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Abstract—Data centers provide resources for a broad range
of services, such as web search, email, web sites, etc., each with
different delay requirements. For example, web search should
cater to users’ requests quickly, while data backup has no
special requirement on completion time. Different applications
also introduce flows with very different properties (e.g., size and
duration).

The default method of transport in data centers, namely TCP,
treats flows equally, forcing equal share of the bottleneck network
bandwidth. This fairness property leads to poor outcomes for
time-sensitive applications. A better solution is to allocate more
bandwidth to time-sensitive applications. However, the state-of-
the-art approaches that do this all require forklift changes to
data center networking gear. In some cases, substantial changes
need to be made to end-system stacks and applications as well.

In this paper, we argue that a simple modification to TCP
can help better meet the requirements of latency-sensitive ap-
plications in the data center. No modification to end-systems,
applications or networking gear is necessary. We motivate our
Adaptive TCP (ATCP) design using measurements of real data
center traffic. We analytically derive the parameters to use in
our proposed modification to TCP. Finally, we use extensive
simulations in NS2 to show the benefits of ATCP.

I. INTRODUCTION

Data centers serve as an infrastructure for providing es-
sential resources to host a broad range of applications from
web search, email, advertisement to data mining of user
behavior and system log analysis [1]–[4]. However, different
applications may come with different delay sensitivity require-
ments. While some background jobs such as backups do not
necessitate completion in a timely fashion, online services
usually impose stringent latency goals on response time in
their service level agreements (SLAs) [5]. Many studies have
shown that network transfer plays a key role in determining the
completion times of these jobs [6]. For example, data shuffle
in the reduce phase of Map-Reduce jobs is a well-known
bottleneck for the whole job. Due to the high operational
cost, data center resources are shared and multiplexed by these
different jobs. Thus, how network resources are shared has a
crucial impact on the job performance and the ability to meet
various latency requirements.

Existing proposals for sharing the network fall into three
categories but each work has its own Achilles’ heel. The
first solution is to simply partition the cluster into two parts,
and run delay sensitive jobs on one with dedicated network
resource. However, this static partitioning scheme makes it
impossible to do fine-grained resource sharing across clusters
and thus is not efficient [7]. Another approach is to enforce

network allocation by adding complex components into the
end-system software and hypervisors. One example is SeaWall
[8], which adds a bandwidth allocator between TCP/IP and
the NIC. Indeed, this solution could divide network capacity
based on the desired policy, but it comes with the expense of
intricate modifications to end-system architecture (e.g., policer
flow rate control mechanisms, schemes to ensure distributed
convergence to pre-assigned weights etc.). More importantly,
it also engenders key changes to the service model exposed
to tenants, and therefore is not always feasible. Yet another
way for sharing the network is to make explicit scheduling of
network traffic. An example is Orchestra [6] which coordinates
different data transfers with a global controller. Again, because
jobs need to express their needs explicitly to the central
controller, this method requires changes to the traditional
service model. Depending on the transfer scheduler used, with
the default being simple FIFO, this approach may result in
poor utilization of the data center as a whole, as some of the
afore-mentioned naive solutions.

The position we take in this paper is that an ideal usable
and effective network sharing scheme that effectively helps
meet application delay requirements: (1) discriminates network
flows according to their job timing requirements; (2) share
cluster resource very efficiently; (3) makes minimal changes
to the end system software; changes should be simple to imple-
ment so that it is easy to reason about overall system behavior
and performance; (4) does not modify tenant applications, in
particular, the current service model the cloud exposes.

In this paper, we make two major contributions. First, we
conduct a first-of-a-kind measurement study of the relationship
between flow sizes and timing requirements using real data
center traces. These measurements inform key aspects of the
eventual design of our system; but, they are also interesting
in their own right as they can influence other aspects of data
center design that we don’t focus on (e.g., traffic engineering).
Our analysis shows that time-sensitive jobs usually come with
small flows smaller than 10 MB, while the flow sizes of other
jobs falls in the range that is larger than 10MB. Also, small
flows often exist concurrently and share links with those large
flows.

These observations motivate our Adaptive TCP (ATCP)
design to meet the above four requirements, which forms
the second contribution of this paper. We propose Adaptive
Transmission Control Protocol (ATCP), a simple approach for
network sharing. In this protocol, we solve three problems:



how to precisely control flows’ rate when they are contending,
how much bandwidth to be allocated for various flows, and
how to make the allocation to be flow agnostic. The basic
idea is to modify the congestion control behavior in TCP and
perform adaptive weighted fairness sharing among flows. As
is known, TCP allocates bandwidth equally among all flows
and does not take job latency requirements into consideration.
In order to distinguish flows with different timing targets,
we count how many bytes a flow has delivered already. We
dynamically tune a flow’s weight such that it decreases as a
flow transfers more data. In effect, we can prioritize small
flows’ bandwidth allocation and get them to complete faster
than the larger flows that they are contending with. Our key
insight is that only the additive increase behavior of TCP
congestion control needs to be modified to realize the above
form of weighted sharing. Therefore, our method makes as
little a change as possible to the cloud infrastructure.

We introduce a weight-size function to derive a flow’s
weight according to the size of the data it has sent. The
parameters in the weight-size function are the weight upper
bound WH , lower bound WL and threshold T . We set up T
by observing the empirical flow size distribution. We analyze
different combinations of WH and WL, and chose ones which
produce the smallest value for the median completion time
over real data center traces.

Based on extensive simulations using NS2, we find that
ATCP benefits small flows significantly. Thus, delay-sensitive
applications see the greatest improvements. We conduct trace-
driven simulations in a chain topology and find that compared
with TCP; more than 90% of flows benefited from ATCP
and reduced their completion times. Small flows’ (< 100KB)
average completion time is reduced by 10%; medium flows’
(between 100KB and 10MB) completion time is reduced by
30%-40% on average; large flows’ (> 10MB) completion time
is almost not influenced. We simulate a distributed application
flow trace in the fattree topology and show that the benefit
introduced by ATCP to small flows is comparable to DCTCP.
Finally, we perform a simulation of MapReduce jobs. The
result shows that by improving small flows completion time,
the whole job’s performance improves.

This paper is organized as follows. Section II provides moti-
vating examples for the problem. In section III, we analyze the
flow characteristics and flow relationships. In section IV, we
propose the requirements to design an adaptive transmission
control protocol in the cloud. In section V, we build the
theoretical basis of flow rate control and scheduling, and
design ATCP. In section VI, we describe our implementation.
In section VII, we evaluate our ATCP and compare it with
TCP and DCTCP [9] in various scenarios. We discuss related
work in section VIII. Finally, we conclude in section IX.

II. MOTIVATING EXAMPLE

To motivate our changes on TCP, we describe below
two kinds of applications: web services and a MapReduce
distributed system, which are typical applications in current
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Fig. 1: Various Flows in Data Center Applications
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Fig. 2: Web Service Flow Completion Time

enterprise and university data centers. We measure their per-
formance and should how our small changes improve them.

Web Services: A typical three-tier web service is shown in
Figure 1(a). The query and response flows are usually small
flows and they are delay-sensitive; the backup flows are usually
pretty large. We collected packet trace continuously for 12
hours over multiple days in a campus data center (serving
the students and staff of a large US University). Inside the
data center, a variety of services are running simultaneously,
ranging from archival to distributed file systems, E-mail, web
services (administrative sites and web portals for students and
faculty), and even multicast video streams. Web service traffic
and distributed file system traffic constitute most of the traffic,
60% and 40%, respectively.

We modify TCP so that when a small flow (<10MB) meets
with a large (>10MB) flow, it get 3 times more bandwidth
than the large flow (We use our mechanism in ATCP, which
is described in Section V). We use NS2 to simulate the above
trace and compare TCP with the above modification in terms
of flow completion times (Figure 2). Compared with TCP, the
modified TCP reduces median completion time by more than
half, from 200ms to 80ms; and more than 90% of web flows
benefit from this change. Only some large flows are influenced,
but their completion time is increased negligibly (by less than
1%). Then we look into the web service traffic, which are
time-sensitive. More than 90% of the web flows are smaller
than 10MB and they benefit from this modification.

MapReduce: A typical MapReduce workload (Figure 1(b))
first distributes raw data blocks to several mappers, following
which each mapper does some computation over the data.
Subsequently, there is a shuffle phase in which results from
mappers are sent to reducers in a many-to-many mode. After
each reducer collects all corresponding results, there may be a
final collector to fetch the result. Each phase is composed
of parallel network transfers, especially the shuffle phase,
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Fig. 3: Data Center Flow Distributions

which takes 33% of total job completion time in typical
computation jobs in the cloud [6]. A key issue in MapReduce
is that, if one of the transfers in the shuffle phase is delayed
(“straggler”), the entire job is affected. MapReduce flows are
usually mixed up with other background data flows. If they
can grab bandwidth from such (delay-insensitive) background
flows, the data transfer time is reduced, thus improving the
MapReduce job performance.

The examples show that if small flows get some “help”
when competing with large flows at a bottleneck link, they can
complete more quickly and improve overall job performance.
From applications like web services, most flows are small
(less than 10MB) according to our measurements; while for
distributed computations like MapReduce, a given job can be
split into smaller components, and fine-grained tasks are easier
to schedule and can benefit from our new transport protocol. In
this way our new transport protocol can improve most delay-
sensitive applications.

III. FLOW CHARACTERISTICS

To design Adaptive TCP, we leverage empirical observations
of flow characteristics in a real-world data center. Unsurpris-
ingly, we find flow distribution characteristics such as size
and duration to be similar to measurements reported in [10],
[11] and [12], but we repeat them here to provide a basis
for the design choices in ATCP. A key difference is that
we analyze the temporal relationship between flows such as
overlap and arrival time interval. The observation results imply
that small flows can take bandwidth away from large flows,
and large flows will get the necessary compensation only after
the completion of small flows.

The data center where we analyze traces has a canonical 2-
Tier architecture, in which Middle-of-Rack switches are used
to connect a row of 5 to 6 racks. Middle-of-Rack switches are
connected by aggregation switches with an over-subscription
factor of 2. In total, there are 500 servers and 22 network
devices. To get the packet trace, we randomly selected a hand-
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Fig. 4: Flow Size and Time Sensitivity

ful of locations and installed sniffers. Our collection spanned
12 hours over multiple days. According to our investigation
and measurement (using the Bro application identification
tool), the applications inside the data center are mainly web
services (HTTP transactions, authentication services, custom
applications) and distributed file system traffic.

First we examine the distributions of flow size. Flow size
distribution in Figure III(a) indicates that 80% of the flows are
smaller than 100KB in size and most of them are RPC requests
and responses. Especially 99% of the flows are smaller than
10MB, and the flows between 100KB and 10MB are mainly
web requests and response. The total bytes distribution shows
most of the bytes are from the few large flows; especially over
80% of the bytes are sent by flows of size larger than 10MB.
These flows are rare in amount; they are mainly introduced
by activities like backup, virtual machine migration or large
file transfers. We use small, medium and large to denote a
flow of size [0, 100KB], [100KB, 10MB] and [10MB, ∞)
respectively and use these terms in the following text.

By our measurement, we find that most time-sensitive
applications like web service have smaller size, while the large
flows are usually not time-sensitive, as is shown in Figure 4.

From Figure III(b) about the flow duration, we find that
in our data center, 80% of the flows are less than 10 seconds
long, but there are still some flows that last for more than
100s. Most of the long-duration flows are large flows (larger
than 1GB). Although the link capacity is 1Gbps, the flow’s
sending rate is constrained by contention from other flows.

In Figure III(c), we present the distribution of the number
of active flows within a one second bin at one edge switch.
In over 90% of the time instances, the number of active flows
per edge switches is between 1000 and 2000, and these flows
are not uniformly distributed on each link. On some “hot spot”
links there are tens of flows, and the competition between them
causes high utilization of the corresponding link.

Flow interarrival time is presented in Figure III(d). We
observe that 80% of the flow’s interval times were between
400us and 40ms. Given that 20% of the long-duration flows
last longer than 10s, large flows will coexist with many small
flows.

We also look into the temporal relationship between flows.
Most switches maintain queues at in ports and out ports and
all these queues typically share the same memory; so the
contention between flows is not only restricted on links, but
also on switch buffers. We separate large flows from small
and medium flows, and calculate the percentage of time during



which large flow exists over the total measurement time, which
is over 95%. Then we look into each small or medium flow
to see whether it is overlapping with one or more large flows;
we find that over 90% of them flows have durations overlap
with one or more large flows.

The above measurement and analysis has three implications.
First, in a data center a variety of applications introduce flows
of different properties. Most flows are mice flows, they are
small in size, but are majority in quantity. Elephant flows are
small in quantity, but they contribute the majority the total
bytes. Second, as applications fill in the data center capacity,
flows end up competing which results in bottlenecked links
and switch buffers; most of these resources (link capacity and
buffers) are taken by large flows. Third, most small flows and
large flows coexist and compete with each other in the net-
work; with large flows taking most of the network resources,
small flows suffer. If small flows “borrow” some bandwidth
from large flows, they would complete more quickly; while
large flows can get time compensation after the small flows
complete. The improvements to small flows can enhance a
variety of different applications.

IV. REQUIREMENTS

From the above examples and trace analysis, we identify
the requirements of Adaptive TCP. Requirements such as high
network utilization, low latency and scalability are common
in network design. For our special motivation of reducing
average completion time and ease to deploy, an ideal solution
should also have the following properties.

Shorter average completion time: Small flows should
complete more quickly, while large flows should be not in-
fluenced. According to our measurement, most time-intensive
applications such as web services and distributed computations
are transferring data under a certain size. If we can reduce the
completion time of small flows, we will significantly improve
application performance.

Flow agnostic: Operators do not need to know whether a
flow is small or large. The rate allocation should be adaptive
to the flow size automatically. One existing approach to
distinguish small flow from large flow is to judge them by
IP, port number in some historical records and deploy QoS
accordingly. But we argue that this is not a reasonable way.
With the rapid increase of applications, configurations for
flows will become a large burden for the operator; in addition,
it is hard to distinguish large flows and small flows in the
same application such as FTP. Other approaches to adaptively
allocate bandwidth to flows, such as D3 [5] and D2TCP [13],
are not flow agnostic.

No changes to network devices: Recently router-based
flow rate control protocols such as D3 [5] are proposed. In
these protocols, routers need to perform some computations
to allocate bandwidth to each flow. With so many commodity
switches being deployed in data centers already, we believe an
edge- and software- based solution is more reasonable [14],
[15].

V. ADAPTIVE TCP

In this section, we theoretically prove that assigning weight
to the TCP additive increase lead to precise flow rate control
a flow’s rate and preferring small flows to large flows benefits
small flows without influence on large ones. Then we design
Adaptive TCP (ATCP) which makes size-adaptive bandwidth
allocation automatic.

A. Flow Rate Control

In networks, each intermediate router maintains virtual
output queues at each input port and an output queue at
each output port; these queues share the switch memory [16].
Packets that arrive are served in first-in-first-out (FIFO) order
in switches, and they are dropped when the switch buffer over-
flows which accounts for packet loss [17], [18]. A TCP flow
begins with the slow start phase, during which its congestion
window increases by 1 segment after each ACK. Duplicate
ACKs (usually 3) indicate packet loss in the network, leading
the congestion window to be halved. After the first loss, TCP
gets into the congestion avoidance phase where the congestion
window is increased by 1 segment every round trip time (RTT)
and still halved in the case of the next packet loss (3 duplicate
ACKs). This scheme is called additive increase multiplicative
decrease (AIMD). The size of the data that a sender can send
is at most equal to the congestion window size; therefore the
sending rate is the congestion window size divided by RTT.
RTT does not change too much in a flow’s duration, so the
congestion window determines the sending rate. In TCP all
flows follow the same AIMD scheme, thus they equally share
the network and achieve max-min fairness.

In the AIMD, we define a weight to each flow. A flow with
weight a increases its congestion window by a segment each
RTT in the congestion avoidance phase. Then the contending
flows’ sending rate can be precisely controlled by the follow-
ing theorem.

Theorem 1: In congestion avoidance phase, if two con-
tending flows additive increase rate ratio is a : b and the
multiplicative decrease is the same (decreased by a half when
congested), these two flows’ sending rate ratio converge to
a : b.

Assumptions: (1) There are only 2 flows competing with
each other. (2) The flow durations are long enough for them
to converge to the final allocation ratio. (3) When the network
is congested, the intermediate router starts to drop packets
belonging to both the flows. (4) Both flows have the same
total delay and RTT on their paths.

Symbols and Terms: (1) T is the total delay on the links
of the path and T ′ is the RTT, (2) B is the total size of all
switch buffers in the network, (3) On-path links have the same
bandwidth capacity C, (4) a is flow 1’s weight, and b is flow
2’s weight, (5) flow 1 and flow 2 converge to sending rate R1

and R2 finally.
Proof: The bandwidth-delay product is C × T and so the

total byte capacity in the network is C × T + B, which is
denoted by

S = C × T.
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Fig. 5: Congestion Window Changes in the 2-flow Scenario

As two flows increase their own congestion window, the
network experiences congestion. Assume the two flows’ con-
gestion windows are w1 and w′1 when the network is congested
for the 1st time, w2 and w′2 for the 2nd time,..., wi and w′i the
i-th time. Then we have

wj + w′j = S, ∀j.

When the network is congested, according to the multiplica-
tive decrease the two flows’ congestion windows are halved
into 0.5wj and 0.5w′j respectively. In the following additive
increase, their windows increase in a ratio of a : b until
the remain 0.5S network capacity is divided. Then the next
congestion occurs, at this time

wj+1 = 0.5× wj + 0.5× S × a

a+ b

w′j+1 = 0.5× w′j + 0.5× S × b

a+ b
.

With this recursive equation,

wj+1 − a
a+bS = 0.5(wj − a

a+bS)

= ... = 0.5j(w1 − a
a+bS)

let i→∞, we have

w = limi→∞wi = S × a

a+ b

w′ = limi→∞w′i = S × b

a+ b
.

So sending rates of flow 1 and flow 2 are

R1 =
S

T ′
× a

a+ b
, R2 =

S

T ′
× b

a+ b
.

and
R1 : R2 = a : b.

Simulation: We simulate the 2-flow scenario. The network
topology is a 3-node chain topology, the link capacity is
100Mbps and the delay on links is 50us. The two flows have
the same source and destination. We measure and plot the
congestion window as a function of time in Figure 5.

In both TCP and weighted TCP, the 2 flows converge to a
congestion avoidance state quickly. In TCP each of the 2 flows
increases its congestion window by one segment size every
RTT, and the window is halved in case of packet loss. In rate
control mode, we set the weights of the 2 flows to be 1 and 2
respectively. In the final converged state, flow 1’s congestion

window increases twice as fast as flow 2’s. When the network
is congested, both windows are halved. In converged state, the
ratio of both flows’ window sizes equals the ratio of weight
at any time.

The assumption (2) holds for most of the flows. When a new
flow joins the network, it contends with existing flows which
probably take most of the link capacity. Assume the first packet
drop happens at the rate of hundreds of Mbps and the RTT is
hundreds of microseconds, then the congestion windows is in
the order of tens of KB, the data that is already sent is also
in this order. The assumption (4) does not always hold, which
causes occasionally deviations from the theoretical result. But
when the network is congested, and both flows are sending at
least hundreds of packets per second, it is of high possibility
that both flows’ packets are dropped. The simulation (Figure 5)
also shows that in most cases that the network is congested,
both flows’ congestion window are decreased by a half.

B. Small Flow First Scheduling

With weighted TCP, we can control flows’ sending rates
precisely. When multiple flows contend about the bandwidth,
the bandwidth allocation actually is a job scheduling problem.
We propose that, by small flow first scheduling, we can reduce
the average completion time.

Theorem 2: If a large flow with duration [s1, t1] and a small
flow with duration [s2, t2] share the same network bandwidth,
and if s1 < s2 < t2 < t1, then by allocating more bandwidth
to the small flow, the average completion time of the two flows
reduces.

Symbols and Terms: (1) the large flow has size S1 and the
small S2, (2) the shared link bandwidth on the path is C, (3)
in TCP, the small flow sends at rate R2; when assigning more
bandwidth to the small flow, it has sending rate of R′2, (4) the
durations of the large flow and the small one are [s′1, t

′
1] and

[s′2, t
′
2] when assigning more bandwidth to the small flow.

Proof: With the same trace in two cases, we have

s′1 = s1, s
′
2 = s2.

Assigning more bandwidth in the 2nd case, we have

R′2 > R2.

Then for the small flow

t′2 − s′2 =
S2

R′2
<

S2

R2
= t2 − s2,

completion time decreases. Consider the time when the last
bytes of both flows is sent, we have

t′1 − s′1 =
S1 + S2

C
= t1 − s1

For the large flow, the completion time is the same. So the
average completion time decreases.

By the measurement in Section III, we observe that most
small flows start and finish in the duration of a large flow. Only
a very small number of small flows partially overlap with a
large flow. So we conclude that most small flows benefit in
their completion time. If a large flow partially overlap with a
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Fig. 6: Throughput in the 2-Flow Scenario

small flow, the overlapping period is less than a small flow’s
duration, which is 2 orders of magnitude smaller than its
original completion time, thus it is neglectable.

Simulation: We still simulate the 2-flow scenario, with the
two flow of size 100MB and 10MB on the same path. We
set the large flow with weight 1 and small flow with 2 in
weighted TCP, and also simulate the same flows with TCP.
The throughput of both flows is shown in Figure 6.

In TCP, the large flow starts first, then followed by the small
flow. According to TCP’s fairness, both sending rates finally
converge to half of the link capacity. In weighted TCP, the
expected bandwidth allocation ratio is 2:1, which is exactly
shown in Figure 6(b), and the completion time also decreases
from 1.8s to 1.2s.

C. ATCP Design

The design of ATCP is based on TCP rate control and flow
scheduling in the previous sections. In ATCP, we first add a
sent-data counter in the flow socket structure. It counts bytes as
the flow sends data. Then we introduce a weight-size function,
which takes the sent-data size as input and gives a weight as
output. Finally, we change the additive increase in TCP by
making the increased size proportional to the weight.

The weight is large at the beginning, and then decreases as
sent-data size increases. So small flows’ weight is relatively
high in their duration; a large flow only sends the first few
bytes with a high weight and the remaining bytes are sent
with a low weight. When a small flow competes with a large
flow, it is quite possible that the small flow has a higher weight
than the large flow, so that small flow can get more bandwidth.

ATCP design satisfies the requirements in Section IV, ATCP
uses AIMD scheme, so the network is still fully utilized.
By setting small flows’ a higher weight, ATCP guarantees
that small flows get more bandwidth and complete more
quickly. By counting sent bytes, ATCP does not need flow
size information from the application layer; thus it is flow
agnostic. All the changes are in the protocol stack, so ATCP
avoids hardware device changes.

The weight-size function is the key of the adaptive rate
control. ATCP start from the requirements and design the
weight-size function:
• All flows achieve high network utilization. So the weight-

size function is always positive.
• The more a flow sends, the less competitive it is. So the

weight-size function is decreasing, but not necessary to

be strict.
• Small flows are more or at least not less competitive than

large flows. So in the duration of a small flow, its weight
is no smaller than a large one. W (s) = max(w), for
s < T1, where T1 is the threshold of small flows. W (s) is
a constant when s < T1 because if it is strictly monotone
decreasing, a late-start large flow can have larger weight
than an early-start small flow in their overlapping period,
which degrades the small flow’s throughput.

• ATCP should have neglectable influence on large flows.
For several contending large flows, they should have the
same behaviors with TCP, thus their weight should be
the same. So W (s) = c, for s > T2, where T2 is a
threshold which means the flow has sent sufficient volume
of traffic. W (s) is a constant when s > T2, because if it
is strictly monotone decreasing, the late-start large flows
will dominate the early-started ones.

To satisfy the principles above, the weight-size function should
have the following format

W =


WH if s ≤ T1

W ′(s) if T1 < s ≤ T2

WL if s > T2

,

where the W ′(s) is a monotone decreasing function from
WH to WL at the range [T1, T2]. There are multiple choices
of the function W ′(s), such as exponentially decreasing or
linear decreasing. But considering the order of magnitude of
small flows and large flows, we go on simplify the weight-size
function to a two-segment constant function.

As we discussed in Section III, 80% bytes are sent by
flows that are larger than 10MB, so we define the small flow
threshold T1 to be 10MB. We want the large flows behave
like TCP, and only when s > T2, the large flows has a fixed
weight and max-min fairness among them. So T2 should not
be too large and the interval [T1, T2] should only be a small
portion of the whole flow size. We assume it to be 2 orders
of magnitude smaller. Consider the typical large flow size is
hundreds of megabytes, T2 is in [1MB, 10MB]. Then T2 is
simplified to be equal to T1. In our real trace simulation, even
we set T1 6= T2 and different W ′(s), we find very small
portion of flows overlapping with large flows in [T1, T2] and
the format of W ′(s) really does not make too much difference.
So the weight-size function is finally set to be:

W =

{
WH if s ≤ T

WL otherwise
.

By this weight-size function, for all flows that are smaller
than T , their data will be sent by the highest weight WH .
When competing with a large flow, if the large flow is sending
in weight WH , its performance in ATCP is no worse than in
TCP; if the large flow is sending in weight WL, the small flow
will be more aggressive. And comparing the magnitude of T
and data size of a large flow, the latter is the most common
case in the network, thus most small flows benefit.



D. Discussions

ATCP does not lead to large flow starvation. ATCP allo-
cates more bandwidth to small flows than large flows, thus
small flows completes more quickly and leave more time to
large flows as compensation. One may argue that if small flows
come one by one which makes the large flow contends with
small flows throughout its life, it always gets lower bandwidth
in ATCP than in TCP. We argue that this comparison is unfair,
because in ATCP, small flows complete more quickly, and if
they come continuouly, there are actually more frequent small
flows in ATCP. To make the comparison fair, we fix the flow
trace with the same flow arrival time stamps and sizes, if the
network sends data by the best effort and links are always
close-to-fully-utilized, in a fixed period, the network sends a
certain amount of bytes. In this amount, the total size of all
small flows is fixed, and all the left bandwidth are used by
large flows, which follows max-min fairness among them in
both TCP and ATCP. So the large flows’ completion time is
not influenced. Simulation results also verify that large flows
are not influenced.

There are many TCP variants now, such as Tahoe, Reno,
new Reno, Cubic [19], etc., and the IETF TCPM working
group [20] also develop various extensions of TCP to adjust
to different scenarios. However, all these TCP variants follow
AIMD, our mechanism can be used to modify them to be
adaptive in the cloud.

ATCP does not achieve application-level fairness. If an
application starts multiple connections to speed data transfer
up, it gets more bandwidth than the application with less
connections. However, this is not solved by TCP either. ATCP
can work with other mechanisms that control fairness, such as
fairness queuing or QoS. In this case, the flows in the same
queue can still reduce their average completion time by ATCP.

The weight-size function can be in other formats. For
example, it can be refreshed periodically to adjust to some
periodical bursty flows. Recently there are some flow deadline-
aware designs such as D3 [5] and D2TCP [13]. We can also
achieve this by changing the weight-size function to be weight-
time function. For example, we let the weight function increase
with time first, and after it misses the deadline, the weight is
decreased to a small value.

A flow’s data transfer time includes propagation delay,
queuing delay and transmission time. Propagation delay equals
[sum of links’ length] over [light speed in the links], queuing
delay is the sum of [queue length in each switch] over [link
bandwidth], and transmission time equals [flow size] over
[sending rate]. ATCP actually decreases the transmission time
by assigning a larger sending rate. In the data center, if the
data size is too small, the queuing delay and propagation delay
dominate the total transfer time, the improvement is limited.
While if the transmission time dominates the total time, the
improvement is more significant. In this case the flow size is
usually 100KB-10MB according to our simulation.
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VI. IMPLEMENTATION

We implement ATCP in NS2 to estimate parameters and
evaluate the trace from data center and other benchmarks. In
NS2’s socket data structure, we add the parameter WH , WL

and T as members, and we also add the counter to the socket
to record sent-data size which is set to be 0 initially. When the
socket sends data, the size of sent data is added to the counter.
In congestion avoidance state, when the congestion window
CWND is increased by some value adder, we increase it
by adder × weight(), where weight() is computed by the
parameters and counter. We add APIs to set the parameters in
the socket data structure.

The changed code is less than 100 lines, but it improves
TCP’s performance significantly.

VII. EVALUATION

In this section, we first use real trace simulation to discuss
how to set the parameters WH and WL, and then evaluate
ATCP performance in various scenarios such as different
topologies and traces. Finally, we compare application per-
formance in TCP, DCTCP [9] and ATCP.

A. Parameter Setting

In weight-size function, the parameters are WH , WL and
threshold T . We set up the T by observing the flow size
distribution in Figure III. The gap between small and medium
(<10MB) flows and large (>10MB) flows is very obvious, so
we set the parameter T to be 10MB.

We build a 4-hop chain topology with 100Mbps capacity
and 50us latency on each link. We use the measured trace
and try combinations of WH + WL (fixed-sum mode) and
WH : WL (proportional mode). We simulated with WH +WL

and WH : WL ranging from 1 to 5. We measure the flow
completion time. The results are shown in Figure 8 and Figure



7, which are the median of completion times for medium flows
and small flows.

Compared with small flows, medium flows have more
significant improvement. In the best case, with WH = 3 and
WL = 1, median completion time for medium flow is reduce
by 40% from 2.3s to 1.4s. In all cases with WH : WL > 2,
median completion time is reduced by 20% to 40%. While
small flows’ median completion time is reduced by at most
15%. In most cases, the reduction is about 10%. Since the flow
completion time is composed by propagation delay, queuing
delay and transmission time. Small flows’ propagation delay
dominates the total transfer time, so allocating more bandwidth
only helps a bit; but medium flows’ transmitting time(size/rate)
dominates the total transfer time, so allocating more bandwidth
improves medium flow’s performance more.

WH : WL plays a key role in bandwidth allocation. From
figure 8(b) the larger the ratio is, the smaller the completion
time is. The completion time reduces rapidly as WH : WL

varies from 1 to 4, then trend slows down. This can be
explained by the 2-flow example, suppose the weight ratio
is R, the link capacity is C and the medium flow size is S,
then the bandwidth allocated to medium flow is

C × R

R+ 1
,

so the completion time is

S

C
× (1 +

1

R
),

whose curve is decreasing rapidly first, then slows down.
WH +WL has influence on the oscillation of to-

tal throughput. In the 2-flow example, (WH + WL) ×
SegmentSize is the increment of sum of all congestion
windows in each RTT. With a large WH + WL, the total
congestion window exceeds the networks capacity quickly,
and packet loss happens frequently, which leads to throughput
oscillation. So as WH + WL increases from 1 to 5, the
completion time decreases first, then increases, which matches
Figure 8(a).

B. ATCP Performance

We first simulate ATCP on a chain topology to evaluate
its effectiveness and robustness in various situations. We still
use the flow traces from the measurement and 4-hop chain
topology. In all these evaluations, we set WH = 3 and WL =
1.

We introduce flow deadlines from D3 [5]. Applications in
data center usually have deadlines, which constrained by the
service’s acceptive response. Only flows that complete in their
deadline is meaningful [5]. For example, in some distributed
computations such as web search, the sub task that cannot
complete before a certain deadline is abandoned. We introduce
deadline for our small flows, we take the deadline of 30ms
from [5]. We look into the result get in previous section with
WH = 3 and WL = 1, the results is that with ATCP, 84.6%
small flows meet with their deadlines, while only 77% small
flows meeting with their deadline in TCP.

TABLE I: Completion Time - Flow Density

Setting

Median Completion Time
(Small/Medium Flows)

TCP ATCP
Non-dense flows 625ms/2.3s 543ms/1.4s

dense non-large flows 763ms/2.5s 680ms/1.6s
dense large flows 750ms/2.8s 680ms/1.8s
dense all flows 813ms/2.9s 707ms/1.8s

TABLE II: Completion Time with Disjoint Path

Setting

Median Completion Time
(Small/Medium Flows)

TCP ATCP
Large flows on the chain 562ms/2.0s 489ms/1.3s
Small flows on the chain 688ms/2.5s 598ms/1.6s

ATCP is robust in case of dense flows. We increase the
density of flows in three ways, dense large flows, dense non-
large flows, and dense all flows, the way we increase flow
density is to double the corresponding (large, non-large, and
all) flow number in a fixed time. As we expected, with the
increase in completion time, which is measured in Table I
the links become more congested, so the throughput for each
flow decreases. In all cases, ATCP reduces completion time
compared with TCP, small flows’ median completion time get
10%-13% reduction at the median and medium flows is about
30%-40%. In dense non-large flow case, the improvement is a
bit better, which is 39% than that in dense large flow case in
which the reduction is 36% for medium flow; because in dense
non-large flow case, non-large flows take more bandwidth
from the large flows.

Flows always have disjoint paths, and only some links on
the path may be shared. We simulate two scenarios where large
flows and small flows partially share their path. We use a 5-
node chain topology. In the first case, large flows transfer data
through the whole chain, and small and medium flows takes
one of the links from the chain. In the second case, each large
flow takes one link respectively, while small and medium flow
pass the whole chain. We still use trace from the measurement.
The completion time at both cases with different parameters
are shown in Table II.

In both cases, ATCP works better. Even when flows share
different links, non-large flows still get more bandwidth when
they compete with large flows. In the case that large flows
take the whole chain, the performance is a bit better than that
in the case that non-large flows take the whole chain. If the
large flow takes the whole chain, as long as one of the links on
its path is congested, the long flow will decrease the sending
rate at the whole chain, which will give more opportunity for
non-large flow on other links.

We also simulate a web service application in a tree

TABLE III: Web Service in a Tree

Completion Time TCP ATCP
median of small flows 102ms 80ms

median of medium flows 1.7s 1.2s
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Fig. 10: Completion Time in Fattree

topology like Figure II(a), we choose a one node as a web
server and one node as a database. The database server
backups data by transmitting data to another server, which
is a large flow. We also add some other background flows,
with the distribution of Figure III. Then we simulate some
non-large flows from between web server and a client and
between web server and database. Results in Table III show
that there are about 5%-10% improvement on completion time
for small flows, about 50% for medium flows, and almost no
influences on large flows.

C. ATCP vs. DCTCP

We compare ATCP with DCTCP. We choose DCTCP be-
cause both of them are flow agnostic, and we do not need
deadlines from the applications.

We perform our simulations on a network with fattree [21]
topology. We maintain the full bisection bandwidth in a tree
topology to simulate the rich paths in fattree [21] topology.
There are 4 racks with each rack having up to 10 machines.
Each of these machines connects to the top-of-rack (ToR)
switch via 1 Gbps link. ToR switches are connected to a core
router via 10 Gbps link. One server works as an aggregator
in a distributed application, and all other servers send small
responses of size in [1KB, 10MB] to the aggregator. Then we
inject a background flow for the core switch to the aggregator.
We compare TCP, ATCP and DCTCP in terms of the flows’
median completion time.

In Figure 10, small flows’ median completion time is
210ms, 20ms and 21ms in TCP, DCTCP and ATCP respec-
tively; and medium flows’ median is 1.1s, 0.93s and 0.81s.
Both ATCP and DCTCP dominate TCP; ATCP allocates more
bandwidth to small flows to reduce their transmission time;
DCTCP maintains smaller switch queue length to reduce
their queuing delay. In DCTCP and ATCP, the small flows
completion times are near each other. But medium flows have
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Fig. 11: MapReduce Shuffle Flows’ Completion Time CDF

better performance in ATCP than DCTCP. Because DCTCP
reduce the queuing time in the network, and this saving has
an upper bound (queue length over bandwidth); but ATCP
reduce the transmission time (data size over sending rate), so
that the larger the data size is, the more a flow benefits.

Referring to the deadline discussion in [5], we set a
deadline of 30ms for the flows smaller than 100KB. In
our simulation, the percentage of flows whose deadlines are
satisfied are 23%, 62% and 61% in TCP, DCTCP and ATCP
respectively. ATCP improves TCP a lot and is comparable
with DCTCP. In our simulation, we use rather dense flows
compared with D3 [5], and 38% more flows are satisfied. This
portion is larger than the result in D3. We believe ATCP is
comparable with D3 in terms of the service deadline.

Finally, we look into an application’s performance. We
take MapReduce as an example. According to [22], the
straggler in the shuffle phase influences the application’s whole
performance. With the same topology and background flow
setting, we deploy TCP, ATCP and DCTCP for a MapReduce
simulation. We collect the completion times of all shuffle
flows. Figure 11 displays the completion time CDF of a
hadoop job’s shuffle flows in different protocols. The ATCP
curve is the leftmost, thus is the most efficient protocol for
shuffle flows. By running MapReduce several times, ATCP
and DCTCP perform better than TCP in terms of average
completion time. ATCP reduce the average completion time by
61%, and DCTCP by 59%. ATCP is even better than DCTCP,
because in our MapReduce simulation, we simulate a large
data sorting application, and set the data block size to be 8MB.
In this size, ATCP flows benefit more than DCTCP.

The latest completion time determines the application’s
completion time. ATCP reduces the data shuffle time by 33%
and total job completion time by 10.5%; DCTCP reduce
these them by 25% and 7%. ATCP’s small-flow-preferred
mechanism improves distributed application’s performance in
the end. This MapReduce simulation also implies that the
MapReduce application can be configured to suits the new
transport layer protocol.

VIII. RELATED WORK

There are vast literatures on TCP congestion control. How-
ever, our idea that ATCP combines rate control, flow schedul-
ing and cloud adaptiveness is more or less different from
existing works.

MulTCP [23] and AIMD(a,b) TCP [24] all proposes that by
changing additive increase rate the TCP flow’s throughput and



loss ratio changes. But they only study single flow’s through-
put, and observe multiple flows’ performance by simulation.
In ATCP, we provide a theoretical proof about the precise
bandwidth allocation when flows contending.

Rai et al. propose size-based flow scheduling algorithms like
Shortest Job First(SJF) , Shortest Remaining Processing Time
(SRPT) and Least Attained Service (LAS) in [25], They use
simulation to show that these scheduling algorithms reduce
job completion time. But they do not mention how to control
flow rate and their solution is not flow agnostic.

Gorinsky et al. provide the theoretical proof [26] that
their Shortest Fair Sojourn (SFS), Optimistic Fair Sojourn
Protocol (OFSP) and Shortest Fair Sojourn (SFS) scheduling
policies are fair without starving any flows. We use their proof
techniques to proof our small flow preferred scheduling lead
to smaller average completion time.

DCTCP [9] uses ECN to notify the end-host of congestion
in the network, which the end-host then uses to modulate
its congestion window. DCTCP also reduces the completion
time by reducing router’s queue length. However, it does not
explicitly help short flows like our approach does.

In D3 [5], the endhosts encode deadline requirements within
packet headers using which the intermediate router computes
flows’ bandwidth. The scheduling algorithm tries to satisfy
as many flows’ deadlines as possible. However, this approach
changes router hardware as well as applications. ATCP only
makes small changes to endhosts. The trade-off is that ATCP
cannot provide explicit deadline guarantees; but as our results
show, it can improve the performance a significant fraction of
short flows compared to status quo.

D2TCP [13] uses both ECN flag and deadline knowledge
to adjust the congestion window, so that D2TCP can solve
both bursty fan-in problem and assign larger bandwidth to the
flows near deadlines. However, D2TCP still takes applications’
deadlines as input to compute congestion window changes,
which is not flow agnostic.

Seawall [8] uses weighted TCP to control sending rate, but
the authors introduce a different granularity for flow control
(VMs, or entity). Seawall requires tremendous changes to
host software. Also, it is non-trivial to modify applications to
provide weights. We note that ATCP can be complimentary to
Seawall. It can be viewed as a way to do dynamic bandwidth
allocation among flows corresponding to the same network
entity.

QoS is another way to allocate bandwidth to flows; it
maintains priority queues in the switches. However, typical
approaches need operator involvement and configuration for
each flow. And there are not sufficient amount of queues for
various applications.

IX. CONCLUSION

In this paper, we propose a new variant of TCP for clouds
named Adaptive TCP. Our work is motivated by the fact that
TCP’s fairness does not differentiate among delay-sensitivity
of applications, while existing solutions require draconian

changes to applications, infrastructures and the service mod-
els. Based on measurements that delay-sensitive applications
typically use short flows, and that the flows often co-exist
with large flows, our scheme is designed to “steal” bandwidth
from large flows over time and reallocate to small ones, and to
“compensate” large flows by more transfer time. We achieve
this via simple adjustment of TCP’s additive increase param-
eter as a function of data sent, requiring minimal changes
to the cloud software infrastructure, leaving applications and
hardware unmodified. Simulations based on real data center
traces show that ATCP reduces small flow completion time
significantly without influencing large flows. As a result the
performance of time-sensitive applications is improved.
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