillation of certain signatures longer term history would need
to be tracked. We suspect the overhead of storing this information
on a local server would be minimal. If an offending signature was
noted for several months, this signature could be added to a default
list of signatures that would be pushed to the router with every flush
and update. Occasionally it would be necessary to confirm that the
signature was still offending by dropping it back off the list, but this
would need to occur infrequently.

Although signatures can be updated at frequencies ranging from
daily to bimonthly, we anticipate updates will be infrequent since
the addition of new operating systems or versions that alter the
TCP/IP stack are rare. Our system also allows a network admin-
istrator to set an appropriate spam threshold for their own network
to ensure that legitimate traffic is not being filtered. Lower thresh-
olds introduce the possibility of ham messages being discarded,
while very conservative thresholds fail to filter a sufficient amount
of spam. The network operator may want to adjust the spam thresh-
old according to balance between filter accuracy and the conserva-
tion of device resources that are required to run subsequent spam
filtering mechanisms, e.g., DNSBL look up, greylisting, domain
authentication, and content filtering. In Section 5, we present an
analysis of the trade-offs between false positives and false nega-
tives.

One advantage of our architecture is that it continuously moni-
tors signatures. With infrequent updates, it is natural to assume that
a threat could arise in between the updates. The network adminis-
trator could set local policies within the system architecture, which
would alert them of suspect signatures that suddenly send an abnor-
mally high number of spam messages. These signatures could then
immediately be pushed manually by the admin to the router. We
can also leverage anomaly detection techniques to automate this
procedure.

Although our architecture is described as existing on a local ISP
or SMTP server, it is feasible that this specific type of router-level
filtering could be placed at the level of boarder routers. As ex-
plained in Section 5, the origin of spam senders can be discovered
using our techniques, and this information provides us with an idea
of where the placement of spam filters should be to stop spam close
to the source. In order for a feasible deployment of this router-level

mechanism by a regional or backbone ISP, a set of representative
signatures would need to be constructed. In order for this to occur
a subset of local sites would need to betrustedto provide accurate
feedback of the history of signatures seen to a centralized database.
Prior to signature submission, sites would need to conform to a set
of signature scoring standards set by the larger authority. These
standards would undoubtedly need to include what anti-spam scor-
ing mechanism was to be used with what thresholds, and what the
minimum number of emails seen needs to be in order for the ham
ratio to be considered conclusive. Before being added to the cen-
tralized list the larger authority could impose a standard that a min-
imum number of sites must have identified this signature as suspect
to ensure low false positive rates. Like local signature lists, this
centralized list would need to be updated periodically and flushed
accordingly. This would undoubtedly cause extra communication
to occur within the network, but we assume that updates are in-
frequent and that only two messages would need to be sent per
contributing site. One message to report the new signatures to the
central authority, and one message from the central authority with
the new signature list. Finally, this distributed filtering mechanism
could save a lot of unwanted spam traffic that is disseminated to a
number of leaf sites.

Another alternative to our architecture would be to replace the
router with a middle box appliance. When routers are infeasible
choice, being able to implement this mechanism prior to other pre-
and post-acceptance filtering will still provide added benefit, just at
a slightly higher processing cost. Since the focus of this paper is
the original architecture, we leave the evaluation of this alternative
for future work.

4. DATA DESCRIPTION
The data used in this study was collected at two vantage points

located at different organizations and countries in April 2008. The
first was collected at the University of Wisconsin - Madison, USA.
The second collected at a corporation in Tokyo, Japan. In this work,
we call the data sets collected at the two vantage points UW and
CORP, respectively.

Each vantage point collects two data sets for the analysis of
spam. The first data set data consists of atcpdumpof all incom-
ing TCP SYN packets to the SMTP servers. The signatures of TCP
headers are then extracted by runningp0f [21] over the tcpdump
files. Fromp0f, we are able to analyze specific operating charac-
teristics about the sending host. Our second set of data contains
all email delivery records for each vantage point for all respec-
tive email servers. At both sites greylisting1 is performed as part
of the email delivery system, and commercial anti-spam filtering
is applied to all messages which pass the greylist filtering. The
greylisted connection information is then constructed by taking the
tcpdump logs and subtracting out all the connections which later
appear in the delivery logs (when retransmission is attempted). The
remaining connection information reveals the amount ofattempted
spam messages sent to the email servers, which was filtered by the
greylisting mechanism. Note that most of spam messages were fil-
tered at the greylisting stage. The delivered emails, which passed
the greylisting filter, are assigned a spam probability score by the
commercial spam filtering software. To avoid the risk of errors in-
troduced by the filtering software, we used conservative thresholds
to classify emails into spam, or ham, based on the score. For ex-
ample, a spam email must have a spam probability score of greater

1At the UW collection site, greylisting is applied to blacklisted IP
addresses while in the CORP setting, greylisting is applied to all
the IP addresses that arenotwhitelisted.

Table 1: Characteristics of SMTP logs.
Dataset #senders #delivered emails #delivered spam #greylisted #delivered ham

UW 7385521 26205650 13294554 87837109 12265296
CORP 3117901 2040443 1302582 18804706 545686

than0.95 out of1.0 in order to be considered spam, while a ham or
legitimate email must have a score of smaller than0.05. We note
that software-based filtering is error-prone and thus, it could ef-
fect the derived statistics. However, despite the existence of poten-
tial errors in the classified messages, the information derived from
the scores assigned by the software are promising because of the
skewed distributions observed from in our data sets. As we shall
see shortly, some signatures exhibit a very high fraction of spam
messages over the total amount of messages sent by the signatures,
e.g., 99.99%. Thus, even though the anti-spam software has some
errors, say, a 5% false positive rate2, it is very likely that the signa-
tures with high spamming histories are strictly spam senders. We
also note that for both vantage points, the majority of spam mes-
sages were filtered at the greylisting stage.

A major challenge in utilizing these data sets (the tcpdump and
delivered logs) together is correlating the data across them. To ac-
complish this, we developed an algorithm that searched through the
tcpdump logs and extracted every distinct signature on a per IP ad-
dress basis for the entire month. In the typical case an IP address
had one signature associated with it; in this case, all entries for that
IP address in the SMTP logs were simply associated with that par-
ticular signature. If multiple fingerprint signatures were seen for
the same IP, the algorithm attempted to match the SMTP entry to
the closest entry in the tcpdump log for that day. To do this, we
first look for an entry in the tcpdump log within five minutes of the
greylisting for the SMTP entry we are comparing to. If one was
found, then it was assigned to that signature. In most cases, mul-
tiple signatures were not seen in a single day, making the chances
for misclassification slim.

The general statistics of the information gathered from the SMTP
data collections are shown in Table 1. The table shows the size and
diversity of senders that compose our data collection. In the table,
“#greylisting” stands for the number of greylisted connections that
did notattempt to resend the message(s). In this work, we count the
number of spam messages as the summation of the number of de-
livered spam messages, i.e., “#delivered spam” in the table, and the
number of connections filtered by greylisting, i.e., “#greylisting” in
the table. The number of legitimate emails is listed in “#delivered
ham”. Further details of our data sets are presented in subsequent
sections.

5. EXTRACTION OF SIGNATURES
In this section, we present simple heuristics that enable us to

extract effective signatures. We also use the collected data sets to
show the established results.

5.1 Statistics of Individual Signatures
After combining the tcpdump log with the SMTP log, we collect

statistics for each signature. These statistics include the number of
delivered messages, delivered spam messages, delivered ham mes-
sages, completely greylisted messages, and the number of distinct
IP addresses for each signature. As a basic fingerprinting tool to
analyze our TCP headers, we employ thep0f program [21]. The

2This number may be very pessimistic. We manually checked the
accuracy of the software using sampled messages delivered to our
mailbox and found that the number of misclassifications was quite
low for both data sets.

Table 2: Top 10 Spam Sending Signatures for UW.
Signature #Spam #ham #senders OS genre
[T16:128:0:44:M536:.] 14495869 2708 260955 UNKNOWN
[16384:128:1:48:M1440,N,N,S:.] 1562732 123 20308 Windows
[S45:128:1:48:M1440,N,N,S:.] 837353 72 12270 Windows
[65535:64:1:52:M1452,N,W2,N,N,S:.] 679216 54 7537 UNKNOWN
[65535:128:1:48:M1442,N,N,S:.] 468074 14 8328 Windows
[65535:128:1:48:M1352,N,N,S:.] 361652 22 7843 Windows
[65535:64:1:52:M1440,N,W2,N,N,S:.] 298878 37 4331 Windows
[T16:128:0:44:M1360:.] 262077 21 3147 UNKNOWN
[T16:128:0:44:M528:.] 223246 3 2662 UNKNOWN
[65535:128:1:52:M1460,N,W1,N,N,S:.] 210267 45 3261 Windows

Table 3: Top 10 Spam Sending Signatures for CORP.
Signature #Spam #ham #senders OS genre
[T16:128:0:44:M536:.] 7252084 41 1139778 UNKNOWN
[65535:128:1:48:M1440,N,N,S:.] 1729670 56 165024 Windows
[16384:128:1:48:M1452,N,N,S:.] 327224 31 47412 Windows
[16384:128:1:48:M1440,N,N,S:.] 284660 17 43938 Windows
[S44:128:1:48:M1452,N,N,S:.] 166357 6 24545 Windows
[65535:128:1:48:M1420,N,N,S:.] 132957 16 18771 Windows
[T16:128:0:44:M1360:.] 126955 0 21329 UNKNOWN
[65535:128:1:48:M1400,N,N,S:.] 94770 26 13910 Windows
[T16:128:0:44:M528:.] 90518 0 9463 UNKNOWN
[S45:128:1:48:M1440,N,N,S:.] 71594 1 16083 Windows

format of the extracted signature is[W:T:D:S:O...:Q], where
W stores the information about the window size,T is the initial value
of TTL, D is the do not fragment bit,S is overall SYN packet size,
O is the option value and order specification, andQ is a list of mis-
cellaneous information. A full description of the option values and
miscellaneous information can be found in thep0fmanual [21].

Tables 2 and 3 show the top 10 spam-sending signatures by to-
tal number of messages in the two data sets with a negligible ham
ratio. Here, the value of initial TTL is corrected with the formula
2
⌈log2(t)+1⌉, wheret is the value of observed TTL3. We notice that

for both data sets, the top signature is in common. Senders with this
signature contribute a significant amount of spam messages, and a
very small number of ham messages. We also notice that many
of signatures are common across both data sets. Finally, we note
that many of signatures are variants of the Windows operating sys-
tem. This observation agrees with previous studies, such as [17],
which found that approximately 95% of identified spam-sending
hosts were running Windows. It is noteworthy that the top sig-
nature and their variants, which start withT16:128:0:44, are
unclassified hosts; meaning, these signatures cannot be identified
with the latest version ofp0f. To the best of our knowledge, ours
is the first work that finds the existence of these intrinsic signatures
that are not known versions of OSes4. The characteristics of these
signatures are presented in the next section.

For comparison, we also investigate the top-ham sending signa-
tures by number of messages sent (see Table 4, 5). Unlike in the
case of spam senders, we see no common signatures among the two
data sets. This may reflect the difference in the two vantage point
locations. One is an academic organization in US while the other is
a private company in Japan; thus, end-users are likely receiving a
different set of e-mails from a different set of senders. It is notewor-
thy that a large amount of spam messages are sent from hosts with
signatures on the top-ham sending signatures list. This is especially
prevalent when the number of senders with a given signature is
large, indicating that spammers have piggybacked some of their op-

3If the corrected value is 256, we apply another heuristic so that
the corrected value is 255.
4We manually updated the signatures of p0f for newer versions of
OSes such as variants of Windows Vista, Mac OS X 10.4 and later,
FreeBSD 7.0 and later etc. However, none of them matched to the
unknown signatures mentioned above.

Table 4: Top 10 Ham Sending Signatures for UW.
Signature #Spam #ham #senders OS genre
[S4:64:1:60:M1460,S,T:!] 5761617 2600718 125635 UNKNOWN
[65535:128:1:48:M1460,N,N,S:.] 18761354 951969 186748 Windows
[S4:256:1:48:M1460,N,W9:.] 1356 889390 9 UNKNOWN
[S4:64:1:60:M1380,S,T:!] 187572 877897 10195 UNKNOWN
[S4:64:0:60:M1430,S,T:!] 171279 851829 397 UNKNOWN
[S4:64:1:44:M1460:.] 89709 515808 5315 Linux
[65535:128:1:48:M1380,N,N,S:.] 789546 396238 19900 Windows
[65535:64:1:64:M1460,N,W1,N,N,T:T!] 154175 384603 6854 UNKNOWN
[65535:64:1:60:M1460,N,W1,N,N,T:T] 40735 347468 3858 UNKNOWN
[5792:256:1:60:M1460,S,T:T!] 475 278431 9 UNKNOWN

Table 5: Top 10 Ham Sending Signatures for CORP.
Signature #Spam #ham #senders OS genre
[S4:64:1:60:M1460,S,T,N,W0:.] 84138 84124 9432 Linux
[S4:64:1:60:M1460,S,T,N,W2:.] 102542 46000 6613 Linux
[S34:64:1:52:M1460,N,W0,N,N,S:.] 21656 32184 578 Solaris
[S17:64:1:48:N,N,S,M1460:.] 534461 31368 707 Solaris
[S4:64:1:60:M1460,S,T,N,W7:.] 20619 29507 3310 Linux
[16384:64:0:60:M1460,N,W0,N,N,T0:.] 4412 24852 5 QNX
[32768:64:0:48:M536,W0,N:.] 1281 22628 202 HP-UX
[57344:64:1:60:M1460,N,W0,N,N,T:.] 79590 21401 1054 FreeBSD
[65535:64:1:64:M1460,N,W1,N,N,T,S,E:P] 19936 18619 1591 FreeBSD

10
-4

10
-3

10
-2

10
-1

10
0

θ

7000

8000

9000

10000

11000

12000

13000

of

 s
ig

na
tu

re
s

CORP
UW

Figure 2: Number of signatures under the various thresholds.

erations off default operating system configurations. These signa-
tures would need to be filtered using other anti-spam mechanisms.
Another important finding here is that signatures in the UW data set
that are Windows-based sent out a significant fraction of ham mes-
sages, where Windows-based signatures on the spam list had the
exact opposite characteristic. This indicates that specific versions
of operating systems are highly susceptible to spam sending oper-
ations and/or have been altered specifically for this type of opera-
tion. The classification assigned to these ham-sending Windows-
based signatures byp0f suggests that these are machines running
versions of Windows 2000 Server. Given that this classification is
in fact true, many might be running legitimate MTAs such as Mi-
crosoft Exchange Server, which would send ham e-mails. Thus, the
naive approach of selecting Windows-based signatures as suspect
could largely fail. This shows the need for TCP fingerprinting that
is highly specific to carefully avoid the risk of misclassification.

5.2 Extracting Signatures
The next part of the analysis involves extracting effective signa-

tures for spam filtering. Good signatures will have a high spam
coverage ratio when applied to the message set while having negli-
gible rate at which ham messages are selected. A good set of sig-
natures is also fairly small (less than 200) so that the entire list can
be loaded onto fast SRAM memory in routers. For this purpose,
we first introduce a threshold,θ, which is the fraction of filtered
ham messages over the total number messages sent by a given sig-
nature. As the threshold gets higher, we get more signatures (see
Figure 2) and senders that are filtered (see Figure 3). Accordingly,
the number of potential ham messages filtered also increases (graph
omitted for brevity), thus affecting the performance of signatures as
we shall see in short. The threshold,θ, turns out to be a valuable

10
-4

10
-3

10
-2

10
-1

10
0

θ

0

5×10
5

1×10
6

2×10
6

2×10
6

2×10
6

3×10
6

of

 fi
lte

re
d

se
nd

er
s

CORP
UW

Figure 3: Number of filtered senders under the various thresh-
olds.

control parameter in extracting effective signatures.
The actual extraction procedure is composed of two-stages. In

the first stage, the candidate signature list is created based on signa-
tures that surpass a setθ value. The network administrator can then
adjust theθ value or add/remove signatures to construct a list that
is representative of the goals of this anti-spam mechanism. In our
case, we pick a set of signatures that satisfies a good trade-off be-
tween the FPR (false positive ratio) and FNR (false negative ratio).
FPR is the fraction of misclassified ham messages over the total
ham messages, while FNR is the fraction of missed spam messages
over the total spam messages. Figure 4 shows the FPR and FNR
for UW and CORP data sets. For CORP, there is a drastic decrease
in FNR at a threshold of aroundθ = 0.0014. This indicates that
signatures that are identified as being suspect with this threshold,
have a much higher chance of filtering spam messages than if the
threshold was more restrictive. We will look at the details of this
signature later.

In the second stage, we pick a small set signatures that have a
good coverage ratio when applied to spam messages. This stage
is aimed to reduce the amount of signatures that are kept on the
SRAM of routers, which is generally expensive. Lets assume that
we need FPR of less than5×10

−4. If we pick the threshold ofθ =

0.004, which is shown with dashed arrows in Figure 4, the FPRs
are0.00030 and0.00045, and the FNRs are0.72 and0.41 for UW
and CORP, respectively. Figure 5 shows the contributions of the
top signatures to the FPR and FNR. Here, the signatures are sorted
by the number of spam messages they sent in descending order.
We see that a very few number of signatures can establish the good
balance between filtering and falsely dropping ham e-mails. For
example, if we use the top 100 signatures, the FPRs0.00028 and
0.00045, FNRs are0.75 and0.44 for UW and CORP, respectively.
We also note that the accuracy and the coverage of the top signature
is quite striking. Just one signature covers more than 15-35% of
spam messages with a false positive ratio of less than0.00025. This
outstanding signature,[T16:128:0:44:M536:.], is shown in
the first row of Tables 2 and 3. For further reference we denote this
signature and its variants asX. According to recent studies [16,19],
these signatures are associated with the spamming botnet, Srizbi,
which has caused significant amount of spam all over the world
since mid 2007.

We note that as we mentioned before, the “#Spam” in the tables
is the summation of the number of delivered spam messages and
greylisted connections, i.e., unique triplets that did not resend mes-
sages. We found that most spam originating from the signatureX is
effectively stopped through greylisting. In the next section, we will
further look into the origin of the signatureX.

10
-4

10
-3

10
-2

10
-1

10
0

θ
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

F
P

R

CORP
UW

θ=0.004

10
-4

10
-3

10
-2

10
-1

10
0

θ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
N

R

CORP
UW

θ=0.004

Figure 4: Performance of extracted signatures under the var-
ious thresholds (the first stage): False positive ratio (top) and
False negative ratio (bottom).

6. ANALYSIS OF EXTRACTED SIGNATURES
In this section, we analyze various properties of the spam send-

ing signatures extracted by our technique.

6.1 Origin of Spam Sending Signatures
We first study the origin of the top 100 signatures with the thresh-

old of θ = 0.004 for each data set that have sent more than our
2, 000 minimum number of emails. For comparison purposes, the
origin of the special case, signatureX, is investigated separately.

Tables 6-9 show the top 10 ASes from which spam senders orig-
inate with these top 100 signatures. We first notice that many of
the origins of the senders are in common among the two vantage
points. This reflects the fact that spammers target recipients all
over the world, thus two entities on opposite sides of the world
may see spam originating from a single source. We also notice that
the signatures are originated from various regions mainly in Asia,
Europe, and South America. These findings suggest that individual
spam sending signatures seen across these regions may construct a
larger global-scale spamming infrastructure. It is noteworthy that
the main origin AS of signatureX is slightly different from other
signatures. Since the signature is associated with a spamming bot-
net, it is likely that the number of hosts infected with the spamming
bot has increased popularity in these regions over other parts of the
world. Thus, by tracking extracted signatures we see correlations
related to the physical origin of spam. The outgoing links from
these top 10 ASes from Tables 6 and 7 would be ideal sites for the
placement for our router-level spam filters. This would stop spam
close to the source preventing it reaching destinations worldwide.

Next, we use commercially created DNSBLs to study the char-
acteristics of senders that were identified by the top 100 extracted
spamming signatures. Three DNSBLs created by the Spamhaus
project [10] are used for this analysis, namely PBL, SBL, and XBL.
SBL is a verified list of spam sources, including spammers, spam

10
0

10
1

10
2

10
3

10
4

N

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

F
P

R

CORP
UW

10
0

10
1

10
2

10
3

10
4

N

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
N

R

CORP
UW

Figure 5: Performance of top N signatures, which were ex-
tracted with θ = 0.004 at the first stage. These signatures are
sorted by the number of spam messages they sent in descending
order. False positive ratio (top) and False negative ratio (bot-
tom).
gangs and spam support services. PBL is a list of IP addresses
which are designated as being part of the dynamic and DHCP ad-
dress space, thus they are not supposed to make direct SMTP con-
nections. Lastly, XBL gives us a list of exploited hosts. These
compromised hosts now include open proxies, worms/viruses with
built-in spam engines, and other types of exploitable trojan-horses
for remote users to take advantage of. All DNSBLs were collected
during the same month as our spam measurement period, April
2008.

The procedure for our analysis of senders by their IP address
is detailed here. We first compile a list of all IP addresses that are
seen in our set of extracted top 100 spam sending signatures includ-
ing signatureX. Each IP address is then classified based on which
DNSBLs it is on. Finally, we reanalyze the logs for these selected
IP addresses to calculate the statistics of each IP address. Table 10
shows the number of spam messages sent and senders classified by
each of the three lists for our collected data sets. For both cases, the
majority of spam messages and senders are matched by PBL. This
list encompasses more than 82% of IP addresses which sent mail
using the signatureX, and these hosts sent out more than 65% of
the spam messages sent by this signature. Since PBL is the list of
dynamic IP addresses, this result supports the fact that signatureX
is actually associated with spam activity spawning from the botnet,
Srizbi.

We also find that a certain amount of addresses and spam mes-
sages arenotcovered by the DNSBLs. In our study more than 15%
of spam senders that contributed more than 25% of spam messages
were not covered by DNSBLs for both data sets. This finding sug-
gests that our TCP fingerprinting approach can assist in improving
the coverage of existing DNSBLs. Since the results for the remain-
der of top 100 extracted spam signatures are similar, we omit them
for brevity.

Table 6: Top 10 ASes that originate the senders with the signa-
ture X (θ = 0.004) for UW data set.

ASN AS name # of senders
9121 TTNET TTnet Autonomous System 208405
4134 CHINANET-BACKBONE No.31,Jin-rong Street 146338
4837 CHINA169-BACKBONE CNCGROUP China169 Backbone 86983
5617 TPNET Polish Telecom’s commercial IP network 62940
3269 ASN-IBSNAZ TELECOM ITALIA 56020
22927 Telefonica de Argentina 51563
8359 COMSTAR COMSTAR-Direct Moscow region network 49336
7738 Telecomunicacoes da Bahia S.A. 47939
7470 ASIAINFO-AS-AP ASIA INFONET Co.,Ltd. 46739
8167 TELESC - Telecomunicacoes de Santa Catarina SA 37059

Table 7: Top 10 ASes that originate the senders with the signa-
ture X for CORP data set.

ASN AS name # of senders
9121 TTNET TTnet Autonomous System 234182
4134 CHINANET-BACKBONE No.31,Jin-rong Street 87427
5617 TPNET Polish Telecom’s commercial IP network 60694
7470 ASIAINFO-AS-AP ASIA INFONET Co.,Ltd. 60663
4837 CHINA169-BACKBONE CNCGROUP China169 Backbone 52539
22927 Telefonica de Argentina 52334
8359 COMSTAR COMSTAR-Direct Moscow region network 36200
7738 Telecomunicacoes da Bahia S.A. 36040
6147 Telefonica del Peru S.A.A. 31332
3269 ASN-IBSNAZ TELECOM ITALIA 29811

6.2 Robustness of Signatures
In this section, we investigate the robustness of the extracted sig-

natures relative to both the temporal and spacial domains. Figure 6
shows the fraction of signatures in common for the top N signatures
from the two vantage points. As we mentioned earlier, the top sig-
nature, signatureX is common among the two vantage points. On
the other hand, other top-signatures exhibit locality here. That is,
the fraction of common signatures is not close to one. The locality
suggests the need to apply a local feedback loop to obtain effective
signatures, while other signatures can be derived locally or from a
centralized database of high spam sending signatures. Tables 11
and 12 show the performance of the two sets of top 100 signatures
based on the number of spam and ham emails filtered. These tables
also reflect how locality can effect the performance of the protocol
by analyzing the intersection and union of the two sets. The locality
of the signatures collected at the other site can increase the number
of false positives seen when union filtering is applied. On the other
hand, by taking the intersection of the two signature sets, we can
decrease the false positive ratio, but at the cost of a certain amount
of spam messages being missed. If a network operator prefers less
false positives to less false negatives, she/he may take the intersec-
tion of signatures that are compiled at different locations.

Table 13 shows the fraction of connections and senders that are
covered by the original UW top 100 spam signatures (from April
2008) when applied to later months. The CORP data exhibits sim-
ilar properties, hence it is omitted. Since SMTP logs were only
collected for the month of April, we analyze the number of connec-
tions and senders that appeared in the tcpdump files collected. We
also confirmed that the coverage of DNSBLs were same as were re-
vealed in Table 10. Again, for each month about 80% of the senders
extracted by the signatures collected in April 2008 were listed in
the DNSBLs collected. Thus, we conclude that the obtained spam
sending signatures were stable over of a period of several months
for both data sets.

7. DISCUSSION
In this section we discuss some final details related to utilizing

TCP fingerprints for signatures for router-level spam filtering.

Table 8: Top 10 ASes that originate the senders with the top
100 signaturesexcept signature X (θ = 0.004) for UW data set.

ASN AS name # of senders
3269 ASN-IBSNAZ TELECOM ITALIA 90004
4134 CHINANET-BACKBONE No.31,Jin-rong Street 72019
4837 CHINA169-BACKBONE CNCGROUP China169 Backbone 43611
9121 TTNET TTnet Autonomous System 32565
9050 RTD RTD-ROMTELECOM Autonomous System Number 28590
3320 DTAG Deutsche Telekom AG 24205
7738 Telecomunicacoes da Bahia S.A. 23723
22927 Telefonica de Argentina 21742
13184 HANSENET HanseNet Telekommunikation GmbH 20458
3209 ARCOR-AS Arcor IP-Network 18684

Table 9: Top 10 ASes that originate the senders with the top
100 signaturesexcept signature X (θ = 0.004) for CORP data
set.

ASN AS name # of senders
4134 CHINANET-BACKBONE No.31,Jin-rong Street 68635
4837 CHINA169-BACKBONE CNCGROUP China169 Backbone 55704
3269 ASN-IBSNAZ TELECOM ITALIA 20479
9121 TTNET TTnet Autonomous System 18433
22927 Telefonica de Argentina 13478
6147 Telefonica del Peru S.A.A. 11364
9829 BSNL-NIB National Internet Backbone 11211
7418 Terra Networks Chile S.A. 10503
7470 ASIAINFO-AS-AP ASIA INFONET Co.,Ltd. 9887
27699 TELECOMUNICACOES DE SAO PAULO S/A - TELESP 9576

Table 10: Classification and statistics of email senders with the
signature X for UW (left) and CORP (right).

DNSBL #Spam #Senders
SBL 1538633 27854
XBL 922 114
PBL 10009504 1407027

unmatched 3669080 279825

DNSBL #Spam #Senders
SBL 662555 21510
XBL 677 87
PBL 5112101 973058

unmatched 2039988 186714

7.1 Sharing Fingerprints
As we have seen in the previous section, signatures collected at

different locations can improve the accuracy of our TCP finger-
printing framework. Based upon the collected signatures, we can
create a set of fingerprints that are shared among participating net-
work operators. We should note, however, that these signatures can
exhibit locality. Thus, in addition to the global list, it is preferable
to run the signature extraction mechanism locally to compile an ef-
fective and compact list of signatures. The benefit of utilizing a
global list is that if many sites are able to confirm that a particular
signature is only sending spam, local administrators can be reas-
sured that they are not accidentally filtering ham emails.

As with other research efforts related to fingerprint sharing [3],
an active fingerprint sharing infrastructure is beneficial when se-
curity threats escalate quickly. This is particularly true with such

10
0

10
1

10
2

10
3

10
4

N

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

 c
om

m
on

 s
ig

na
tu

re
s

Figure 6: Fraction of common signatures in the top N signa-
tures for the two vantage points (θ = 0.004).

Table 11: Performance of the two sets of signatures compiled
at each location including their intersection and union when
applied to the UW data set.

Set of signatures #Spam #Ham #Senders
CORP Top 100 34378320 33756 561278
UW Top 100 24797823 3485 403568
INTERSECTION 21329958 3211 360627
UNION 37846185 34030 604219

Table 12: Performance of the two sets of signatures compiled
at each location including their intersection and union when
applied to the CORP data set.

Set of signatures #Spam #Ham #Senders
CORP Top 100 11249690 243 1639667
UW Top 100 8676986 443 1361959
INTERSECTION 8383147 89 1316314
UNION 11543529 597 1685312

Table 13: Stability of the top 100 signatures collected in April
2008 (UW).

Month fraction of connections fraction of senders
April 2008 0.74 0.68
May 2008 0.77 0.67
June 2008 0.78 0.69
July 2008 0.63 0.61

Table 14: Stability of the signature X collected in April 2008
(UW).

Month fraction of connections fraction of senders
April 2008 0.65 0.52
May 2008 0.68 0.51
June 2008 0.71 0.53
July 2008 0.53 0.41

events as distributed denial of service attacks. When an attack oc-
curs, the site should be able to fingerprint the offending connection,
and an automatic alert can be sent network administrator. Once val-
idated, this signature can be sent to other sites via the shared infras-
tructure, and these sites can temporarily drop connections matching
that signature.

In this work, we assumed that the classification of emails as spam
or ham could be done on a local SMTP server. While this assump-
tion holds true for some networks, it is not always the case. For
such networks, we can still derive useful information for signature
fingerprints from greylisting logs and email bouncing errors, but
the picture of what is spam or ham will be less clear. In this case,
it is also possible to utilize other DNSBLs or DNSWLs to give
weight to the scores to each signature. Finally, if none of the above
mentioned techniques are available, the site can utilize the shared
global fingerprints.

Since signatures themselves do not contain any private informa-
tion, we conjecture that sharing the signatures will not cause any se-
rious privacy problem. By collecting signatures from many trusted
networks, it is possible to compile an useful set of signatures for
use worldwide.

7.2 Signature Updates
In order for a router-level spam filter to be effective it must re-

quire updates infrequently and have low false positive rates. Infre-
quent updates help maintain high filter performance and reduce the
amount of required update downtime. During the period in which
we collected data, we monitored the number of signatures that sur-
passed our established spam threshold and therefore, needed to be
pushed to the routers. As we showed in the previous section, 100
signatures needed to be push to the router to establish a false posi-

tive less than0.0005 and a coverage ratio of more than 28% (59%
for CORP). We also showed that the collected signatures were sta-
ble over a period of several months at each location. We note, that
finding an appropriateθ value is not a clear cut process, but that it
must be set carefully based on the goal of the anti-spam mechanism
as it will effect updates to the filter list.

7.3 Threat Analysis
Although our research has shown signatures to be fairly consis-

tent over a few months worth of data, this might not always be the
case. Here, we briefly consider some threats that our router-level
filtering approach faces from clever spammers that would try to
thwart detection if they knew their fingerprints were being targeted.

There are generally two spamming scenarios which arise: (1)
A spammer hijacks or assembles machines from which it sends
out spam through the default operating system network driver. (2)
A spammer maliciously installs a new network driver or modifies
the existing one for spam sending purposes. In the first scenario,
spammers have much less control, if any over the TCP field values
observed from the emails they send. They can take advantage of
tools, such as IPPersonality [4], so that they can masquerade as a
different operating system, but the choices they have are limited. In
this case, these spam emails generally contribute to the statistics of
signatures that have already been observed, and likely can not be
filtered because legitimate mail is also sent from them. The second
scenario is more problematic.

With a dedicated network driver a spammer can change almost
any TCP field resulting in spam messages with any number of pos-
sible signatures. A spammer might target fields, such as initial TTL
value, window size, default flags and NOP options, for change. Al-
though changing these values would allow a spammer to initially
avoid detection, the new signature would be added to the drop list
if it is consistently observed as sending spam. Fingerprints could
be altered on a daily or even hourly basis, but this would require
significant changes to current spamming infrastructures. For ex-
ample, Mori et al. [16] noted the rise and fall of the Srizbi version
one signature in August 2007 and November 2008, respectively.
Srizbi version two was first observed in October 2008, but its rise
has been slower than version one; indicating that it takes time to
spread changes to spamming sources or create new ones. A router-
level filtering approach, such as we propose, could stop many of
these spamming infrastructures that have specific network drivers.
Even with the ability to randomize values, spammers would need to
wisely choose values to ensure their packets would not be dropped
by low TTL values or by systems that drop obscure looking pack-
ets.

Most likely, legitimate hosts would keep consistent signatures,
thus the set of suspect signatures to be dropped at routers would
simply adapt with the dynamically-changing seen signature set. If
at some point, spamming signatures were completely being ran-
domized, the system could be altered to store the top ham sending
signatures and probabilistically drop all other signatures seen. This
approach would result in mechanism similar to whitelisting.

Each of these aforementioned issues would result in a spam email
being misclassified as legitimate traffic by our filtering mechanism.
In these cases, the third-party spam filtering mechanism would be
in place to help identify the message as spam.We also argue that
the potential for false positives is very low in our approach, and
that spammers cannot induce false positives. In particular, we con-
sider it unlikely that spam-sending hosts could send enough spam
using a forged legitimate signature to skew the spam ratio enough
to exceed the thresholds, and thus cause legitimate traffic using that
signature to be filtered. In our analysis, we used a spam threshold

of .004, which translates into a spam sending host needing to send
roughly 250 times the amount of legitimate mail in spam. In the
unlikely event that this did happen, all the network administrator
would have to do is manually remove this signature from the fil-
ter list. Signatures like this would be easily identified because of
the detailed history kept for each signature. A large amount (say a
few tens of thousands) of ham emails from a specific signature - no
matter what the ham ratio - should alert the human operator of the
legitimacy of some of the emails sent from this signature.

8. CONCLUSIONS AND FUTURE WORK
In this paper we have presented a preliminary approach for router-

level spam filtering which utilizes passive TCP fingerprinting to
form candidate signatures. Our architecture is simple and easy to
implement at either a local or ISP gateway router. As an alternative,
our mechanism could be placed in existing middle box devices.

Router-level spam filtering would reduce overhead placed on
MTAs whose resources are heavily consumed as the number of
spam messages continues to increase. This approach will limit
the number of incoming TCP sessions by immediately dropping
connections which match a stored TCP fingerprint signature. The
router-level mechanism can and should be used in conjunction with
a variety of other spam filtration techniques to ensure accurate spam
detection.

In our study, we were able to identify several candidate signa-
tures that would reduce the amount of spam processed by secondary
anti-spam filters. These signatures have several distinguishing fea-
tures, and we note that our top signatureX is associated with Sribzi
botnet. The locations of these spamming entities are diverse, but
our study reveals several specific ASNs, from Asia, Europe and
South America, from which much of the spam we see today is
originating. We also found that the naive approach of selecting
Windows-based signatures as suspect could largely fail. This fact
shows the need for highly accurate signature selection mechanism
to avoid the risk of misclassification. We validated that our method
can meet such a requirement.

We argue that TCP fingerprint filtering, as a supplementary fil-
tering mechanism based on fine granularity signatures, results in
low false positives. Although fingerprints could be randomized or
mimic legitimate operating systems, this would only cause mes-
sages that are currently being analyzed to be analyzed with the new
system. The remaining messages that would be filtered would help
reduce the load on MTAs.

Our future work includes a more detailed analysis of the top
100 spam signatures. We are particularly interested in discovering
what global-scale spamming infrastructures exist that contribute
the spam signatures we have seen in our logs. A longer-term study
of TCP signatures also will help to solidify our conclusion that
signatures are relatively stable over time, and allow us to analyze
which signatures in fact do change. We hope to implement and de-
ploy a prototype version of our the system, to evaluate the perfor-
mance of our architecture in terms of spam filtering and feasibility
for large-scale deployment.

Acknowledgements
We thank Mike Blodgett, Jesse Thompson, Jeffrey Savoy, David
Plonka, Mitsuhiro Shigematsu, Masashi Mitsuda, Kanako Nozue
and Hideko Mills for their assistance in collecting the SMTP traffic.
This measurement was performed in cooperation with the Univer-
sity of Wisconsin - Madison’s Division of Information Technology.
Finally, we thank Archit Gupta and Lydia Sidrak for their great con-
tribution to the early stage of this work. This work was supported

in part by an NSF CAREER Award (CNS-0746531) and an NSF
NeTS FIND Award (CNS-0626889).

9. REFERENCES
[1] Barracuda spam firewall.

http://www.barracudanetworks.com/ns/
products/spam_overview.php.

[2] Ettercap.http://ettercap.sourceforge.net/.
[3] Fingerprint Sharing Alliance.

http://www.arbornetworks.com/en/
fingerprint-sharing-alliance.html.

[4] IPPersonality.
http://ippersonality.sourceforge.net/.

[5] Milter. http://www.milter.org/.
[6] Postfix.http://www.postfix.org/.
[7] Sendmail.http://www.sendmail.org/.
[8] SpamAssassin.

http://spamassassin.apache.org/.
[9] The Siphon Project.

http://siphon.datanerds.net/.
[10] The Spamhaus Project.http://www.spamhaus.org/.
[11] B. Agrawal, N. Kumar, and M. Molle. Controlling spam

emails at the routers.Communications, 2005. ICC 2005.
2005 IEEE International Conference on, 3:1588–1592 Vol.
3, 16-20 May 2005.

[12] R. Beverly and K. Sollins. Exploiting transport-level
characteristics of spam. InCEAS, 2008.

[13] P. Calais, D. Pires, D. Guedes, W. M. Jr., C. Hoepers, and
K. Steding-Jessen. A campaign-based characterization of
spamming strategies. InCEAS, 2008.

[14] F. Li and M.-H. Hseih. An empirical study of clustering
behavior of spammers and group-based anti-spam strategies.
In CEAS, 2006.

[15] T. Mori, H. Esquivel, A. Akella, Z. M. Mao, Y. Xie, and
F. Yu. On the effectiveness of pre-acceptance spam filtering.
University of Wisconsin Madison Tech Report TR1650, Mar.
2009.

[16] T. Mori, H. Esquivel, A. Akella, A. Shimoda, and S. Goto.
Understanding the world.s worst spamming botnet.
University of Wisconsin Madison Tech Report TR1660, June
2009.

[17] A. Ramachandran and N. Feamster. Understanding the
network-level behavior of spammers. InSIGCOMM ’06:
Proceedings of the 2006 conference on Applications,
technologies, architectures, and protocols for computer
communications, pages 291–302, New York, NY, USA,
2006. ACM.

[18] A. Schwartz. amavisd-new and p0f.
http://www.amazon.com/gp/blog/post/PLNK3F6QB0NKZ1DZT,
2006.

[19] H. Stern. The rise and fall of reactor mailer. InProc. MIT
Spam Conference 2009, Mar 2009.

[20] D. Webber. Spamassassin p0f plugin catches bot spam.
http://advosys.ca/viewpoints/2007/07/spamassassin-p0f-
plugin-catches-bot-spam/,
2007.

[21] M. Zalewski. the new p0f: 2.0.8.
http://lcamtuf.coredump.cx/p0f.shtml, 2006.

