RoGUE: RDMA over Generic Unconverged Ethernet

Yanfang Le
University of Wisconsin-Madison
yanfang@cs.wisc.edu

Aditya Akella
University of Wisconsin-Madison
akella@cs.wisc.edu

ABSTRACT

RDMA over Converged Ethernet (RoCE) promises low latency and
low CPU utilization over commodity networks, and is attractive for
cloud infrastructure services. Current implementations require Pri-
ority Flow Control (PFC) that uses backpressure-based congestion
control to provide lossless networking to RDMA. Unfortunately,
PFC compromises network stability. As a result, RoCE’s adoption
has been slow and requires complex network management. Recent
efforts, such as DCQCN, reduce the risk to the network, but do not
completely solve the problem.

We describe RoGUE, a new congestion control and recovery
mechanism for RDMA over Ethernet that does not rely on PFC.
RoGUE is implemented in software to support backward compat-
ibility and accommodate network evolution, yet allows the use
of RDMA for high performance, supporting both the RC and UC
RDMA transports. Our experiments show that RoGUE achieves per-
formance and CPU utilization matching or outperforming native
RDMA protocols but gracefully tolerates congested networks.

CCS CONCEPTS

« Networks — Transport protocols;

KEYWORDS

Congestion control, RDMA, datacenter transport

ACM Reference Format:

Yanfang Le, Brent Stephens, Arjun Singhvi, Aditya Akella, and Michael
M. Swift. 2018. RoGUE: RDMA over Generic Unconverged Ethernet. In
Proceedings of SoCC ’18: ACM Symposium on Cloud Computing, Carlsbad,
CA, USA, October 11-13, 2018 (SoCC ’18), 12 pages.
https://doi.org/10.1145/3267809.3267826

1 INTRODUCTION

Remote Direct Memory Access (RDMA) provides direct access from
user mode, transferring data (segments) directly to and from applica-
tion buffers. RDMA bypasses expensive system calls, and performs

“Work done while at University of Wisconsin-Madison

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SoCC ’18, October 11-13, 2018, Carlsbad, CA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6011-1/18/10...$15.00
https://doi.org/10.1145/3267809.3267826

Brent Stephens®
University of Illinois at Chicago
brents@uic.edu

Arjun Singhvi
University of Wisconsin-Madison
asinghvi@cs.wisc.edu

Michael M. Swift
University of Wisconsin-Madison
swift@cs.wisc.edu

packetization and packet parsing in hardware. Furthermore, it en-
ables one-sided operations, whereby one side of a connection can
be handled entirely in hardware with no host software involvement.
Thus, RDMA significantly improves both end-to-end latency and
CPU overhead compared to TCP/IP networking [7, 16]. Further-
more, recent work has shown that these benefits of RDMA can
speed up cloud applications and services, such as key-value stores,
replicated state machines, and HPC workloads [7, 14, 16, 24]. As
such, RDMA-enabled NICs (RNICs) are increasingly being rolled
out in data centers and cloud services in both public and private
settings [11, 14].

Originally developed for boutique Infiniband networks in high-
performance computing, RDMA over Converged Ethernet (RoCE)
provides RDMA capabilities over Ethernet networks. However,
RDMA protocols continue to assume a lossless network. As a re-
sult, RoCE traffic requires a suite of enhancements to coexist with
standard Ethernet traffic [2, 5, 6, 8]. In particular, it requires Prior-
ity Flow Control (PFC) to enable lossless forwarding. PFC causes
switches/hosts to generate pause frames when their buffer occu-
pancy crosses a threshold, which throttles senders. Thus, PFC pro-
vides congestion control for RDMA networks. Furthermore, with
PFC enabled, packet losses only occur due to rare bit corruptions,
from which RNICs recover using simple hardware retransmission
schemes.

Unfortunately, PFC has known fundamental issues that create
serious negative side-effects [11, 20, 26, 28, 31]. Latencies can in-
crease due to head-of-line (HOL) locking [20, 26, 31]. Malfunc-
tioning devices and incorrect routing can deadlock an entire net-
work [4, 11, 26, 28]. Due to these hazards, datacenters and cloud
administrators today either limit the scale of their RDMA deploy-
ments or disallow RDMA altogether.

Our goal is to develop an approach that preserves the benefits
of running RDMA for commodity Ethernet networks but without
any reliance on PFC. Giving up on PFC means we must design
new schemes for congestion control and recovery from congestion-
induced losses.

A key question is where and how to implement these function-
alities. One possibility is to implement them entirely in RNIC hard-
ware. We argue that such hardware-based approaches have crucial
drawbacks (Section 2.4). First, administrators, especially of small-
to medium-scale on-premise/private clouds, cannot rely on RNIC
vendors to roll out custom hardware changes; thus, they may be
forced to deal with legacy RNICs. Second, approaches baked into
hardware cannot handle non-standard protocol implementations
in switches (Section 2.4), nor can they handle evolution in switch
functionality or end-host congestion control protocols.

SoCC ’18, October 11-13, 2018, Carlsbad, CA, USA

Thus, to support backward compatibility and network evolution,
we seek a software-based solution. However, designing such a so-
lution is non-trivial. First, indiscriminate use of software-driven
control, e.g., using software to pace each packet at the appropriate
rate, or to identify and recover from packet losses, can severely
undermine RDMA CPU and latency benefits. Second, signals of
congestion that traditional schemes leverage, e.g., packet drops and
ECN bits, are consumed by the RNIC and not available in software.
Third, achieving low CPU overhead with RNICs requires leveraging
their native support for certain crucial functions, e.g., high perfor-
mance messaging, high precision timestamping, and rate limiting.
Together these imply that in order to meet our goal we must strike
the right balance and leverage hardware support judiciously in
software.

Our RDMA transport layer, RoGUE, achieves this judicious divi-
sion of labor. It is implemented as a shim layer above OpenFabrics
Enterprise Distribution (OFED) userlevel API [23]. It lifts RDMA
congestion control and loss recovery functionality into software,
while leveraging existing hardware to assist software and to acceler-
ate performance. It works with both RC and UC RDMA transports
(Section 2.4).

RoGUE offloads expensive messaging operations to hardware
and implements core congestion control logic in software. In partic-
ular, it transforms an input set of application segments into RoGUE
segments whose size is optimized to balance RoGUE’s CPU over-
head with its ability to react quickly to congestion. RoGUE relies on
delay to estimate and respond to congestion, instead of packet drops
and ECN bits. This is because ECN marks only indicate network
congestion, while delay can indicate congestion in both the RNIC
and the network. Furthermore, today’s RNICs consume ECN marks,
making them transparent to software. Our custom algorithms pro-
vide accurate and low overhead RTT estimates for different RDMA
transports using RNICs’ hardware timestamping support, coupled
with tuning RDMA signaling frequency from software. We leverage
the TCP Vegas algorithm [1] for congestion response. RoOGUE uses
a congestion window to ACK-clock verbs from software, coupled
with hardware rate limiters to pace individual packets out the RNIC;
together these ensure stable congestion control behavior.

RoGUE’s congestion control helps it keep queue lengths low
and drops to a minimum even without PFC turned on. When occa-
sional drops do occur, RoGUE first relies on the RNIC’s hardware
retransmission scheme. But when the scheme’s inefficiency and
slow reaction can hurt throughput (e.g., under burst losses), RoGUE
uses a backup shadow queue pair to drive retransmissions from
software without losing performance.

We conduct an extensive evaluation of ROGUE over a testbed
consisting of 32 servers connected using 10 Gbps RNICs. We find
that RoGUE’s use of large segments helps keep CPU overhead
low (17% vs. 5% of one CPU with native RoCE that uses 4X larger
segments than RoGUE). RoGUE can adapt quickly to congestion
while keeping queuing low. RoGUE offers comparable throughput
to DCTCP, but results in substantially lower network latency, nearly
one-third for small RPC traffic. Finally, RoGUE offers fair allocation
to large application flows, and the lowest completion times, when
compared with alternatives, for short flows.

Y. Le et al.

Host RNIC
__
S——

RNIC Host

e

NER

Figure 1: RC Workflow.

2 BACKGROUND AND MOTIVATION

We start with overviews of key RDMA protocols and RoCE. We
then highlight the drawbacks of current RDMA deployments, and
end with a specification of the problem we seek to solve and our
objectives.

2.1 RDMA Preliminaries

With RDMA, user-space applications invoke the kernel to allocate
a NIC queue and then establish a connection to a remote machine.
Applications interface directly with RNICs using a client library to
send RDMA verbs to queues. The most commonly used verbs are
READ, WRITE, SEND and RECV. READ fetches data from the mem-
ory of a remote host, and WRITE transfers data into the memory
of a remote host. READ and WRITE are considered “one-sided” be-
cause they only require host activity on the sending end: the RNIC
at the receiver processes the request without software involvement.
SENDs are “two sided”: they transfer a message to a remote host,
where software enqueues a RECV verb to receive the message. The
data size in a verb can generally be up to 2GB. WRITE_WITH_IMM
and SEND_WITH_IMM are variants of WRITE and SEND that carry
an additional 4 bytes of immediate data that can be read by software
on a remote host.

READs, WRITEs, and SENDs are posted to send queues. RNICs
also create receive queues when a connection is set up. For READ
and WRITE, receive queues are ignored, while for SENDs software
must post corresponding RECVs to them. All send and receive
queues are paired, and each queue pair (QP) is associated with a
completion queue that signals the completion of events and delivers
immediate data. User-space applications can use interrupts or poll
the completion queue.

RDMA supports three transport types: Reliable Connection
(RC), Unreliable Connection (UC), and Unreliable Datagram (UD).
SEND/RECYV are supported by all transports as they have the least
requirements. WRITEs are supported by RC and UC, but READs are
only supported by RC. In RC, the RNIC is responsible for retrans-
missions following a loss. In contrast, packet drops are ignored by
the RNIC in UC and UD.

RNICs can signal the application of the completion of a verb
via an event. If an application does not need to be notified when a
verb completes, then it can disable signaling, which reduces CPU
utilization. Figure 1 shows the complete sequence of operations
for a WRITE verb using RC. (1) Host software enqueues the verb.

RoGUE: RDMA over Generic Unconverged Ethernet

(2) The RNIC then uses DMA to retrieve the data for the write
from host memory and (3) transmits it over the network in one or
more packets. (4) The receiving RNIC writes the data to memory,
and after receiving the last packet, (5) sends back an ACK. The
sending RNIC, on receiving the ACK, (6) optionally generates a
signal notifying the application that the WRITE completed (red
arrow). UC verbs are similar except that the receiving side does not
ACK and signals are delivered when the last packet of a verb is sent,
not when an ACK is received.

2.2 RoCE

RDMA originally required a lossless Infiniband network. RDMA
over Converged Ethernet (RoCE and RoCEv2) enables RDMA over
commodity Ethernet networks. It achieves this by using Priority
Flow Control (PFC) [6] to avoid congestion losses and RNIC re-
transmissions to recover from drops due to corruption.

Lossless forwarding: PFC-configured devices generate pause
frames when their buffer occupancy exceeds a threshold. As con-
gestion persists, pause frames propagate back towards the source
of the congestion, exerting “backpressure,” slowing senders, and
preventing buffers from filling more. RoCE uses PFC to avoid packet
drops caused by congestion.

Loss recovery: With PFC enabled, packets can only be dropped
due to corruption. RNICs automatically handle such losses without
software intervention. Because such losses are rare, RNICs do not
implement sophisticated retransmission schemes. When an RNIC
receives a NACK or times out waiting for an ACK, it retransmits
the remainder of the verb starting with the dropped packet even if
packets following the drop were already successfully delivered.

2.3 Drawbacks of PFC

While PFC enables applications to extract the performance of RDMA,
its drawbacks make it difficult and risky to use in a datacenter. A
significant problem is that a single malfunctioning device can cause
the network to become deadlocked and unable to forward pack-
ets [11, 28]. Incorrect routing can also lead to deadlock [4, 11, 26].
Because routing must now be deadlock-free, network throughput on
some topologies is reduced [26]. PFC also suffers from bufferbloat,
HOL-blocking, and unfair packet scheduling [26, 31].

Recent advances in datacenter congestion control, notably DC-
QCN [31], mitigate how often PFC is invoked. However, serious
problems remain: a slow or malicious host that stops reading from
its receive queue can generate pause frames and deny other tenants
access to the network [31]. Recent works on pervasive monitor-
ing [11] partially address this problem by identifying when such
issues are about to occur. Yet, the inherent limitations of monitoring,
such as inaccuracies and inability to scale to large deployments,
mean that serious PFC problems still arise in production [11].

2.4 Problem Statement

These drawbacks lead to the main question we address: can we
extract the benefits of RDMA on commodity Ethernet networks
without any reliance on PFC? Because PFC is central to avoiding
congestion and losses, answering the above requires rethinking
RDMA congestion control and recovery mechanism in a way that

SoCC ’18, October 11-13, 2018, Carlsbad, CA, USA

retains the latency and CPU benefits of RDMA but tolerates congestion-
induced losses.

The main design issue we face is whether to implement the above
schemes in software or hardware.

Congestion control: Hardware approaches to congestion control
suffer from a number of problems [22]. In particular, there are three
situations where software congestion control is superior to reliance
on the existence of custom RNIC hardware or switch support.

First, while large cloud operators such as Google and Microsoft
can work with vendors to roll out custom switch/NIC features
that incorporate advancements for congestion control, this is of-
ten not possible for admins of enterprises with small to medium
sized private datacenters and clouds (see Judd [15] for an example
perspective from Morgan Stanley). Such operators are limited to in-
flexible commodity hardware. Software congestion control enables
such clusters to extract RoCE’s benefits without the pain of PFC.

Second, clusters (both big and small) may have heterogeneous
network hardware with non-standard protocol implementations.
For example, the switches in CloudLab [3] that we use for experi-
ments have a non-standard implementation of RED [9] (Section 4).
This can hurt throughput of hardware congestion control schemes,
e.g., DCQCN [31], a state-of-the-art approach implemented on
RNICs that relies on ECN marks. Others have reported similar
issues [15]. In some networks, ECN may not be available at all [15].

Third, even with correct and homogeneous network support,
implementing congestion control in hardware complicates network
evolution. For example, DCQCN requires that switches implement
RED [9] to decide which packets to mark. Thus, using an alter-
nate in-network AQM scheme would require updating the DC-
QCN algorithm at hosts. Datacenter congestion control is rapidly
evolving [10, 12, 20, 29, 31], with tens of novel congestion control
algorithms proposed every year. Implementing congestion con-
trol in hardware can delay or prevent the adoption of these new
algorithms.

Loss recovery: Existing RNICs’ loss recovery mechanisms were
designed to work in a low packet-error regime. With PFC turned
off, however, flows can experience severe loss, e.g., under a burst
of newly starting connections. Unfortunately, the RNICs’ hardware
mechanisms to recover from these losses are very inefficient in
this case: it can take up to a few hundred milliseconds to detect a
drop and recover. For the same reasons as above, we cannot rely
on custom hardware to address these inefficiencies.

Division of labor: Designing entirely software-based approaches
faces two challenges:

(1) Hardware masks congestion signals: Congestion signals are
not always available or precise in RDMA, and per-packet RTT mea-
surements are unavailable. For example, in the RC transport, some
losses are handled by the RNIC and may be transparent to software
and, in UC, losses are silently ignored by the RNIC. Likewise, ECN
marks on packets are consumed by the RNIC and are transparent
to software.

(2) Software is inefficient: Implementing the needed functional-
ity, e.g., per-packet pacing, RTT calculation, congestion window
updates, tracking and retransmitting losses, etc., as it happens in
today’s TCP stacks, entirely in software is possible by using RDMA
verbs as small as a packet and signaling per small verb. However,
this creates unreasonable CPU overhead (Section 3.1).

SoCC ’18, October 11-13, 2018, Carlsbad, CA, USA

100 1) e e —
e sof 22 80 AN
G s A cg °r " 1
25 60f W] 25 60f . §
£g§ 4ot N 1 ég a0} ‘. i
§S 20} = , 35 20} h .
0 . . SR N 0 1 1 1 L TR -

1K 4K 16K 64K 256K 1M 4M
Segment Size (B)

1K 4K 16K 64K 256K 1M 4M
Segment Size (B)

(a) 10 Gbps (b) 100 Gbps
Figure 2: CPU utilization of a single core using READs to
saturate a link, signaling once per segment. 10 Gbps re-
sults use an Intel Xeon D-1548 CPU with a ConnectX-3
Pro [18]; 100 Gbps results use Intel Xeon E5-2660 CPU with
a ConnectX-4 [19].

But, hardware presents an opportunity. Almost all NICs provide
native support for several functions, e.g., RNICs implement messag-
ing operations in hardware; NICs (including RNICs) today provide
precise hardware timestamps; and all NICs support hardware rate
limiting. By carefully leveraging this via a suitable division of la-
bor between hardware and software, we can overcome the above
challenges.

3 ROGUE DESIGN

RoGUE is a new transport that enables use of existing RDMA hard-
ware to achieve near-native performance on unreliable networks.
It lifts congestion control and loss recovery functionality into soft-
ware, while using hardware to assist software’s action and for
common-case performance acceleration.

RoGUE is a layer above OpenFabrics Enterprise Distribution
(OFED) userlevel API [23], and takes as input a set of (large) verbs
from an application. It then implements congestion control by (i)
transforming those verbs into smaller segments for transmission
and imposing just the right amount of signaling for feedback, (ii)
using RTTs as well as drops to estimate congestion, and a window
to clock out verbs, and (iii) imposing hardware rate limits to pace
out packets.

In order to provide low overhead, good performance, congestion
control and reliability, the key questions that must be answered by
RoGUE are: (a) how to size segments? (b) how can congestion be es-
timated and effectively controlled given RNIC capabilities and con-
straints? (c) how to accommodate different underlying transports
(e.g., RC vs. UC)? and (d) how to recover from congestion-induced
losses?

3.1 Transmitting Data

A key benefit of RDMA is that using large segments and offloading
packetization and parsing to the RNIC minimizes CPU involvement
and load. But, large segments also reduce the granularity of feedback
from the network which impacts congestion control.

Thus, central to our design are two key considerations: segmen-
tation, or how large a verb should RoGUE transmit; and signaling,
or how often should the RNIC notify software that a verb completes.
RoGUE uses large enough segments and/or infrequent enough sig-
naling to preserve most of the CPU utilization benefits of RDMA
but not sacrifice the ability to respond to congestion.

Y. Le et al.

nN
o

T
B W 16KB per signal
A—A 64KB per signal
- @ ‘@ 256KB per signal

[u
o

hal

1

Cumulative
CPU Utilization (%)
=
o

5} T @ <
0 L L
1K 4K 16K 64K
Verb Size (B)
(a) A 10 Gbps ConnectX-3 Pro [18]
_ 60 ‘ ‘ ‘
& 50P- A—A 64KB per signal |
o \Cl @ @ 256KB per signal
%-g 40 V-V 1MB per signal
S 8 30}
£5 20}
05
2 10f
© o0
1K 4K 16K 64K 256K

Verb Size (B)
(b) A 100 Gbps ConnectX-4 [19]
Figure 3: The CPU utilization of infrequent signaling for dif-
ferent small verb sizes.

We take a quantitative approach to determine the best segment
size and signaling granularity. We consider two different RNICs:
the 10 Gbps ConnectX-3 Pro and the 100 Gbps ConnectX-4 RNIC.
We used the ib_read_bw OFED RDMA benchmark tool to drive
line-rate using different sized READs while using the dstat tool
to measure CPU utilization. The experimental setup is given in
Section 4. The results of our experiments are shown in Figures 2
and 3. We expect our approach and results to generalize to other
RNICs with similar line-rates.

From Figure 2, we observe that large verbs have low CPU utiliza-
tion even at once-per-segment signaling frequency. Signaling every
64KB verb uses less than 10% utilization on the ConnectX-3 Pro,
and signaling every 256KB verb uses less than 15% utilization on
the ConnectX-4. Thus, to receive frequent feedback about network
conditions, RoOGUE chops large verbs into 64KB at 10 Gbps and
256KB at 100 Gbps, and signals every verb. Even larger-size RoGUE
verbs would be slightly more CPU efficient, but they provide less
frequent feedback about network conditions, hurting the ability to
respond to congestion.

When an application issues small verbs (< 64KB and < 256KB),
we can see from Figure 2 that signaling every verb can result in high
CPU: signaling every 16K verb at 10 Gbps (100 Gbps) incurs 30%
(70%) CPU! However, Figure 3 shows that infrequent signaling, e.g.,
once per 64KB (256KB) of data at 10G (100G), drops CPU use to 8%
(18%) of one core for 16KB verbs. As noted before, making signaling
even more infrequent can hurt congestion response ability. Thus,
RoGUE keeps small application verbs (< 64KB) as they are, but
signals every 64KB and 256KB at 10 Gbps and 100 Gbps line-rates
unless the application requests signals more often. When this is the
case, RoGUE does not require any additional signaling. Henceforth,
we define batch as the collection of bytes for which we receive one
signal.

This design prioritizes CPU efficiency over faster reaction, sim-
ilar to Linux where interrupt coalescing, generic receive offload,
and delayed ACKs inflate the time to react to congestion in order
to reduce CPU overheads.

RoGUE: RDMA over Generic Unconverged Ethernet

A final issue we must consider is starvation. RoGUE uses a con-
gestion window, similar to TCP, to avoid sending data too fast. Thus,
new data will not be sent until prior sends have been acknowledged
by the receiver. On high-speed networks, the congestion window
may be as small as 16KB. When the batch size exceeds the conges-
tion window, the RNIC will starve if just one batch is enqueued
because RoGUE waits for a signal of the prior batch’s completion
before enqueuing verbs from the next batch, and these signals are
not received until one RTT after the last packet of a batch was sent.
To avoid starvation, RoOGUE therefore ensures that at least 2 batches
are enqueued if there is still application data to send.

3.2 Congestion control

Overview: A basic question is whether to rely on drops or delay
as the congestion signal. In RDMA, signals from packet drops are
not immediately available to software (Section 2.4). Thus, RoGUE
heavily uses delay as the congestion signal. RoOGUE uses a conges-
tion window, as opposed to rate, to transmit segments. The use
of congestion window limits the total number of outstanding seg-
ments and allows RoGUE to ACK clock segments in a batch and
avoid congestion collapse. However, the packets in a segment are
transmitted at line rate, and therefore RoGUE can momentarily gen-
erate a burst of packets into the network resulting in heavy losses.
To avoid this, RoGUE configures hardware rate limiters, based on
current congestion window and RTT estimates, to gradually pace
packets out.

3.3 Details

With this overall description in mind, we now describe the low
level congestion control behavior in RoGUE.

Connection startup: Packet loss is possible if connections start
by transmitting at line rate, which can dramatically increase latency
and lower throughput. To avoid this, RoGUE uses slow-start. When
a QP is first created, RoGUE starts transmission by sending an initial
congestion window worth of data at line-rate. After that, RoGUE
doubles the congestion window until congestion is detected. Like
Linux, we use an initial congestion window size of 10 packets.

RTT measurement: RoGUE’s use of RTT as a congestion signal
benefits from the fact that RNICs provide a high precision timer
for timestamping packets when they arrive at the RNIC. That said,
RTT calculation in RoGUE is not straightforward because the RNIC
interface operates on large verbs and not single packets. Consider
Figure 4 where a batch of two signaled verbs is enqueued. First,
Verb1 is enqueued when the NIC is idle, and then Verb2 soon after
(to avoid starvation). However, because of the congestion window,
Verb3 cannot be enqueued until the RNIC signals the completion of
Verbl. Figure 4 illustrates that teng s; (€.8., teng_s,) is not always
accurate to use as the start time of a batch (Verb2) because the
RNIC may still be transmitting an earlier batch (Verb1). However,
the completion time of the last verb of the previous batch (Verb1)
is known, and this time is exactly one network RTT after the last
byte of the verb was sent, which is also when the first byte in the
current batch (Verb2) will be sent.

RoGUE uses this property to compute RTT as follows. Whenever
there is room in the congestion window to send more data, RoGUE
enqueues as many batches as possible. First, the NIC time is read

SoCC ’18, October 11-13, 2018, Carlsbad, CA, USA

Host RNIC RNIC

'Tenc 51: 1 1

T - Wbl‘

. enc_s2|@)

| Verp 3| |

Teomo_s1f | Ack 1o send
: T, o — Ack 1
@ "enc_s3|e| V9rb3
" 1RTT{ - send

comp_s2 /o < ACk 2

Ack 2

Figure 4: An example of how batches of 1 signaled verb are
enqueued and signaled in RoOGUE. These events are used to
compute RTT.

before enqueuing a batch S; (teng_s;). The signal of acknowledging
the batch of Bs;jg bytes from the remote RNIC is also recorded
(tcomp_s;)- Then, the expected start time of the first verb in the
batch is:

Istart_s; = max(teansptcompfsi,l —RTT;)

Then, with rate_limit being the current applied rate-limit, the
RTT sample for batch S; is computed as:
B .
RTT; = tcompfs,— —tstart_s; — ﬁ
This reflects all the queuing delay at the sender and in the network
but not the delay incurred by the NIC serializing the batch of verbs.
RoGUE also records the lowest RTT it has seen as the base RTT of
the network.!

Congestion control: To control sending rate, RoOGUE relies on:
(1) RTT-based updates to the congestion window and (2) hardware
rate limiter configuration.

RoGUE’s updates to congestion are the same as TCP Vegas [1].
Briefly, at the end of every batch, the RTT estimate curr_rtt is
used to estimate the difference between the expected and actual
congestion windows as follows:

diff = cwnd * (curr_rtt — base_rtt)/current_rtt

If diff > f, RoGUE additively decreases cwnd; if diff < a«, RoGUE
additively increases cwnd. @ and f are constants in TCP Vegas.

Hardware rate limiting: Transmitting the verbs in each batch
at line-rate would create a burst of packets that can lead to conges-
tion and drops. To avoid sending a burst of packets, RoOGUE uses
rate-limiters in RNICs to perform packet pacing.

Ideally RoGUE is able to program rate-limiters on a per-QP basis
with a rate-limit of:

rate_limit = cwnd/base_rtt

'RoGUE lower-bounds base RTT with an estimate of the minimum RTT possible for
all destinations.

SoCC ’18, October 11-13, 2018, Carlsbad, CA, USA

Rate-limiters are crucial when cwnd < 64KB. In such cases, if
cwnd were the only mechanism to control transmission of pack-
ets, then RoOGUE would be forced to use small cwnd-sized verbs,
leading to high CPU utilization. In contrast, using rate-limiters that
are configured based on the cwnd value helps RoGUE use large
segments in this operating regime by ensuring that no more than
cwnd of data is injected into the network per RTT.

A practical challenge we faced in applying hardware rate limiters
is that the new rate limit may not take effect immediately. Indeed,
in two different Mellanox NICs (ConnectX-3 and ConnectX-4), we
measured that it can take up to 160KB for the new rate to take
effect (for various combinations of new/old rate). In such a case,
RTT samples computed using the approach above are likely to be
incorrect until the rate limit kicks in. In turn, this leads RoGUE to
take incorrect congestion response.

To overcome this, each time a new rate limit is computed and
applied, RoGUE holds off taking any RTT samples for the upcoming
H = 160KB of data transmitted. Other RNICs may have different
values for H. This holding off, however, causes congestion response
behavior to be somewhat slow on occasion: RoGUE does not collect
congestion signals for 160KB after rate limiter update. In practice,
we have found this to have little impact on performance (Section 5).

Also, not all RNICs provided per-QP rate limiters. While new
RNICs like the ConnectX-4 [19] do, the ConnectX-3 Pro [18] does
not. It does, however, support per-priority rate limiters. Thus, we
assign each queue pair a separate priority, and each priority is
assigned its own rate limit. The prototype of RoGUE builds on top
of ConnectX-3 Pro. RoGUE limits the number of active QPs to the
number of rate limiters — 8 for the ConnectX-3 Pro. Furthermore,
to avoid dramatic rate swings, RoOGUE bounds the change in rate
to 1 Gbps.

3.4 Transport Specific Design

Next, we discuss the differences that arise in applying the above
congestion control algorithm to the RC and UC transport types.
RoGUE is the first approach to offer congestion control for the
UC transport type. Supporting the UC transport type is important
because recent work has shown that it is more scalable than RC [16,
17] and because UC traffic can impact other congestion-controlled
traffic such as RC or TCP traffic.

RC Transport: For WRITE and SEND verbs over RC, RoGUE
closely follows the design above. The main issues in RC arise due
to the READ verb. First, maintaining a congestion window is com-
plicated because congestion in WRITE and READ are caused in
the opposite direction. To overcome this, RoOGUE maintains inde-
pendent READ and WRITE congestion windows for a single RC
QP. Second, READ requires setting rate limits on the remote host.
RoGUE uses a receiver-side library that asynchronously applies the
limit to a QP, and sends a WRITE_IMM to the remote host with the
READ rate-limit whenever it changes.

UC Transport: Unlike the RC transport, the RNIC does not
generate ACKs in the UC transport. Because of this, it is not im-
mediately possible to use signals to compute network RTT. Signals
in the UC transport only indicate that the message has been sent
on the network, not that it has been acknowledged by the remote
RNIC.

Y. Le et al.
Host RNIC RNIC Host
Tenc 51; Verbl 1 I
S MMM -
Tencisz' Verbz E
Hihivg | |
Tsigisl loje——1| |-
- T\'mm_sl
- IMNT
Teomp_s1 od/Ji_ - EW'T&DH

Figure 5: Timestamping positions with UC transport.

To overcome these limitations, ROGUE emulates the effect of
ACKs in RC by including the remote host in computing the RTT. In
each batch, RoGUE modifies the last verb to pass immediate data,
which triggers the RoGUE library on the remote host to reply via
a WRITE_IMM of size 0. Figure 5 shows the messages and when
timestamps are taken.

To compute the RTT, we measure in software when packets are
enqueued: teng_s; when the sender enqueues a batch, and ty¢p s,
when the receiver enqueues a WRITE_IMM response. Hardware
signals provide the timestamps of when the last verb in the batch
completed transmission (¢s;g_s;) and when the WRITE_IMM from
the server is received (tcomp_s;). We compute the start of a batch
as:

tstart_s; = max(tenqisi s tsigis,-q)

The processing time on the server to generate the reply is
Tresponse = trepis,- —limm_s;

or the timestamp of when the reply was sent less the RNIC times-
tamp of when the immediate data was delivered. The server passes
this value back in the immediate data. We ignore the small delay
between enqueuing and transmitting the reply. From these values,
the RTT can be computed as:

RTT; = teomp s; — tstart s — t __Dg
p_Si start_s; response rate_limit

Finally, RoGUE must be able to handle packet losses during RTT
measurement in the UC transport. An RTT measurement for batch
J > i that arrives before the measurement for batch i is interpreted
as a packet loss in batch i, and the congestion window is reduced
multiplicatively. When all of the outstanding RTT measurements
are dropped, RoGUE uses a timeout to retry sampling the RTT.
After timeout, ROGUE resets the congestion window to its initial
size and does not enqueue new batches until it successfully samples
the RTT.

UD Transport: We do not address UD traffic because it is the
RDMA equivalent of UDP, which does not use congestion control.
That said, supporting congestion control for UD would enable it to
coexist with other transports. Adding this support requires over-
coming two challenges: (1) UD transport allows a single QP to send
to multiple different destinations; and (2) only a single rate limit
can be set per QP. We leave this for future work.

RoGUE: RDMA over Generic Unconverged Ethernet

3.5 Reliability

When drops occur, the RNIC retransmits in hardware. Unfortu-
nately, the performance of RNIC-based retransmissions can be poor
under heavy losses. ROGUE’s aforementioned design naturally ac-
commodates the hardware’s inefficacy.

For UC, RoGUE silently drops data similar to ROCE. Only RC
provides reliable service to applications. For RC, RoGUE’s delay-
based congestion control scheme keeps queues small and losses
become very rare. Nevertheless, when losses do occur, e.g., due to
unexpected burst of competing traffic, RoOGUE uses a combination
of the RNIC’s default hardware-based retransmission strategy, and
a software driven approach as outlined below.

With RC, the RNIC provide two controls over how packet losses
are handled. First, for each QP, software can set a timeout of how
long to wait for a response or ACK before detecting a packet loss.
We note that only when the last packet of a verb is lost does this
occur, as normally the receiving RNIC will immediately send a
NACK if it receives an out-of-order packet. Because of this, we use
the QP timeout configured by the application. Second, RNICs allow
a per-QP count of how many times to retry sending the verb before
signaling a loss to software. Datacenter loss rates are generally low
and RoGUE congestion control keeps queues small, so hardware
retry has a very high probability of succeeding. Thus, RoGUE sets
a low retry count of one.

Recovering from losses in software, while flexible, is difficult for
two reasons. First, the RNIC does not notify RoGUE software of
how much of the last verb was correctly transmitted. As a result,
software must retransmit from the beginning of the verb. Second,
the QP is placed into an error state and must be recovered before it
can be used to issue additional verbs. From the state, the local and
remote QPs must be synchronized. While most of the QP state has
already been negotiated (e.g., QP number, port, and GID index), this
state also includes the dynamically changing packet serial number
(PSN). If the PSN of the local and remote RNICs do not match, the
remote RNIC will silently drop packets. Synchronizing the PSN
requires extra communication, delaying recovery.

RoGUE masks this delay with a novel shadow QP mechanism. To
avoid the delay of recovering queue pair state, ROGUE maintains a
shadow QP for every active QP created. After a QP enters the error
state, RoOGUE immediately begins issuing verbs on its paired shadow
QP while it re-synchronizes the original QP. Because inactive QPs
use no RNIC resources [11], the overhead of maintaining shadow
QPs is negligible. When losses occur, the shadow QP may be used
immediately. Importantly, this does not require any network com-
munication. While the shadow QP is used to issue subsequent verbs,
RoGUE uses an additional UD QP maintained by the receiver-side
library to re-synchronize the PSN of the failed QP, which becomes
the new shadow QP.

3.6 RoGUE Library

RoGUE deviates from purely one-sided operations by relying on a
lightweight receiver-side library. This library sits between OFED
library and application, which gives much of the performance of
RDMA at slight cost. It is used to set rate-limits for READs, pro-
vide efficient RTT estimates for the UC transport using verbs with

SoCC ’18, October 11-13, 2018, Carlsbad, CA, USA

“immediate” data (Section 3.1), and to re-establish connections fol-
lowing a timeout (Section 3.5). However, these are all background
operations. RoOGUE does not change any of RoCE’s optimization
options, such as inline data, signalling frequency, and immediate
operations, which applications may leverage. If the application verb
size is less than 64KB (small verbs), RoGUE will keep as it is. Note
that the inline data optimization can only be used with small verbs.
For large application verbs, RoOGUE will signal and send immediate
data on the last segment. In addition, the sender can continue issu-
ing verbs before the receiver responds. Thus, these operations do
not delay READs and WRITEs issued by the sender or otherwise
interfere with their one-sided nature. Figure 6 quantifies the over-
head of this library. At most, this library increases utilization by
9.8% of one CPU (Section 5).

4 METHODOLOGY

We evaluate RoGUE on a cluster of servers and in simulation, and
compare against RoCE with and without PFC.

Hardware platform. We evaluate RoGUE with a Mellanox
ConnectX-3 Pro 10 Gbps RNIC, which supports DCQCN. We use a
cluster of 32 servers on CloudLab [3], each server with an 8-core
Intel Xeon D-1548 CPU, and 64GB of memory. Each server connects
to one of two HP Moonshot-45XGc ToR switches (16 servers per
switch), which in turn connect to a HP FlexFabric 12910 core switch
via a 40 Gbps uplink. All of the servers we use run Ubuntu 16.04
with Linux kernel version 4.4 and Mellanox OFED version 4.1.

For the Mellanox ConnectX-4 [19] 100Gbps experiments in Sec-
tion 3.1, we use two servers each with two 10-core Intel Xeon
E5-2660 CPUs, and 160GB of memory, which are directly connected
to each other.

Network configuration. To enable both DCTCP and DCQCN,
we configure the switch to perform ECN marking. We are able to
enable ECN on the Moonshot-45XGc switches, but are administra-
tively prevented from enabling ECN on the HP FlexFabric 12910
core switch. Thus we can only evaluate DCTCP and DCQCN with
experiments where all traffic stays within a single Moonshot-45XGc
switch.

The Moonshot-45XGc implements RED with ECN in a non-
standard way that is detrimental to DCQCN. To get the best pos-
sible results from our hardware, we conducted a broad parameter
sweep and found that these RED parameter settings offered the best
performance for both DCTCP and DCQCN: K;;,in = 99 packets,
Kmax = 38,000 packets (the maximum allowed, so no unnecessary
drops), and Ppax = 1. We set TCP Vegas parameters « and f to 4
and 2 respectively.

Simulations. We used the open-source ns3-rdma simulator [30,
32] and added support for RoGUE to evaluate configurations not
possible for us on real hardware. We evaluate a 40Gbps network
environment with 1us network delay, and second, we evaluate
TIMELY and DCQCN: We used TIMELY’s implementation included
with the simulator.

5 EVALUATION

We conduct a detailed evaluation of RoOGUE. We study its CPU
overhead, the accuracy and effectiveness of RTT computation, and
the efficacy of RoGUE’s congestion control algorithm. Kernel bypass

SoCC ’18, October 11-13, 2018, Carlsbad, CA, USA

D
o

DCTCP
ROCE (READ RC)
RoGUE (READ RC)
RoCE (WRITE UC)

Al
o o

RoGUE (WRITE UC)

CPU Utilization (%)
nNow
S o

=
o

o

Client Server

Figure 6: CPU utilization of network transports.

mechanisms such as mTCP [13] typically use polling for low latency,
and hence 100% of a CPU. In addition, these mechanisms do not
focus on congestion control. Thus, we do not compare RoGUE
against them.

We study the benefits of RoGUE for two benchmark applications
where we also contrast against competing systems. We conclude
with a simulation-based comparison against DCQCN and TIMELY.
We expect that RoGUE has comparable performance as RoCE, but
lower CPU utilization and faster responsiveness than DCTCP.

5.1 CPU Utilization

We measure CPU utilization while using a QP or TCP flow to
drive line-rate traffic between two machines in our testbed (“client”
sending to a “server”), and compare DCTCP against RoCE and
RoGUE for RC and UC transport types with READ and WRITE
verbs, respectively. For READs, server sends data to the client. We
use dstat to measure CPU utilization every 10s (avg. over 5 runs)
at both the client and server.

Figure 6 compares the CPU utilization of RoGUE to both RoCE
and DCTCP. RoCE uses 1MB verbs, whereas RoGUE uses 64KB
verbs. We heavily optimize DCTCP: we enable TCP Segmentation
Offload (TSO) with a segment size of 64KB, and generic receive
offload (GRO). Also, we use sendfile to enable zero-copy transmis-
sions of data that is already resident in the kernel; sending data from
user-space would incur extra CPU for system calls and copying
data.

For RC READs, RoGUE has higher CPU utilization at the client
side (17% of one core) than RoCE (7%) because RoCE uses larger
verbs and hence signals less frequently. ROGUE has lower CPU
overhead than DCTCP (21%) despite the heavy optimizations we
applied to the latter. For UC writes, RoOGUE’s CPU use is similar
(15%), whereas RoCE’s is slightly lower (5%) due to a simpler proto-
col.

At the server, RoCE has negligible CPU use with both RC and UC
as both READ and WRITE verbs are one-sided. RoOGUE with RC has
negligible CPU use for the same reason. Despite RoGUE’s library
and use of immediate data with UC, it uses just 12% of a server CPU.
In contrast, DCTCP’s CPU use is high (51%): even though GRO is
enabled, the driver at the DCTCP receiver must handle individual
packets.

5.2 Loss Recovery

We evaluate RoGUE’s loss recovery mechanism using an incast from
two hosts, the minimum required to cause congestion, each sending
a 128MB flow. We simulate loss with a switch ACL that causes some
packets to be dropped. Because the RNIC generates RDMA traffic

Y. Le et al.

104 : : ‘
B-ERoGUE AAROCE

ey
o
W

102 |

10 L

Verb Compeletion Time (us)

L L L L

! ! !
64 256 1K 4K 16K 64K 128K 256K 1M
Verb Size Bytes (Bytes)

Figure 7: RDMA verb completion times for both RoCE and
RoGUE given different verb sizes.

10°

(Gbps)

oON B~ O

Throughput

0 25 50 75 100
Average Added RTT Noise (us)

Figure 8: Impact of inaccurate samples on Throughput

Bl 64KB Segment EEEN 1KB Segment |f

=
o

©

S

Median Throughput (Gbps)
N (2]

o

1/64K 1/16K 1/4K 1/1K
Loss rate

Figure 9: Impact of packet loss

with monotonically increasing IP identification fields, we configure
aswitch ACL to drop packets with specific IP identification field [11].
For example, packet loss rate 1/4K is achieved by dropping packets
with IP id field of 0x*fff. As the IP id field in header is 16 bits, the
lowest packet loss rate possible with this mechanism is 1/64K.
Figure 9 shows the median throughput of big (64KB) and small
(1KB) application verbs with different loss rates. As expected, through-
put decreases as the packet loss rate increases for both verb sizes.
The throughput for big verbs is better than for small verbs because
of the RNIC’s hardware retransmission scheme. Upon learning of
a loss via a NACK or timeout, the ConnectX-3 Pro’s RNIC’s Go-
Back-N mechanism immediately retransmits all the packets in the
verb since the lost packet, but delays sending the next verb until
the entire verb has been ACKed. This continues until all N packets
between the lost packet and the packet sent just before learning
of the drop, are retransmitted. For large verbs, the remainder of
the verb is sent immediately, which likely includes all N retrans-
mitted packets, so the next verb can be sent immediately. However,
retransmission of small verbs are serialized and wait for an ACK of
the preceding verb before being sent, leading to much more delay.

RoGUE: RDMA over Generic Unconverged Ethernet

Transport 10%ile | 50%ile | 90%ile
RC WRITE(0) 2us 2us 2us
RC READ(64KB) 4ps 4ps 641
UC WRITE(64KB) 8uus 8us 8us

Table 1: Accuracy of ROGUE RTT computations.

We can see that RoOGUE performs well when the loss probability
is up to 0.025%. We believe that this is sufficient to handle almost
all packet loss.

5.3 Verb Completion Time

Because of RDMA’s low latency (us level), it may be sensitive to the
extra code RoGUE executes on the data path for congestion control.
We measure the completion time for each individual verb by vary-
ing verb size, and compare RoGUE against RoCE. Figure 7 shows
the completion time of RDMA READs in an uncongested network,
averaged over 1M iterations. Small 64B verbs complete in 4ys, iden-
tical to RoCE. For large 1MB verbs, RoGUE requires 1040us while
RoCE requires 944ys due to the cost of reading timestamps from the
RNIC and processing completion signals every 64K B. These results
show that RoGUE overheads do not significantly affect application
performance.

5.4 RTT Computation

RTT computation is central to RoGUE as it drives cwnd updates and
hence the sending rate. It is therefore also crucial to avoid losses as
much as possible.

Accuracy: To evaluate RTT computation accuracy, we use a
single QP on an otherwise uncongested network to transfer 64KB
verbs at line-rate. We then look at the RTTs that are computed by
RoGUE for the different transports. As an oracle, we issue zero-byte
signaled WRITE verbs over RC. Because the network is uncon-
gested, any differences between the computed and WRITE(0) RT Ts
are due to measurement error. Table 1 lists the 10th, median, and
90th percentile results.

We find that 100% of WRITE(0) measurements return 2us. For
READ verbs over RC, our RTT calculation overestimates median
RTT by 2us. The higher median RTT can be accounted for by the
extra time taken for PCI transactions to copy data to and from mem-
ory on both ends for the READ operation, about 1us each. WRITE(0)
has no data, and does not pay this cost. The variance occurs because
RoGUE maintains queues of at most 2 batches (128KB or 100us of
data). When the client program runs immediately in response to a
completing signal, it can keep the queue full and use accurate RNIC
timestamps tcomp_s to calculate the RTT. But, if the client program
is delayed from running, RoGUE instead reads an RNIC timestamp
tenc_s before enqueuing data. This adds both the delay of extra PCI
transactions to read the timestamp, and also some scheduling delay
if RoGUE gets preempted before enqueuing the next verb.

With UC, we see higher RTT measurements but less variation.
The higher estimate is again due to extra PCI transactions - to
read/write the data at client/server respectively, but also due to two
additional transactions to pass the immediate data to and from the
RoGUE library. There is less jitter because delays in scheduling the
library are already accounted for when the library reads ty¢p_s just
before enqueuing its response.

SoCC ’18, October 11-13, 2018, Carlsbad, CA, USA

Impact of inaccurate samples: We measure how robust our
RTT samples need to be to provide effective congestion control. We
conduct an 8—1 incast. Each flow sends 128MB to a single server
using RC (our results for UC were similar). We add random noise to
the RTT samples picked uniformly from the range [0, x]yus, where
x =0, 25,50,75,100 (similar to [20]). Figure 8 shows the aggregate
throughput of all incast flows as a function of x. We see that an
average noise of 50us causes visible degradation in throughput; thus,
RoGUE requires reasonably accurate timestamps and completion
events. It also suggests that RoGUE can tolerate RTT samples of up
to 50us noise, well above typical OS and RNIC noise.

5.5 Congestion Response Efficacy

A key concern for our congestion control scheme is that our batch
sizes are large and it pauses RTT sampling for 160KB (3 batches)
after adjusting a rate limiter. This may make RoGUE slow to re-
act to congestion, and hurt latency and throughput. We measure
the instantaneous throughput and end-to-end latency to show the
efficiency of RoGUE’s reaction to congestion.

—— o

o
©
T
L

o
)

o
~

- Real — Estimated

Cumulative Probability
Cumulative Probability

o
N

0.0 P S a—!
0 10 20 30 40 50 60 70 80
Latency (us)

[0)0 T T R R—!
0.0 05 1.0 1.5 2.0 25 3.0 35 4.0
Throughput (Gbps)

Figure 10: Real vs esti- Figure 11: Latency in Park-
mated throughput. ing Lot topology.

Incast: We first experiment with an 8-to-1 incast. Figure 10 plots
a CDF of all flows’ instantaneous throughput averaged at 1s inter-
vals and the sending rate (cwnd/RTT) estimated by RoGUE, which
is computed every congestion window update to verify accuracy
of the estimated throughput. We see that the estimated throughput
of RoGUE matches well with the real throughput. The tail 10th
percentile throughput is 1.12Gbps, which happens at the slow start
stage. The median of instantaneous throughputs is 1.20Gbps, which
is almost identical with the ideal throughput, 1.21Gbps in 8 — 1
incast 2. It indicates that RoGUE’s congestion control can estimate
the flow sending rate accurately and converges to a fixed point as
we see that the estimated throughput does not have big variance in
Figure 10.

In addition, both the estimated throughput and real throughput
result in a near-perfect bandwidth allocation across the 8 flows. This
shows that RoGUE’s batch-driven design has a negligible impact
and achieves both fair sharing of bandwidth and maintains a stable
and evenly shared throughput.

Arriving/departing flows: Here, we start with one long-running
flow being sent in isolation, and then add/remove up to 4 additional
flows, one at a time. We measure the instantaneous throughput of
all the five flows averaged over 1s intervals for RoGUE in a 10Gbps

2Note that the maximum throughput for RoCE is less than 10Gbps due to the RoCEv2
header added to form packets.

SoCC ’18, October 11-13, 2018, Carlsbad, CA, USA

I
o

N W oW
g o O

B
o o

Throughput (Gbps)
Throughput (Gbps)
N
=]

A1l
0 50 100 150 200 0 2 4 6 8 10 12 14 16

Time (s) Time (s)
(a) RoGUE (b) RoGUE simulator

Figure 12: The instantaneous throughput (1s-average, a; 0.1s-
average, b) of multiple RoGUE flows from different clients
sharing a congested link to a single server. The red lines in-
dicate the arrival of a new flow and the green lines indicate
the completion of a flow.

Senders
Receiver
I Switches

Figure 13: Multi-bottleneck (parking lot) topology.

network and at 0.1s intervals for the RoGUE simulator in a 40Gbps
network.

Figure 12a shows the throughput of all RoGUE flows over time.
All the five flows are able to achieve their fair share of a bottleneck
link, respond quickly to changes in congestion, and converge to a
new bandwidth share which is very stable.

The simulation results in Figure 12b verifies the efficiency of
RoGUE, i.e., it has quick response and fairness on a high-speed
network, and that it is stable even at short time scales.

Parking Lot: In addition, we also run an experiment with a
multi-bottleneck network topology as shown in Figure 13. In this
experiment, we start a 4 — 1 incast and each flow traverses a dif-
ferent number of bottleneck links, i.e., 1, 2, or 3 congested links.
RoGUE has an average per-flow throughput of 2.27Gbps, with
Jain’s fairness index of 0.995. It indicates that our congestion con-
trol can work well in mutilple bottleneck scenerio. Figure 11 plots
a CDF of latency measurement taken via a periodic WRITE(0) re-
quest/response on a QP from a seperate server to the incast server.
Note that this latency includes both switch queuing and receiver
delay. The median and 90‘" percentile RTT are 58ys and 75s, re-
spectively. We saw a small variation in the CDF figure, which is
expected because the RoGUE’s congestion control requires enough
queuing in the network to adjust the congestion window as well
as the rate limiter. However, the latency is still below 80us, which
indicates that the RoGUE sets the rate limiter properly to avoid the
burstiness in the network, and furthermore that RoGUE’s Vegas-
based congestion avoidance scheme is effective at keeping queues
small.

Y. Le et al.
= 1.0 y = 8 . .
2 fp———=4b-—=4 3]
=% - o 7L 2
S 08¢ 1 %6 i
3 . 3ol
£o06L 1 g5} 1
=l =l o]
© 0.4} N 1 o3l : J
5 <0 ¢ S 2
£ 02} . R - * 1
00 N L O L L
1 2 4 8 1 2 4 8

Number of Clients Number of Clients
@-@ROGUE ¢ 9RoCE (W/ DCQCN) * *RoCE AADCTCP

(a) (b)
RC Transport Type UC Transport Type

Figure 14: The 101 percentile throughput of large incasts in
the RC/UC transport type.

5.6 Benchmark Workloads

We study two workloads that are representative of application traffic
patterns one may observe in cloud data centers where RDMA is used.
We use these benchmarks to compare RoGUE against alternatives.

N—1 incasts: Here, N servers simultaneously send data to 1
client. This reflects several common data center scenarios such as
disk recovery in cloud storage, where a failed disk is recovered by
reading data from multiple other disks, or the aggregation stage
of a partition-aggregate workload that forms the basis of search
engines. We use 128MB segments.

As stragglers often determine the above applications’ perfor-
mance, we are primarily concerned with the 10th %-ile of the per-
flow throughput distribution (tail throughput). The tail throughput
being close to fair share indicates that RoOGUE offers good through-
put and fairness.

RC transport: Figure 14a shows the tail throughput of differ-
ent transports normalized to each flow’s fair share of the network
(10Gbps / # Clients). When we tried RoCE without PFC, many con-
nections failed due to lost packets, and those that do not, suffered
from frequent retries that hurt throughput. RoCE with DCQCN
congestion control improves the situation, but tail throughput is
still less than 50% of fair share because of our switch’s RED im-
plementation, showing that DCQCN may not be usable in some
networks. DCTCP is compatible with our switch and is able to
provide near-perfect fairness. RoOGUE achieves more than 90% of
it share. We note that RoGUE can not ramp up quickly in a single
client case. This is because our workloads use 128 MB segments,
and slow start coupled with slow-to-respond hardware rate limiters
cannot reach line rate quickly (well before segment completion).

UC transport: Figure 14(b) shows the tail throughput when
there are incasts using UC WRITEs. We repeat the DCTCP results
for comparison purposes, and omit RoCE with DCQCN, as it does
not support the UC transport. Most importantly, we observe that,
as PFC is unavailable, RoCE is unable to control sending rate. Every
client sends at line rate, which overwhelms the switch and leads to
high packet loss.

These results show that RoGUE can provide the same throughput
as DCTCP even when used with UC. The 10th %-ile throughput
results are within 5% of the fair share in all cases. Despite the
inability to detect or retransmit dropped packets, goodput is near
100%.

RoGUE: RDMA over Generic Unconverged Ethernet

7 Z 700
\E, i 2 i
QE,s» 1 geoor .
E sl { £ 500} - .
54t { § 400} .
2 3t) 1 2300 = .
§2» = o S { §2005 o 1
3 1o 1 s 100p g --- o .. _. 3
] 5 b
LLO ! ! i 0 ! !

10 25 50 75 10 25 50 75

Network Load (%) Network Load (%)
@ ®ROGUE ¢-9RoCE (w/ DCQCN) DDDCTCE

a,
Large RPCs (1MB) - Median FCT Small RPCs (1KB) - 90th %ile FCT

Figure 15: Comparing different network transports for a
storage application’s user request-response traffic.

Many pairs: This emulates the request-response traffic of an
application co-located with storage. Each of 16 hosts generates
1MB flows for random destinations; the flows’ inter-arrival times
are sampled from the exponential distribution. We chose different
inter-arrival times to vary the expected load on the network. To un-
derstand the impact on short latency-sensitive requests/responses,
we also send a short 1KB message to a random server once every
ten 1MB messages.

Figures 15a and 15b respectively show the median large flow
completion time and 90 percentile short flow completion time
(FCT). The former reflects throughput, which matters for large
flows, and the latter reflects worst case response latency, which
matters for short flows. In both cases, we see that RoGUE perfor-
mance is consistent across network loads. For small RPCs, RoGUE
provides better completion times than DCTCP because it is con-
sistently able to provide lower latencies when there is congestion.
Similarly, one reason that RoOGUE can provide better flow comple-
tion times for small RPCs than RoCE is because RoGUE implements
slow start. In RoCE, a new large transfer starts transferring data at
line rate causing congestion that impacts the completion time of the
small transfers. In large RPCs, DCTCP sees worse flow completion
times because it uses larger congestion windows to compensate for
its higher RTT.

5.7 TIMELY and DCQCN

We compare RoGUE with state-of-the-art RDMA congestion control
schemes, i.e., TIMELY and DCQCN. TIMELY is also an RTT-based
congestion control scheme. We look at convergence and fairness,
which reflects the efficiency of a congestion control scheme, and the
dependence on PFC. As noted in Section 4, we use a simulator for
these results because a real TIMELY implementation is not available.
Furthermore, DCQCN is compatible with our simulated switches.

Convergence: To demonstrate convergence and fairness, using
the parking lot topology we start 4 flows simultaneously and report
the aggregate throughput every 0.1s for each flow, as shown in
Figure 16. We can see that RoGUE converges quickly and stays at
the fixed point, i.e., 9.4Gbps. This is because RoOGUE can estimate
network RTT accurately, uses additive increase/decrease to do con-
gestion avoidance and uses rate limits to avoid packet bursts into
the network.

Figure 16(b) shows that TIMELY has a big variance and does
not converge. This occurs because TIMELY’s congestion avoidance

SoCC ’18, October 11-13, 2018, Carlsbad, CA, USA

does not have a fixed point as noted in [32]. Figure 16(c) shows
that DCQCN has a small jitter, but can roughly converge to a fixed
point.

Also, each flow in RoGUE evenly shares the full line rate with
average per-flow throughput of 9.55Gbps and Jain’s fairness index
of 0.999 . The average per-flow throughput of TIMELY is 8.76Gbps
(fairness index = 0.992), and for DCQCN the throughput is 9.74Gbps
(fairness index = 0.999).

Use of PFC: PFC pause frames used by RoCE to provide loss-
less networking can be risky in a datacenter. While both TIMELY
and DCQCN largely manage congestion, we measure whether and
when TIMELY and DCQCN still depend on PFC pause frames for
congestion control. Ideally, switch queues should stay short so that
pause frames are not triggered.

In this experiment, we overflowed the switch buffer by initi-
ating 32 flows, simultaneously, as it might happen at the start of
a parallel job retrieving data. We measure whether pause frames
are generated, and for how long. With RoGUE, there are no pause
frames due to its slow start. In contrast, both TIMELY and DCQCN
require pause frames when they first start transmitting, as they do
not have slow start. For TIMELY, pause frames are sent for 1563us
and for DCQCN 620us. Thus, while the other protocols in general
avoid congestion leading to pause frames, under burst behavior
they may still occur. In contrast, ROGUE does not have persistent
queue build-up or packet loss, even with persistent congestion.

6 OTHER RELATED WORK

Our work draws on the long history of congestion-control mecha-
nisms, many of which were mentioned previously. Here, we focus
on closely related work.

TIMELY: There are several important differences between RoGUE
and TIMELY [20]. While TIMELY is rate based, RoGUE is congestion-
window based. Using a congestion window helps RoGUE avoid
congestion collapse by adhering to packet conservation, applied to
batches. TIMELY also relies on PFC and assumes RC, while RoGUE
must tolerate congestion drops and also supports UC. Finally, we
develop different custom RTT estimators; for RC, TIMELY’s RTT
estimation approach does not apply to our setting because we en-
queue multiple batches to avoid RNIC starvation.

Congestion Control Algorithm Limitations: Zhu et al. [32]
find that both DCQCN with RED/ECN and delay-based congestion
control algorithms (RoGUE and TIMELY) suffer from convergence
and fairness problems. We believe these findings highlight the
continued need for congestion control evolution.

iWARP: RoGUE targets RoCE because RoCE RNICs are the
most commonly deployed RNICs in datacenter networks. However,
iWARP [25] NICs are available and implement the TCP protocol
on the NIC, and can in theory be used instead of RoOGUE. However,
iWARP suffers from the many known problems with TCP Offload
Engines (TOEs) [22, 27]. Architecturally, we believe that RoGUE’s
approach of offloading expensive messaging operations to hardware
is better than iWARP’s approach of offloading congestion control
logic.

IRN: This work [21] tries to get rid of PFC by implementing selec-
tive ACK (SACK) in the hardware RNIC for faster recovery, and by
limiting the number of outstanding packets to the bandwidth-delay

SoCC ’18, October 11-13, 2018, Carlsbad, CA, USA

@ n ——————————— PN v e
& 10f | & O rpromeaomni s & 10 pheiRting
o 8 | 2 s o 8f :
5 6t {1 5 6f 5 6f 1
£ 4 £ 4 2 4

2 "[|— flowl — flow3|| & 7| 1T 27 1
2 2| — flow2 fow4f| 2 21 1 272 1
[0 T T T T T T T [0 ! ! ! ! ! ! ! [0 L L L L L L L

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (s) Time (s) Time (s)
(a) RoGUE (b) TIMELY (c) DCQCN

Figure 16: Convergence and Fairness.

product of the network. But, it still relies on a software congestion
control protocol such as TIMELY or DCQCN, and thus could be
used with RoGUE.

7 CONCLUSIONS

Reliance on PFC remains a major hurdle in the adoption of RDMA
over Ethernet (RoCE). While PFC is essential for congestion control,
it is susceptible to serious safety problems. We show that it is
possible to support effective congestion control for RoCE without
PFC. RoGUE uses novel RTT estimators to determine congestion,
large segment transfers to lower CPU utilization, a congestion
window to clock data, and rate limiters to smooth packet bursts.
Our evaluation of a full RoGUE implementation over a real testbed
shows that these mechanisms help RoOGUE offer effective congestion
control at low cost: its throughput matches that of state-of-the-art
datacenter congestion control, yet its latency, completion times,
and CPU utilization are substantially lower.

Acknowledgments

We would like to thank the anonymous reviewers for their thought-
ful feedback. Yanfang Le, Brent Stephens, Arjun Singhvi, Aditya
Akella and Michael Swift are supported in part by NSF grants CNS-
1330308 and CNS-1717039.

REFERENCES

[1] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson. 1994. TCP
Vegas: New Techniques for Congestion Detection and Avoidance. In Proceedings
of the Conference on Communications Architectures, Protocols and Applications
(SIGCOMM °94).

Craig Carlson. 2009. IEEE 802.1: 802.1Qaz - Enhanced Transmission Selection.
http://www.ieee802.org/1/pages/802.1az.html. (2009).

CloudLab [n. d.]. CloudLab. http://cloudlab.us/. ([n. d.]).

William J. Dally and Charles L. Seitz. 1987. Deadlock-Free Message Routing in
Multiprocessor Interconnection Networks. IEEE Trans. Comput. C-36, 5 (May
1987), 547-553.

Data Center Bridging Task Group. [n. d.]. http://www.ieee802.org/1/pages/
dcbridges.html. ([n. d.]).

Claudio DeSanti. 2009. IEEE 802.1: 802.1Qbb - Priority-based Flow Control.
http://www.ieee802.org/1/pages/802.1bb.html. (2009).

Aleksandar Dragojevi¢, Dushyanth Narayanan, Orion Hodson, and Miguel Castro.
2014. FaRM: Fast Remote Memory. In NSDI. USENIX.

Norm Finn. 2008. IEEE 802.1: 802.1Qau - Congestion Notification. http://www.
ieee802.0rg/1/pages/802.1au.html. (2008).

Sally Floyd and Van Jacobson. 1993. Random Early Detection Gateways for
Congestion Avoidance. IEEE/ACM Trans. Netw. (1993).

Alan Ford, Costin Raiciu, Mark J. Handley, and Olivier Bonaventure. 2013. TCP
Extensions for Multipath Operation with Multiple Addresses. RFC 6824. (Jan.
2013).

Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Padhye,
and Marina Lipshteyn. 2016. RDMA over Commodity Ethernet at Scale. In
SIGCOMM. ACM, New York, NY, USA. https://doi.org/10.1145/2934872.2934908

[10]

(1]

[12]

(13]

[14

[15

[16

[17

[18

[19

[20

~
&,

@
5,

Keqiang He, Eric Rozner, Kanak Agarwal, Yu (Jason) Gu, Wes Felter, John Carter,
and Aditya Akella. 2016. AC/DC TCP: Virtual Congestion Control Enforcement
for Datacenter Networks. In SIGCOMM.

EunYoung Jeong, Shinae Wood, Muhammad Jamshed, Haewon Jeong, Sunghwan
Thm, Dongsu Han, and KyoungSoo Park. 2014. mTCP: a Highly Scalable User-
level TCP Stack for Multicore Systems. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14). USENIX Association.

Josh Simmons. 2000. RDMA in the Cloud: Enabling high-bandwidth, low-latency
communication in virtual environments for HPC. (2000). https://octo.vmware.
com/wp-content/uploads/2014/11/ndm2014-sc14-simons3.pdf

Glenn Judd. 2015. Attaining the Promise and Avoiding the Pitfalls of TCP in the
Datacenter. In Proceedings of the 12th USENIX Conference on Networked Systems
Design and Implementation (NSDI'15). USENIX Association, Berkeley, CA, USA,
145-157. http://dl.acm.org/citation.cfm?id=2789770.2789781

Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2014. Using RDMA
Efficiently for Key-Value Services. In SSIGCOMM. Chicago, IL.

Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. Design Guide-
lines for High Performance RDMA Systems. In 2016 USENIX Annual Technical
Conference (USENIX ATC 16). USENIX Association.

Mellanox Technologies. [n. d.]. ConnectX-3 Pro. http://www.mellanox.com/
related-docs/prod_adapter_cards/PB_ConnectX-3_Pro_Card_VPLpdf. ([n. d.]).
Mellanox Technologies. [n. d.]. ConnectX-4 VPL http://www.mellanox.com/
related-docs/prod_adapter_cards/PB_ConnectX-4_VPI_Card.pdf. ([n. d.]).
Radhika Mittal, Terry Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel,
Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, and David Zats.
2015. TIMELY: RTT-based Congestion Control for the Datacenter. In SIGCOMM.
Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan Zahavi, Arvind Krishna-
murthy, Sylvia Ratnasamy, and Scott Shenker. 2018. Revisiting Network Support
for RDMA. In Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication (SIGCOMM °18).

Jeffrey C. Mogul. 2003. TCP Offload is a Dumb Idea Whose Time Has Come. In
HotOS. USENIX Association, 5-5.

OpenFabrics Alliance. [n. d.]. OFED Overview. https://www.openfabrics.org/
index.php/openfabrics-software html. ([n. d.]).

Marius Poke and Torsten Hoefler. 2015. DARE: High-Performance State Machine
Replication on RDMA Networks. In HPDC.

RDMA Consortium. [n. d.]. Architectural Specifications for RDMA over TCP/IP.
http://rdmaconsortium.org/. ([n. d.]).

Brent Stephens, Alan L. Cox, Ankit Singla, John Carter, Colin Dixon, and Wesley
Felter. 2014. Practical DCB for Improved Data Center Networks. In INFOCOM.
The Linux Foundation. [n. d.]. toe. http://www.linuxfoundation.org/collaborate/
workgroups/networking/toe. ([n. d.]).

Sven Ulland. 2011. Kernel panic/crash, bnx2 flow control flooding and network
outages. Linux-PowerEdge - Linux on Dell PowerEdge Servers discussion http://
lists.us.dell.com/pipermail/linux-poweredge/2011-October/045485.html. (2011).
Keith Winstein and Hari Balakrishnan. 2013. TCP ex Machina: Computer-
Generated Congestion Control. In SSIGCOMM. Hong Kong,.

Yibo Zhu. [n. d.]. ns3-rdma. https://github.com/bobzhuyb/ns3-rdma/tree/timely.
([n.d.]).

Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. 2015. Congestion Control for Large-Scale RDMA Deployments.
In SIGCOMM. ACM. http://research.microsoft.com/apps/pubs/default.aspx?id=
252307

Yibo Zhu, Monia Ghobadi, Vishal Misra, and Jitendra Padhye. 2016. ECN or
Delay: Lessons Learnt from Analysis of DCQCN and TIMELY. In Proceedings of
2016 ACM Conference on Emerging network experiment and technology (CoNEXT
2016).

